
PHYSICAL REVIEW A VOLUME 40, NUMBER 7 OCTOBER 1, 1989

Master equations for a damped nonlinear oscillator and the validity
of the Markovian approximation

Robert Alicki
Institute of Theoretical Physics and Astrophysics, Gdansk University, PL 8095-2 Gdansk, Poland

(Received 18 July 1988)

The different conditions that could be imposed on a Markovian master equation for a nonlinear
oscillator weakly coupled to a thermal reservoir are formulated. They concern preservation of trace
and positivity of a density matrix, return to a proper equilibrium state, and the detailed balance con-
dition. It is shown that only one of the known master equations satisfies all of these conditions.
Then the validity of the Markovian approximation is reanalyzed using certain non-Markovian
weak-coupling approximations, and the existence of different stages of evolution associated with
different time scales of the Hamiltonian dynamics is predicted. The consequences of these facts for
the description of a damped nonlinear oscillator are discussed.

I. INTRODUCTION

This paper is motivated by a recent interest in the dy-
namics of the nonlinear oscillator with a Hamiltonian

H =coa a +y(a a), [a,a ]=1, A':—1

weakly coupled to a heat bath at temperature T 0. '
This system may serve as a relatively simple but nontrivi-
al model for analyzing different approximation schemes
used in the theory of quantum open systems. One of the
most important problems is the validity of the Markovian
approximation and a proper form of the associated mas-
ter equation. In contrast to the exactly soluble case of a
harmonic oscillator coupled to a bosonic heat bath, the
dynamics of a nonlinear oscillator weakly interacting
with an environment can be treated only approximately.
Even the best estimations involve perturbation expan-
sions which can be controlled for finite time intervals
only. Moreover, different master equations may yield
asymptotically equivalent results. Hence it is worthwhile
to formulate some additional criteria which may help to
fix a form of the proper master equation. These condi-
tions are both of mathematical and phenomenological
origin. They are consistent with the weak-coupling and
Markovian approximations for the long-time evolution
and allow application of powerful mathematical tools
such as spectral decomposition of the Heisenberg evolu-
tion, ergodic theory for completely positive one-
parameter semigroups, or the H theorem for the relative
entropy. On the other hand, some of them correspond
to the usual phenomenological picture of a return to equi-
librium, a detailed balance condition, and a kinetic
description in terms of the Pauli master equation.

In Sec. III we discuss three types of master equations
for a nonlinear oscillator. The first one (I) is obtained by
adding the term i [y(a a)—,p(t)] to the well-known
equation for a damped harmonic oscillator. The second
one (II) was derived by Haake et al. , and the third one
(III) is obtained by a direct application of the Davies
rigorous weak-coupling limit. ' Obviously master equa-
tion I drives the system into an improper stationary state,

II. PROPERTIES OF MASTER EQUATIONS

We formulate now some desired conditions which
might be imposed on the Markovian master equation for
the nonlinear quantum oscillator (1.1).

(a) The master equation of the form

d
dt

p(t)=Lp(t), t &0 (2.1)

is derived using certain weak-coupling and Markovian
approximations from the reduced dynamics of a non-
linear oscillator with a bare Hamiltonian

Ho =cooa a +yo( a ta) + (2.2)

The oscillator is weakly coupled to a heat bath by means

which is an equilibrium state for a harmonic oscillator.
We shall show that master equation II does not preserve
the positivity of a density matrix. Master equation III
satisfies all required conditions but it involves a kind of
rotating-wave approximation which is valid for
t ))maxI 1/co, 1/g, r+ I (std is the decay time of the
reservoir's correlations). Hence master equation III is
meaningful for rather strong nonlinearities y)) I/tc (tc is
the damping rate). All these difhculties suggest that one
analyze more carefully the Markovian approximation in
the weak-coupling regime. It is done in Sec. IV using a
non-Markovian weak-coupling approximation obtained
by means of a certain cumulant expansion. Particularly,
the interplay of different time scales ~~, 1/co, 1/g, and
1/~ is studied in detail. In Sec. V we evaluate the time
evolution of the mean value (a (t) ) for the master equa-
tions I, II, and III (with T=O), which could be, in princi-
ple, compared with experimental results.

Finally, one should mention that in this paper the
mathematical consistency of the approximative dynamics
is strongly advocated, with special emphasis on complete
positivity. However, there may exist practically useful
examples of evolution equations that meet these require-
ments only approximately and/or are for the restricted
domain of possible initial states.
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of the interaction Hamiltonian

H;„, =A,(aI +a g I ), (2.3)

and the initial state is taken to be the product of an arbi-
trary density matrix p(0) of the oscillator and the canoni-
cal operator for the bath

p(0)ee IZ, T & 0 . (2.4)

In the limit case T=O, we replace the canonical operator
by the ground state of the bath.

