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Floquet analysis of the far-infrared dissociation of a Morse oscillator
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The dynamics of a highly excited Morse oscillator in an intense laser field are examined using
Floquet theory. Two classes of quasienergy states are found, broad states, which extend over a wide
range of the Morse basis, and narrow states, which are localized to a small number of Morse states.
A comparison to a quantum simulation of the dissociation dynamics via the fast-Fourier-transform
grid method reveals that the projection of the initial oscillator state onto the broad states leads to
dissociation, whereas the projection onto narrow states implies localization of the oscillator. The
Floquet analysis explains a number of observations from the simulation including the slowdown of
the dissociation rate and concomitant localization of the oscillator, the threshold dependence of dis-
sociation on field intensity, and the variation in dissociation probability with field frequency and ini-

tial oscillator state.

I. INTRODUCTION

There recently has been growing interest in examining
how simple physical systems respond to intense elec-
tromagnetic radiation. This includes the microwave ion-
ization of hydrogen atoms, the periodically kicked rotor,
and the dissociation of a Morse oscillator. The emphasis
has been on contrasting the predictions of classical and
quantum mechanics. A principal concern is the question
of how stochasticity is manifested in quantum mechanics,
a question that pertains to a variety of problems includ-
ing intramolecular energy transfer, ' Rydberg atoms in
strong magnetic fields, and a number of model sys-
tems.

A particularly well-studied model system is the period-
ically kicked rotor. ' ' A classical description of this
system finds the energy of the rotor to grow diffusively
and without limit for sufficiently strong kicks. Subse-
quently, Hogg and Huberman showed that, in contrast,
the energy of the quantum-mechanical rotor is quasi-
periodic and remains bounded. Considerable insight into
the dynamics was shed by Fishman and co-workers'
when they showed the kicked rotor to be analogous to
Anderson localization ' of an electron in a disordered
lattice. Thus, in this system, quantum mechanics im-

poses recurrent, localized behavior while preventing sto-
chastic behavior.

In their classical description of microwave ionization
of hydrogen, Jensen and Leopold and co-
workers ' argue that ionization occurs by stochastic
diffusion of the electron in phase space, a situation that
by the Kolmogorov-Arnold-Moser theorem is allowed
only above a critical value of the microwave field. In
contrast, numerical solution of the Schrodinger equation
by Casati and co-workers reveals localization of the
electron for field strengths below the so-called delocaliza-
tion border, even though the classical system exhibits sto-
chasticity at the same field strength. Above the border
the wave function becomes delocalized, and the energy

growth of the system is diffusive as in the classical case.
Bliimel and Smilansky ' have adopted a different ap-

proach to the microwave ionization problem. They pro-
pose a two-step process, with ionization occurring
through high-lying atomic states in an ionization win-
dow, which couple efficiently to the continuum. They in-
terpret, using a Floquet analysis, that excitation of the in-
itial state into the window region occurs via broad
quasienergy states. Thus, while the classical descrip-
tion of the microwave ionization of hydrogen in-
volves a transition from regular to chaotic behavior, the
quantum-mechanical picture ' is one of a transition
from narrow to broad states.

Classical studies of the Morse oscillator also reveal that
dissociation proceeds via chaotic trajectories. However,
Walker and Preston and Goggin and Milonni ' find that
the quantal and classical evolution of oscillator position
and energy agree only for a short time when the oscillator
is exposed to an intense field. The latter authors provide
estimates, based on a quantal extension of the resonance
overlap criterion, for the critical field necessary for dis-
sociation. In contrast, Heather and Metiu have taken
an entirely different point of view and examined the
momentum distribution of the fragments from H2 dissoci-
ation. While illuminating, the focus of the previous work
has been on the interactions of nearly resonant light with
HF and Hz, molecules which support a relatively small
number of bound states. We are interested in a situation
that is more analogous with the microwave ionization of
hydrogen. Therefore, we chose a Morse oscillator with
179 bound states and examine the dissociation of the os-
cillator from a highly excited initial state under condi-
tions that require 100—200 photons to be absorbed.

