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Chaos in the relativistic generalization of the standard map
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The relativistic generalization of the standard map is introduced, based on the problem of particle
acceleration in the electric field of an electrostatic wave packet. It is shown that the diffusion is, in

general, less effective than that for nonrelativistic particles. In the ultrarelativistic case chaotic
motion appears in the form of intermittency.

I. INTRODUCTION

Recently the evolution of chaos in area-preserving
maps modeling Hamiltonian systems has intensively been
studied. ' One of the most frequently examined
two-dimensional maps is the standard map (SM) intro-
duced by Chirikov for describing higher-dimensional
Hamiltonian systems near resonances. This map can
also be interpreted in terms of a simple mechanical sys-
tern. It connects the momentum and coordinate of a par-
ticle kicked by a periodical force, between two kicks, if
the force depends on the coordinate in a sinusoidal
fashion.

In our paper we introduce the relativistic generaliza-
tion of the SM. The introduction of the map will be
based on a plasma physics problem (although a mechani-
cal interpretation will also be given). We are interested in
how relativistic effects modify the properties of particle
acceleration and what the qualitative features of the
deterministic diffusion are in the relativistic generaliza-
tion.

We point out the appearance of intermittency in this
map. Chaos is very weak in the ultrarelativistic case, in
comparison with the regular component of the motion.
The time evolution of the system can be represented as a
sequence of randomly connected long parts of regular os-
cillations. The character of the phenomenon described
above is general and can be found not only in the theory
of dissipative and Hamiltonian systems, but also in

many problems of plasma physics ' and mechanics of
continuous media. For instance, it is known in the
theory of turbulence where the term "intermittency" im-

plies a kind of spatio-temporal chaotic dynamics.
The mechanism of stochastic particle acceleration in

conditions of strong intermittency has little in common
with the usual diffusion acceleration mechanism.

II. THE STANDARD MAP

In this section we collect some well-known qualitative
properties of the SM in order to compare them with

those of the relativistic standard map (RSM) in the next
sections.

The SM is a map of plane (I, U) defined by the follow-
ing equations

I'=I —K sinU,
U'= U+I' (mod 2~),

where K is proportional to the amplitude of the kicking
force. mod 2~ appears because of the periodicity in U.

There are four different types of trajectories in the
phase space of the map: periodic orbits, quasiperiodic tra-
jectories associated with invariant tori, stochastic or
chaotic trajectories, and cantori. The motion along sto-
chastic trajectories gives rise to the so-called deterrninis-
tic diffusion, which is restricted by the tori. A critical
value of the parameter K can be associated with each
torus. If K is greater than a critical value K„all tori
break up and overall diffusion sets in. The most extended
chaotic trajectories encircle the fixed points situated at
(U, I)=(0,2am), where m is an integer. For K smaller
than the critical value, these ringlike chaotic layers are
separated by Kolmogorov-Arnold-Moser (KAM) tori di-
viding the whole phase space into isolated strips. Each
KAM torus between these layers vanishes at the same
value of K because the map is periodic in I. This happens
at K =K, =0.97. ' Above K, an infinitely long chain of
chaotic layers is formed. The trajectories starting from
this chaotic region can extend to arbitrary distances for
sufficiently long time. This phenomenon is the so-called
global stochasticity. '

III. DERIVATION OF THE RSM

A description of the dynamics of charged particles in
the field of wave packets is one of the central problems in
the theory of low-density plasma. Such wave packets
may be excited in a plasma due to the intrinsic plasma in-
stabilities or as a result of the external excitation of plas-
ma by electromagnetic waves (Tajima and Dawson, Ref.
9). Let E(x, t) denote the electric field of the electrostatic
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wave packet:
+N