(b) The propagator [e ', t ~0] for the master equation
(2.1) preserves trace and satisfies the condition of com-
plete positivity, which assures that p(t) =e 'p(0) is a den-
sity matrix (positive operator, trace equal to 1) for any
density matrix p(0). These conditions imply the following
form of L:

(X,LDY)=(LDX, Y) . (2.8)

p„(t)= g [a„p (t) —a „p„(t)],d
dt m =n+]

(2.9)

with p„(t)= & nip(t) l
n ); the transition probabilities satis-

fy the classical detailed balance condition

n+1 n
—(E —E )/kT

n+], n n, n+]

where E„=con +gn .

(2.10)

Here (X, Y)=tr(p, X Y) and LD is the Heisenberg pic-
ture generator, i.e., tr[(LDp)X] =tr(pLDX).

(e) The diagonal matrix elements of p(t) in the basis of
the occupation number states [ ln ), a aln ) =nln ),
n =0, 1,2, . . . ] evolve independently of the off'-diagonal
ones and their evolution is governed by the Pauli master
equation

Lp= —i [H p]+ ,' y ckl(—[Fkp,F& ]+[Fk,pFt )) (2.5)
III. THREE EXAMPLES OF MASTER EQUATION

with H =H, (ckt) is the positively defined matrix, or
equivalently,

Lp= i[H, p—]+—,
' g ([V p, V ]+[V,pV ]) . (2.6)

(c) The Gibbs state p, =e " /Z, defined by the re-
normalized Hamiltonian (1.1), is a stationary state for Eq.
(2.1) and, moreover, for any initial state p(0) and any ob-
servable A

lim tr[p( t) 3]=tr(p,
q
2 ) .

g~ oo
(2.7)

(d) The generator L may be decomposed as
L =Ltt+LD where Ltt = i [H, . . . ],—[Ltt, LD]=0, and
LD satisfies the quantum detailed balance condition ' in
the form

We present now three examples of the master equation
(I, II, and III) for the nonlinear oscillator. All of them
satisfy condition (a) but their properties are diff'erent.

(I) This is a simple modification of the well-known mas-
ter equation for a harmonic oscillator (see Ref. 1 for the
case T=O) which leads to

L,p= i[coa a—+X(a a),p]

+ —'a([a, pa ]+e " [a,pa]+H. c. ) . (3.1)

Obviously, master equation I satisfies conditions (a) and
(b), while (c), Eq. (2.8), and (e) are fulfilled for H =boa a
(E„=con) being the Hamiltonian of a harmonic oscilla-
tor.

(II) This equation was derived by Haake et al. , and
the generator takes form

Liip= i[co0a a—+XD(a a),p]+ —P J dv A ( )(v[[1+n, ( h)]v[(p v) 'ap, a ]—
+n,„(v)[a,p(P —v) 'a] [

—H. c. )

+a( [ [[1+n,h(P)]ap, a ]+[a,pn, h(P)a]] +H. c. ), (3.2)

where a )0 and A (v) depend on the bath's parameters,
n, h(v) is the thermal number of quanta n,„(x)
=(e "~ —1) ', and P is an operator given by
p =ai0+X0+ 2Xpa a, where co0 and XD are the bare param-
eters of the oscillator.

Master equation II satisfies condition (a) and condi-
tions (c) and (e), with H replaced by HQ=coDa ta +XDa ta,
which is rather a shortcoming because, for all fundamen-
tal interactions, the bare Hamiltonian is a not uniquely
defined cutoff-dependent quantity. ' The importance of
the mathematical consistency condition (b) is not satisfied
by L&&. The proof of this fact is the following. Assume
that e ', t ~ 0 preserves positivity of a density matrix.
Then for arbitrary orthogonal vectors la ), l

b ) & a lb ) =0,

we have

0- »m —&al(e"lb&&bl)la&=&al(Llb&&b ) a) . (3.3)
1

i~0

Let la ) = la, ) = ln —1)+zlm —1) and lb ) = ln )
+lm ), with zEC and m ) n +1. Then
J(z)=

& a, l(L» lb ) & bl ) la, ) may be easily evaluated:

J(z)= lzl m [2 Re[g (m —1)]]
+z [g (n —1)+g(m —1)]&nm

+z[g(n —1)+g(m —1)]v nm+2n Re[g(n —1)],
(3.4)
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where

g (n ) =K[1+n, „(co0+ya(2n + 1) ) ]

+ —P f d v A (v)[co0+y0(2n + 1)—v]

X [ I + n,„(coa+g0(2n + 1 ) )] .