In a previous paper we reported a quantum-
mechanical simulation of the dissociation of a highly ex-
cited Morse oscillator by an intense laser field. Above a
threshold field intensity, we found that there is initially a
rapid flow of oscillator probability into the continuum;
however, the dissociation rate subsequently slows because
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the remaining bound portion of the wave function is lo-
calized to a relatively narrow range of Morse eigenstates.
This may be related to the observation by Brown and
Wyatt that the existence of cantori in classically sto-
chastic regions of phase space poses a barrier to quantum
wave-packet evolution. The purpose of the present paper
is to see what light a Floquet viewpoint, similar in spirit
to Blumel and Smilansky's, ' can shed on the dissocia-
tion dynamics. We find that the quasienergy states fall
into two distinct classes, narrow states that overlap with
a local distribution of Morse states and broad states that
overlap with the entire range of Morse states above a
threshold quantum number. The observations from the
simulation can be explained by assuming that the broad
component of the initial oscillator state couples rapidly to
the dissociation continuum, whereas the narrow com-
ponent remains localized to a small group of bound
states.

In Sec. II we present the Hamiltonian for the Morse
oscillator interacting with a classical electromagnetic
field and our method of determining the Floquet states of
this system. Section III describes the structure and
widths of the quasienergy eigenstates. In Sec. IV we
compare the results of the Floquet analysis with the
quantum simulation of the dissociation dynamics. In
particular, we interpret in terms of the quasienergy states
the threshold in laser intensity required to achieve disso-
ciation, the variation in dissociation probability as a func-
tion of laser frequency, and the variation with respect to
initial oscillator state.

II. FLOQUET ANALYSIS

The objective of this paper is to provide insight into
the dissociation dynamics of a Morse oscillator in an in-
tense laser field. We approach this task by comparing the
results obtained from a Floquet analysis of the interaction
between a quantized oscillator and a classical electromag-
netic field with the exact dissociation dynamics obtained
from the quantum-mechanical simulation reported in
Ref. 45. This section presents the Hamiltonian of the
system, briefly reviews the Trotter product formula-
tion of the simulation, and describes the Floquet
analysis.

co,x, =co, /4Do. The interaction between the oscillator
and radiation of intensity F takes place within the dipole
approximation. This assumes that the dominant interac-
tion occurs with the dipole moment of the oscillator,
which we arbitrarily choose to be

p, =z exp( —z/0. 375z, ) . (3)

0
H atom

--10000 ——

This form has been used successfully in previous dissocia-
tion studies ' ' to represent the dipole moment of a di-
atomic molecule. Variation of the position of the max-
imum of this function does not change the qualitative
features of the dissociation. Interaction occurring via
higher-order electric moments or via magnetic moments
are much weaker and therefore not incorporated into the
present discussion.

In this study we choose a Morse oscillator consistent
with the spectroscopic constants of the I2+ molecule
(note that our intention is not to describe the dynamics of
the I2+ ion; we merely employ its molecular constants in
our model). This choice is made in order to facilitate a
comparison of the present work with the microwave ion-
ization of hydrogen atoms. ' The unperturbed
molecule has a vibrational frequency cu, =240 cm ', an
anharmonicity of ~,x, =0.665 cm ', and a dissociation
energy DO=2. 683 eV. Therefore, the oscillator supports
179 bound states. Of particular interest is the evolution
of the oscillator from a state of high initial excitation
(e.g. , no = 50) when it is subject to an intense field having
a frequency that is a fraction ( =30—40%) of the energy
spacing between the initial state and its immediate neigh-
bors. Such a situation is realized for the excited states
(n ) 30) for I2+ when the frequency of the field is approx-
imately co=60 cm '. In this case 2 —3 photons are need-