E(x, t) g E„sin(k„x —co„t),
n= —N

(2a)

where 2N+1 is the number of harmonics in the wave
packet. The basic properties of E( x, t) depend on the
structure of the wave packet, which is determined by pa-
rameters E„, k„, and co„. In its turn, this structure
reflects the particular physical situation. We make the
following simplifying assumptions regarding the struc-
ture of the packet:

k kp + n hk, co„=cop+n Aco E Ep (2b)

where 6, p, and x are the energy, the momentum and the
coordinate of the particle, respectively; c denotes the
light velocity and e is the unit charge. Introducing the
notation u =kpx —capt we obtain

where n is an integer. Expressions (2b) mean that disper-
sive effects are weak and that the spectral amplitudes E„
are changing slowly with n. Let us neglect also the
changing of k„, i.e., consider k„=kp and suppose that N
is large enough. So such a wide packet approximately
represents a periodic sequence of impulses with charac-
teristic period T =2m. /Ace. A particle moving in this
field has the following equations of motion:

x =c p/6,
p = —eE(x, t),

where p and x are the momentum and the coordinate of
the particle. The quantities l and T are the periods of the
kicking force in space and time, respectively, C is the am-
plitude of the force, m is the mass of the particle, and c is
the light velocity.

It is sufficient to examine U mod 2~ because of the in-
variance of the map under the translation U~U+2m.
Note that the dimensionless parameter L is proportional
to the light velocity c. If L goes to infinity the classical
limit is recovered.

IV. GLOBAL STOCHASTICITY IN THE RSM

First, notice that the RSM is not periodic in I. Conse-
quently, its fixed points are situated not equidistantly and
their number is finite. The fixed points P which will be
of interest for us are lying along the line U=0. Their
coordinates are given as

(U, I )= 0,nr r In»
[ 1 (2 /L )2]I/P

(7)

studied a relativistic particle of mass m, which was
kicked by a force depending on the coordinate in a
sinusoidal fashion. One can easily see that if I and U are
chosen to be proportional to the momentum and coordi-
nate of the particle just before the kicks, map (5) is
recovered. In particular,

I=p2mT/ml, U =2@x/I,
K =C2~T/ml, L =2m.cT/I,

u=koc p/G coo r

p = —eEosin( u ) g cos( n b,cot ) (4) —L/2m. & m & +L/2m. . (7a)

where m is an integer. Since the quantity under the root
cannot be negative, we find the restriction

eEOT sin(u) —g 6(t —nT),

where T =2~/Ace.
By integrating between "kicks" these equations can be

transformed into a map:

I„+,=I„—K sin( U„),
(5)

In+ i
cooT (mod 2m ), —

[1+(I„+I/L) ]'

where :eEp kp T /m L =k pc T, I„=Tk pp„ /m

The subscript n refers to values taken at time n (T —0),
i.e., just before the nth kick. For simplicity, we consider
the case Tcup=2~s, where s is an integer. The map ob-
tained in this way:

I„+,=I„—K sin( U„),
I.+i

U„+]= U„+n +I n
[ 1 +(I /L)P]i/2

is the RSM, the relativistic generalization of the SM.
The same recursion could have been derived if one had
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FIG. 1. The phase space of RSM at K =2, L =20. At this
value of L there exist only four fixed points Po, P, , P2, and P3
for I ~0. A single trajectory of length 20000 was used to plot
the figure, which could not cross the KAM torus between P,
and P3 since K,'=1.9 &2&@,'=7.4. We can observe also the
deformation of the chaotic layer because of the relativistic
effects. The trajectory was started from the point (2.5,0).

Thus the number of such fixed points is 2[L/2n]+1.
where [ ] stands for the integer part. The most extended
chaotic layers encircle the fixed points similarly as in the
SM, but their shape is deformed (Fig. 1).
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I„+,=I„Ksin( U„)—,

U„+,= U„+L sgn(I„+, ) (mod 2~) .