J (z) reaches its minimum for

za = —[g(n —1)+g ( m —I ) ]/2&m /n Re[g (m —1)]

IV. VALIDITY OF THE MARKOVIAN
APPROXIMATION

We consider an open system S with a bare Hamiltonian

H, = yEkalk)(k~ (4.1)

weakly coupled to a heat bath B, with a free Hamiltonian
H~ and the interaction of the form

and

J(z0) = —
~g (n —1)—g (m —1)~ (0

2 Re[g (m —1)]

AH;„, =AH(3F, 3 =A~, F=F~ .

We take as an initial state the product state

p(0) crs,

(4.2)

(3.5)

is always negative, except for the trivial case gp=0.
(III) The form of L„, is uniquely determined by condi-

tions (b), (c), (d), and (e):

Lt»p= i[c—oa a+g(a a),p]

where o.z is an equilibrium or a ground state of the bath.
One can always redefine Hp and F such that

(4.4)

+ —,
' g y„([A„,pAJ]

n =p

+ exp [
—[co+(2n + 1 )g]/k T )

X [ A „,p, A „]+H. c. ) (3.6)

with y„)0, A„= ~n ) (n +1~.
In order to satisfy condition (a), one may use the

rigorous weak-coupling limit proposed by Davies which
leads to (3.6) with

y =A, (n+1)j dt(I, I ) e'("+ '"+' r ' (3 7)

and links the bare and renormalized Hamiltonians

H =cga a +y(a a) =Ha+i(, w(a a),
w (n) =(n +1)[s [co+(2n —1)]

(3.8)+s [ —co —(2n + 1)y]],
s(x)=Im J dt e' '(l, I )~,
where s (x) is the cutoff'-dependent quantity.

In contrast to Li and L» the generator L»r does not
converge to the generator for a damped harmonic oscilla-
tor when y(ga)&0. This is due to the fact that L&&& was
derived using a particular averaging procedure that elimi-
nates oscillating terms in the integral version of the equa-
tion of motion. Therefore the master equation with
the generator L&» provides a good approximation for
t »max[1/co, 1/y, rz ] (here r„ is the decay time of the
correlations ( I, I )~ ), which makes the limit y ~0 mean-
ingless. As a consequence, L»& may be used for damping
rates K ) p((min(co, y). These restrictions are, howev-
er, inevitable. One cannot expect that an equation of the
type (2.1) with a fixed L driving the system to the proper
equilibrium state will be valid for times
t (max[ I/co, I/y]. Due to the indeterminancy relations
AtAco~ 1, the. whole system needs this time to "recog-
nize" the action of the Hamiltonian part i [H, . . . ]—and
to "adapt" the dissipation mechanism to the ultimate
equilibrium state p, =e /Z. We shall discuss this
problem in Sec. IV.

where

(X)~—= tr(cr~X) .

Xp(0)i8 cr~ (4.5)

Here the interaction picture is taken with respect to
H+Hz, where H is a renormalized Hamiltonian of S.
H =Hp H, and H, consists of counterterms which can-
cel the cutoff-dependent terms generated by an interac-
tion with the bath,

H =AH'"+k H' '+ .
, [HQ, Hi"']=0. (4.6)

Here

H;„,(s) = A (s)F, +H, , (4.7)

with

eiHsAe —iHs F e & Fe

Introducing a kind of cumulant expansion"

W, =exp g A,"IC'"'(t)
n =1

(4.8)

we obtain for the first two terms

(4.9)

[H,"'=0, a consequence of (4.3)]

The reduced dynamics of S in the interaction picture is
given by

p(t)= W,p(0)

=tr~ T exp —ikds[H;.„,(s), . . . ]
0
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K' '(t)p= it—[H,' ',p] —
—,
' tra f ds f dw[H, '„", (s), [H';„','(w), pai)]]

0 0

i—[B(t),p]+ —,
' g b „(t)([A p, A ~ ]+H.c. ), (4.10)

where

A (t)= g A e ' ', H,'„",(s)= A (s)F, ,

b„(t)= f ds f dw(F, F )~)e''"'

and b (t) is a positively defined matrix for all t )0.