A. Hamiltonian
-20000

A semiclassical description of the interaction between a
Morse oscillator and a single-mode radiation field is pro-
vided by the periodically time-dependent Hamiltonian

- a0000

n=2

=p /(2m)+ Vo(z —z, )+P .Fsin(cut ),
where p, z, and p are momentum, position, and dipole
moment operators, respectively. The Morse potential has
the form

-40000 )--

Vo(x) =Do(e "—2e ), (2)

with a dissociation energy Do, fundamental vibrational
frequency co, =a(2DO/m)', and an anharmonicity of

FIG. 1. Comparison of the energy-level diagrams for the hy-
drogen atom (beginning at n =2), the Morse oscillator of this
study, Iz+, and two previously studied oscillators.
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TABLE I. Comparison of the number of photons needed to excite and dissociate I2+ vs excite and

ionize hydrogen.

no

Far-infrared dissociation' of I&+

Number of photons for
Excitation
to n+1 Dissociation Ionization

Microwave ionization of H
Number of photons for

Excitation
to n+1

40
50
60

100

F 1
2.9
2.7
1.8

219
187
161
72

11
5.7
3.3
0.73

229
146
102
37

'co=60 cm
co=0.3 CIIl

B. Floquet Harniltonian

The Hamiltonian describing a quantum-mechanical
Morse oscillator in a single-mode classical electromagnet-
ic field is periodically dependent on time, with period
v=2~/m. This "symmetry" in time implies that there
exists a unitary period-advance mapping ',

U(r, 0)=e (4)

that propagates the system over one period of time. Note
that the Floquet Hamiltonian HF does not itself depend
on time. Therefore, upon strrboscopic observation at
times X,

~no(Nr) ) =exp( —iHFNr)
~
no(0) )

and the system appears to evolve under a conservative
Hamiltonian. As a consequence, the eigenvalues and
eigenvectors of the Floquet Hamiltonian contain the
essential dynamical information of the system. We
denote the quasienergy, or Floquet, states by ~

a ) and en-
ergies by E . Because the period advance mapping is
defined with respect to a finite time ~ the quasienergies
are only defined modulo 2~/~.

The usefulness of the Floquet states arises in the foI-
lowing way. Consider the projection onto the unper-
turbed Morse oscillator eigenstates ~m ) of the initial

ed to excite the oscillator to the next higher quantum
state and roughly 100—200 photons must be absorbed to
reach the dissociation continuum. Table I compares
these numbers to the number of photons required to ex-
cite and ionize a hydrogen atom using a microwave fre-
quency of 0.3 cm '. Based on this comparison, one
might expect the far-infrared dissociation from no =50 to
resemble the microwave ionization of no=50 or no=60,
and, indeed, this is found to be the case.

Figure 1 gives an idea of how the energy level spacing
of I2+ compares with that of previously studied Morse os-
cillators ' ' representing H2 and HF molecules, and
to that of the hydrogen atom. Note the rapid decrease in
atomic energy level spacings relative to that of the oscil-
lator levels. The energy level spacing in the hydrogen
atom varies as 27.212 eV/n (for large n) while the spac-
ing of the Morse oscillator decreases more slowly as
bE(n) =co, —2nco, x, (for large n)

Thus, excitation from an initial state
~ no ) to a state

~
m )

is possible only if at least one quasienergy state overlaps
both oscillator states. Note that this statement is in-
dependent of the time one allows the system to evolve; the
time dependence enters through the exponential phase
factors in Eq. (5). Extensive excitation of the oscillator,
such as is necessary for dissociation, can only occur if
there exist broad Floquet states, states that have
significant overlap with a large number of Morse eigen-
states. %arrow Floquet states, on the other hand, lead to
localization of the initial state to a relatively small num-
ber of Morse eigenstates. A third possibility, namely,
that a quasienergy state overlaps with two widely spaced
groups of Morse eigenstates (i.e., the state ~a) has a bi-
modal distribution), is not observed.