It is easy to see that an invariant curve exists then given
by the expression

I= 3+ K
cos( U L /2), —

2 sin(L /2)
(9)

where 2 is arbitrary and the sign of I must be kept fixed.
This proves the regularity of the motion for sufficiently

Another new feature is that in the present case the
KAM tori do not break up at the same K value. Figure 2
shows the dependence of the cntical E values of KAM
tori on the parameter L as obtained in a numerical simu-
lation of (6). K,' belongs to the KAM torus separating
the chaotic layers around the fixed points I',-, and .P,-.
The curves begin at the points L =2~,4~,6~, . . . because
the fixed point I', exists for L )2~i only. The value of K,'
does not depend on the sign of i due to the fact that the
KAM tori separating the stochastic layers around the
fixed points (P;,P;+&) and (P, ,P, , ) break up simul-
taneously because of the inversion symmetry. The K,' —s
tend to the classical value K, =0.97 as L goes to infinity.

The overall picture of the phase space is quite different
for L &2~m and L =2~m. In the first case the chaotic
motion is restricted to the vicinity of the fixed points.
The chaotic layers of the highest and lowest fixed points
are bounded by KAM tori if K is arbitrary but finite.
The deterministic diffusion can only occur between these
tori. Above and below these limiting KAM tori the
motion is regular. These areas are filled by KAM tori
which are nearly parallel to the limiting tori. Thus, we
find that, contrary to the SM, the phase space of the
RSM is bounded by KAM tori at any value of K (Fig. 3).

We can determine the shape of the limiting KAM tori,
for I ))L, which corresponds to the ultrarelativistic
case. In this limit the RSM can be approximated by the
following map:
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FIG. 3. The phase space of RSM at K=20, L =20. The
KAM torus between infinity and the outmost fixed point P&

never breaks up at fixed L. Beyond this KAM torus the motion
proves to be regular. The continuous curve is an invariant torus
in this regular region.

great I. Figure 3 shows a chaotic layer and a KAM tori
over it, determined by Eq. (9). For L values being close
(but not infinitesimally) to an integer multiple of 2n, the
I coordinate of the highest fixed point is much larger
than L [see (7)]. Along the KAM torus is, therefore,
I ))L and consequently, Eq. (9) provides a good approxi-
mation for the form of the outermost KAM torus.

Let us turn now to the resonant case L =2~m, for
which a new mechanism of diffusion can be observed.
The last KAM torus between infinity and the highest
fixed point is then not bounded but approaches infinity at
U=+~. Thus a chaotic channel is opened (Fig. 4). Ac-
cording to our numerical experience the width of the
channel and the efficiency of diffusion to infinity increase
with the increase of K.

We can also determine approximately the shape of the
last KAM torus again. Expanding the RSM into series in
1/I we obtain in first order
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FIG. 2. The critical curves K,'(L) characterizing the destruc-
tion of the last KAM torus between the fixed points (PO,P, ) and
(P, ,P, ) and (P, ,P&). The curves stop at 2~, 4~, and 6~ with
limiting values 6.25, 15.9, and 20.1, respectively. If L tends to
infinity the K,' approach the critical value K, =0.97 of the SM.

FIG. 4. One single trajectory of length 20000 for L =3X2m,
K =31)K, =20. 1. A chaotic channel (or web) is opened at
U=+vr. The diffusion can now spread arbitrarily far away
from the origin along the channel. After 20000 steps the trajec-
tory has reached the distance I = 560. The trajectory was start-
ed from the point (2.5,0).
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I„+,=I„—K sin( U„),
L 2

U„+ &

= U„+&+L sgn(I„+
&

) 1 — (mod 2m ) .
2I, +(

Because of the resonance condition

L sgn(I„+, ) (mod 2n) =0 .

So we obtain

(10)
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I„+,=I„—K sin( U„),

U„+,= U„— sgn( I„+,) ( mod 2~ ) .
(2~m )

2I„+]

(12)
-3.14

-&400
3.14

If ~I„+& I„~ &&—I„, ~ U„+ &

—U„~ && U„we may write ap-
proximately

I„+]
—I„=dI,

and, consequently

U„+]—U„=dU,

dI 2K sin( U)I
(2~m)'

Looking for a solution of this differential equation with
the condition of being singular at U =+~ one finds

~I
~

= [cos(U)+1]2K
(2~m )

(15)

The resonance condition L =2~m means that the light
velocity divided by the quantity 1/T is an integer. Along
the chaotic channel the particle can then accelerate to ar-
bitrarily high energies with relatively weak kicking force.

