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Universal canonical forms for time-continuous dynamical systems
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A natural embedding for most time-continuous systems is presented. A set of nonlinear transfor-
mations is shown to split the whole family of dynamical systems into equivalence classes. The de-
gree of nonlinearity is not a relevant characteristic of these classes of ordinary differential equations
(ODE's). In each class there exist two particular simple canonical forms into which any such ODE
can be cast. We show on an example how to use these canonical forms to find nontrivial integrabili-
ty conditions.

I. INTRODUCTION

dx, n

x, = =A. , x, +x, gdi

n B.
A, Q xk'", i =l, . . . , n

k=1

where x, are real or complex functions of time t. The
coefficients k, are real or complex parameters, A and B
are n X n square matrices with real or complex entries.

It was shown in this article that a large category of
physically relevant systems belong to that class and that
representation (1) provides new methods for finding in-
tegrability conditions and for explicitly constructing solu-
tions for these systems.

Nonlinear transformations of the form

x, = Qx)
j=1

(2)

where C is a n X n invertible matrix, were introduced and
shown to bring Eqs. (1) into

n n

x,'=A.
,'x,'+x g A,

' Q xl,. ",
j=l k =1

i =l, . . . , n

with

A. ,
' =(C 'A, ), ,

A, =(C 'A), ,
B,' =(BC),

(4a)

(4c)

Thus, the form invariance of Eqs. (1) under the transfor-
mations (2) appears, and moreover, the following quanti-
ties are invariant:

B'A'=BA

B'k'=BR. .

(5a)

(Sb)

Hence, the above general family (1) is split into
equivalence classes characterized by a given matrix BA
and vector Bk, where A. =(A, kz, . . . , A,„). It was also

In a recent paper, ' one of us introduced a class of
dynamical systems, the so-called generalized Lotka-
Volterra equations:

shown that when matrix A is invertible, transformation
(2) with C = A brings Eq. (1) into a normal form:

x,'=(BA, ), x,'+x, ' g (BA), x,', i =1, . . . , n .
j=1

(7)

Thus, two opposite exact normal forms are found for
Eqs. (1). The first corresponds to A '=I, the second to
B'=I. The first form is particularly convenient for deter-
mining integrability conditions. ' It also leads to an
operating procedure for explicitly solving Eqs. (1) when
these conditions are fulfilled. The second normal form
contains the lowest degree of nonlinearity. Already here,
nonlinearity does not appear to be a relevant parameter,
the only ones being the characteristics BA and Bk of the
equivalence class to which a system belongs.

In Ref. 1, Eq. (1) was thought to be restrictive. We
now show that most of dynamical systems can be cast in
this shape and consequently that forms (6) and (7) are
universal. We then apply these forms to find integrability
conditions and explicit integrals to a model for nonlinear
interaction of three waves. This system appears in many
domains of physics and, till now, no exact solutions of it
were known when dissipation is included. Our approach
leads explicitly to such solutions as is shown later.

II. GENERALIZATION

A direct generalization of Eqs. (1) amounts to allow for
matrices A and B to be rectangular:

x =(A A, );x +x Q x, ", i =1, . . . , n . (6)
j=1

The essential feature of this form is that only one non-
linear "monomial" term appears in each equation. The
powers characterizing these nonlinearities are in general
noninteger since they depend on parameters. In Ref. 1

this normal form was transformed into a completely fac-
torized form which lead us to find integrability conditions
in parameter space.

Furthermore, if matrix B is invertible, transformation
(2) with C =B ', when applied to Eq. (1), leads to the
following Lotka-Volterra system
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m n B.„x, =A, ,x, +x, g A, g xt, '",i =1, . . . , n,
j=l k =1

m~n .

(8)

It can be seen from (8) that A is a n X m matrix and 8 a
m Xn matrix.

Most of the relevant dynamical systems can be cast
into the form (8) when there is a finite number of polyno-
mial nonlinearities or even when real powers of the
dependent variables appear. The transformations (2) are
still relevant for the class (8) which is also closed under
them:

m

x,
' =A, ,'x,'+ x,

' g A, g xk '",
j=1 k=1

(9)

with

Pn+1

(12c)

Pm

Let us stress that, by construction, the n first equations in
system (11) are the same as in system (8) and are not cou-
pled to the m —n remaining ones.

In expression (12c), the parameters p; are arbitrary.
This is also the case for the a, up to the fact that
should be invertible. This last property along with the
fact that Eqs. (11) belong to Eqs. (1) in m dimensions al-
low for transforming the formers and consequently Eqs.
(8) to the canonical form (6) in m dimensions. Let us re-
mark that

A, '=(C 'A),

A'=C 'A,
B'=BC,

(10a)

(10b)

(10c)

BA =BA

BR=BR .

B. I.otka-Volterra canonical form

(13a)

(13b)

and C is any invertible n X n matrix. However, it is clear-
ly impossible to obtain for Eqs. (8) the two canonical
forms (6) and (7) unless, as is shown below, the dimension
of the system is increased.