B(t)=B (t)= g s ~ (t)At A +tH,'2),
67, CO

s (t)= (i—/2) f ds f dw((F, F )~
0 0

~ e
—i(ww —w's)

(4. 1 1)

(4.12)

(i) For E,'„« t «
~
co —a)'

~

', we have

b, (t) =b„„—(t) =b„(t)=4irh—(cu)t .

(ii) For t )) ~co
—a)'~ ', we obtain

b (t) =4~h (co)t, b„„(t)=4~h (cu')t, b „,(t) =0 .

Similar results may be shown for s„„,( t). The main
difference is that for

t ))max
~
cu —co'

~

W,' '=exp[A K' '(t)], t)0 (4.14)

is a one-parameter family of completely positive trace-
preserving maps and provides mathematically consistent
weak-coupling non-Markovian approximation for the re-
duced dynamics 8;. We analyze qualitatively the time
dependence of b „.(t). Generally,

(,F,F )~=f "dEh(E)e 'E(' ")——
(4.15)

with h (E))0 and h ( E)=e "—h (E). The function
h (E) usually grows with E & ~ [typical behavior for a
bosonic reservoir is h (E)-E ] up to a certain cutoff pa-
rameter E,„))[a)] and then falls to zero. Hence one
may write

(4.13)

Comparing (4.8) —(4.13) with (2.5), one concludes that

g s ~ (t)A„,A„
Ct), CO

is cutoff dependent and cancels with the counterterm
ta"'.

C

The consequences of the above estimations for the non-
linear damped oscillator are the following. For

t ))max[1/a), 1/g, r~ =E—
the reduced dynamics may be approximated by the solu-
tion of the master equation (2.1) with the generator Liii,
which describes a "detailed balanced" return to the equi-
librium state p, =e " /Z, H =a)a a +g(a a) . How-
ever, for small nonlinearities and initial conditions such
that ny «co, n =tr[p(0)ata], the time scale
co

' « t «(ny) ' might be relevant. On that time scale
and with the above conditions, the evolution is more pre-
cisely described by the master equation with the genera-
tor of the type L,

( t) 4 2e —(i/2)(w — )tw

sin(E —a) )t sin(E a)' )t—
~(E —a) ) ~(E —co')

For t (&Em,'„, we may set

b .(t)= 4f dE h —(E) t
max

This strongly cutoff-dependent and highly non-
Markovian stage of the evolution is due to the initial
choice of the state (2.4). The assumption (2.4) is rather
unphysical for fundamental interactions (e.g. , electromag-
netic ones) because one cannot switch them off at the mo-
ment t=O, while for an interaction with a medium (e.g. ,
the interaction of electrons with phonons in crystal) such
a state could, in principle, be realized.

For t ))E,'„, the functions sin[(E co)t]/n(E a)—)—
and sin [(E co)t]/n(E —a)) t beh—ave like the approxi-
mations of 5(E —co) in the integral (4.16). For fixed co, a)'
(coWa)'), we may distinguish two time scales.

V. TIME-DEPENDENT SOLUTIONS

and for L„, the simplifying relation y„=(n +1)yo. The
straightforward but tedious calculations lead to the final
results:

tr[p( t)a] =a exp[ i (co+ y)—t —,' y()t—
—

~a~ g(l —e ' )],
where, for Li (see Ref. 1),

g= (1 —i yo/2y)

(5.2)

We compare the time-dependent averages tr[p(t)a] for
the dynamics governed by L„L», and L„,under the fol-
lowing conditions: (a) T=O and (b) p(0) = ~a ) (a, where
~a) is a coherent state and a~a) =a~a). Moreover, we
assume for L» the validity of the following linear approx-
imation:

f(n)= ,'Pf d—vA (v)[v coo go(2—n +—1)] '—= A+Bn

(5.1)
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for Lii,

a d III

VI. CONCLUSION

proximatively by different master equations may appear.
Only the last stage is described by the generator obtained
using the (renormalized) Davies weak-coupling limit
which satisfies the detailed balance condition with respect
to a proper equilibrium state. The damped nonlinear os-
cillator is a good illustration of this phenomenon because
its Hamiltonian defines two independent time scales 1/co
and 1/g. As proposed in Ref. 1, this system may be real-
ized as an intracavity electromagnetic mode interacting
with a nonlinear crystal and hence the theoretical predic-
tions might be verified experimentally.

A mathematically consistent master equation in the
weak-coupling regime can be unambiguously defined if
the time scale of the Hamiltonian motion is well separat-
ed from the time scale of the dissipative one. If this is not
the case, then different stages of evolution governed ap-
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