Summarizing, we can say that the smaller the parame-
ter L is chosen the less important the diffusion is in the
RSM, except for the resonant case when trajectories
within a restricted region of the phase space can go arbi-
trarily far from the starting point.

FIG. 5. The first 16 steps of a trajectory started at U =3.14,
I =600 (K =100, I. =6). The first nine points follow the invari-
ant curve (9) with high accuracy. The motion is regular here. A
jump occurs as the I =0 line is approached. After the jurnp the
motion is regular again.

is far from zero. Close to zero, approximation (8) loses its
validity. Therefore in the vicinity of I=O we must use
the solution of the original equations which is chaotic so
the motion, close to the line I =0 consists of unpredict-
able chaotic jumps.

The phenomenon when regular motion is interrupted
by chaotic jumps is called intermittency. Figures 6 and
7 show that the sinusoidal, regular parts of the trajec-
tories are mixed by chaotic jumps. In this way, the inter-
mittent trajectories fill the chaotic layer. The latter is
bounded by a sinusoidal KAM torus, which is described
by expression (9).

Intermittency is a general phenomenon in area-
preserving maps. In our map the reason for intermitten-
cy is the relativistic feature of the motion. In the ultrare-
lativistic case the particle moves uniformly at speed close
to c so one can determine the momentum of the particle.
The quantity

V. INTERMITTENCY IN THE RSM I— . cos( U L/2)—K
2 sin(L /2)

(17)

If, in nonresonant cases, K is sufficiently large, simula-
tion shows that as long as I is far from zero, the trajec-
tories are regular and seem to lie on an arch of sinusoidal
shape (Fig. 5). The reason for the regularity is the fact
that the motion is strongly chaotic around the fixed
points only. The range of the region where the fixed
points are situated is approximately proportional to the
I coordinate of the highest fixed point P and, in this
way, proportional to L. A typical value of I for the
deterministic part of the motion is determined by K.
Therefore for K ))L the approximation K -I ))L is va1-
id and one can use the approximation (8) except for the
vicinity of I =O. The regular part of the trajectories can
be determined from expressions (8) as

U„=Uo+nL,
sin[(n + 1 )L /2+ Uo ]sin(nL /2)I.=Io-

sin(L /2)

The motion is described by these expressions as long as I,

i400

'' -0

-3.14

-&400

U
3.14

FICx. 6. The first 170 steps of the trajectory described in Fig.
5. This chaotic trajectory contains long regular pieces.

is an adiabatic invariant for the motion. The condition
for this limit holds in a broad region of the phase space
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FIG. 7. 1465 steps of the intermittent trajectory described in
Fig. 5. The boundary of the chaotic region itself is well approxi-
mated by a curve of type (9).

but not everywhere. In regions where the motion is
nonultrarelativistic, chaos shows up. The wandering be-
tween chaotic and regular regions appears as intermitten-
cy.

VI. SUMMARY

The investigation of the relativistic generalization of
the standard map presented in this paper clarified that

the character of the interaction between relativistic parti-
cle and an electrostatic wave packet differs qualitatively
from the dynamics of nonrelativistic particles. In the
nonresonant case, i.e., when the phase velocities of the
waves in the packet differ significantly from the speed of
light, energy of the accelerated particle is bounded from
above. The situation is quite different if the phase veloci-
ty of one of the waves is close to the speed of light. In
this case the way for an unlimited stochastic particle ac-
celeration is open and there is an analogy with the case of
interaction of relativistic particles with electromagnetic
waves propagating across a given magnetic field. ' The
dynamics of charged particles undergoing stochastic ac-
celeration is very interesting because intermittency takes
place. In other words, long periods of the quasiregular
motion are intermitted with short periods of chaotic
motion. The phenomenon of intermittency can be found
in almost any nonintegrable system so its investigation
provides us also with a more profound knowledge of
many general properties of chaotic systems.
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