The second canonical form can be obtained if and only
if the m X n matrix B is of rank n. Then another embed-
ding leads to the same system (11) but now with the fol-
lowing expressions for A, B, and k:

III. CANONICAI. FORMS

A. First canonical form

This form can be obtained if and only if the n X m ma-
trix A is of rank n. Let us add to system (8) rn nnew-
equations for variables xn+, , . . . , x in the following
way: 0 0

A„1

0 0

A„

0

0

(14a)

m m

x =X~ +x g A tigx ~', a=i, . . . , m
P= I y=1

where

Bq1 B22 Ben b2, n+1

B12 B1„b1n + b,

b2

A 11

A 21

A 12

A 22

A 1m

A2

B
1 Bm2 Bmn b, .+1 b

(14b)

An2

n+1 1 n+1, 2

A„

+n+1, m

~n+2, m

(12a)
0

0

(14c)

B11 B12 . . B1„0 . . . 0

Bz2 B,n 0 0
(12b) x (t =0)=1, a=n+1, . . . , m . (15)

In expression (14b) the entries (b,") are arbitrary with the
only condition that B is invertible.

In order to ensure the equivalence between this version
of system (11) and Eq. (8), the initial conditions on the
m —n new variables should be
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We are now able to use this last property to bring Eqs.
(11) and consequently the system (8) to Lotka-Volterra
form similar to (7). Here also

BA =BA,
BA.=Bi, .

(16a)

(16b)

Of course, for both cases (A of rank n or B of rank n) the
corresponding canonical form is obtained through a
transformation (2) in m dimensions with, respectively
C=A and C=B

In summary we have established the following
theorem.

(1) Any n-dimensional system of the form (8) can be
brought to a m-dimensional system (11) belonging to the
generalized Lotka-Volterra class (1) with BA =BA and
BA, =BR.

(2) The transformations (2) divide the family of systems
(8) into equivalence classes characterized by a given ma-
trix BA and a given vector Bk.

(3) There exists particular transformations (2) leading
any member of family (8) into one of the two canonical
forms (6) and (7) provided A and B, respectively, are of
rank n. The last point leads to a powerful method' to
determine integrability conditions and explicitly solve
system (8}.

As an example, let us apply our method to find integra-
bility conditions for a three-dimensional system which
modelizes the nonlinear interaction of three waves:

N), N2 N3 y

N22 N23

N3] N32 N33 0

(18)

2 0 0
0 2 0
0 0 2

—1 1 1

(19)

Thus, system (17) can be brought to the Lotka-Volterra
canonical form (7) by a transformation (2) in four dimen-
sions with C =B ', where B is given by

where y;, N;~, and A, , are real parameters.
The A, s (when negative) describe dissipation. The

N; 's denote modes of competition and the y s reso-
nances between waves. The x s are real functions of time
t describing the amplitudes of the three interacting
modes. System (17) is an approximation of a general
description of the coupling of three waves which arises in
various fields of physics ' (plasma waves, nonlinear op-
tics, etc.). Solutions of (17) are known if the dissipation
terms (i.e., the A, , 's) vanish. We now proceed to find solu-
tions when dissipation is included.

For simplicity, we consider the case where y2=y3=0,
y, =y&0. Then, system (17) can easily be cast into form
(8) with n =3, m =4, and

3

X i
=A iX i +X i g Ni)X~ +1'iX2X32

j=1
3

X2 ~2+2+X 2 g N2jxj + Y2X3x i
2

j=1
(17)

2 0 0 0
0 2 0 0
0 0 2 0

—1 1 1 1

(20)

3

X3 A3X3+X3 g N3jXj +/3X/X22

i=~

The new system is given by the canonical form (7) in
four dimensions with

BA=

2Nii

2N2,

2N3)

2N )2

2N22

2N32

2N, 3

2N23

2N33

2y

(21)

—N) ) +N2) +N3]
2k ]

2A2
BA.=

A, I +A,2+ k3

—N)2+N22+N3~ —N)3+Nq3+N33

(22)

Obviously, this system can be integrated if

N2j +N3j 9 (23)

the dissipation coe%cients.
Under conditions (23), the fourth equation of the new

system reads

and x4 —vx4 Qx4 (25)
(24}

Let us note that these conditions do not imply any decou-
pling of the original system (17) and any conditions on

with v= —k, +A.2+A.3.
This equation can be integrated and expressed in term

of the original variables:
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x4(t)=x, 'x2x3= —+K, e (26)
y =xp (33)

In (26) we have used the fact that by the conditions (14)
and (15) on the embedding we have

we find the following Riccati equation for y:

y =2[A2+N'2, x, (t)]y +2Nz2y +2Nz3[x, (t)] (34)

x4=1 (27)

for all t.
The first equation of the considered canonical form is a

Bernouilli equation for x',

x', =2[@x~(t)+A,, ]xI+2N„xP
for which the solution is

x', (t)=[K&(t)] 'exp 2 f dr[yx~(r)+A, , ]

(28)

(29)

x', (t)=[x,(t)] (31)

Then, inserting relations (26), (29), and (30) in the second

equation of (17), we are led to

K2(t) =2N „
X f drexp —f d82[yx4(8)+A, , ] . (30)

0

This integral is connected to the original variables by

which is equivalent to a second-order linear equation by a
well-known transformation. Thus, we have found in-
tegrability conditions for system (17) which are not at all
trivial from the physical point of view and which allow
for dissipation (there is indeed no constraint on the A. , s).
Other cases of integrability for system (17) can be found
by using transformation (2). These results will be pub-
lished elsewhere.

To conclude, our approach shows that the degree of
the nonlinearity is not a fundamental characteristic of a
dynamical system. Its equivalence class characterized by
the two objects BA and BX is the only relevant property.
This property can be used to find integrability conditions
on the canonica1 forms and explicit integrals. Further-
more, recent investigations indicate a close connection
between our transformation theory and Poincare's nor-
mal forms. For these reasons, we are convinced that this
theory is worthy of exploration.
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