Except for special cases, such as the harmonic oscilla-
tor, an exact determination of the Floquet Hamiltonian
is not possible. Perturbation methods, such as the aver-
age Hamiltonian method, ' are suspect because of the
high laser intensity considered in this study. We choose
to determine HF numerically; however, we truncate the
Morse oscillator state space to include only bound states.
Bliimel and Smilansky ' take a similar approach in
their treatment of the microwave ionization of hydrogen.
Continuum states can be included in a discretized manner
by placing the oscillator into a one-dimensional box hav-
ing a length sufficiently larger than the outer turning
points for the high-lying oscillator states.

The Floquet Hamiltonian is determined by calculating
numerically the period-advance propagator. This
proceeds by partitioning the evolution operator

U(t) = U(t, t bt) U(2bt, bt)—U(bt, 0) (6)

into a product of short-time propagators. The time incre-
ment At is chosen sufFiciently short to allow the propaga-

state
~ no ) after it has evolved for N cycles of the field

(m(no(Nr))=(m~U(r) ~no(0)) .

By inserting the completeness of the quasienergy states
on the right-hand side, we obtain

(m~no(N&)) = g exp( —iE N~)(m ~a)(a~no(0)) .
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tor in each time slice to be integrated under the assump-
tion that &(t) is approximately constant and to allow the
expansion

U(t, t —b t) =exp( —iAoAt/2)exp[ —i V, (z, t )b t ]

Xexp( i&—ob, tl2) . (7)

Typically, a time increment of ~/50 is sufficiently short to
yield convergent results. Each of the operators &o and

V, (z, t), is expressed in a basis of bound Morse oscillator
states. The former is diagonal in this basis, and its ex-
ponentiation is straightforward. The dipole moment
operator in V], however, is not diagonal in the Morse
basis. It is exponentiated via

C. Quantum simulation

A numerically exact simulation of the evolution of an
initial state ~no), to which the Floquet results are com-
pared, is achieved by the fast-Fourier-transform (FFT)
grid method. ' ' The propagator is partitioned in time
as per Eq. (6). In the FFT grid method, however, the
time increment b, t is chosen short enough that &(t) is ap-
proximately constant over the time increment and
sufficiently short to allow use of the Trotter product for-
mula

U(t, t —b t) =exp( —iTAt l2)exp[ —i V(z, t )b t]

Xexp( —iThtl2),
where V(z, t)= Vo(z)+ V, (z, t). By using the symmetric
form of Eq. (8), which divides the kinetic-energy term
into two parts, one obtains an expression accurate to
0 ( 5 t ) as opposed to 0 ( b, t ) for the usual form of the
Trotter product. It is the separation of the kinetic- and
potential-energy terms in Eq. (8) that places the more

exp[ —i Vi (z, t )At ]= A exp[ —i A u. A F sin(cot)ht ].A

where 3 diagonalizes the dipole moment operator of Eq.
(3). Note that the diagonalization need only be carried
out once and matrix 3 stored by the computer. The
short-time propagators, determined for each time slice
via Eq. (7), are then concatenated by matrix multiplica-
tion to form U(r). Finally, the period-advance operator
is itself diagonalized to find the Floquet states ~a) and
the quasienergies E =(i/r)ln[diagU(r)].

The Floquet analysis that we present for the Morse os-
cillator dissociation omits the continuum and one may
well ask what light such an analysis can shine on the
problem. We show below by comparing the Floquet
analysis to an exact quantum simulation, which does in-
clude the continuum, that it provides considerable in-
sight. Dissociation can only occur after extensive dy-
namics within the bound-state space leading to excitation
of bound states near the dissociation continuum. Actual
dissociation then occurs in a 'second" step via transitions
from these states to the continuum states. Our results
suggest that it is the initial excitation process that plays
the key role in determining how the dissociation proba-
bility changes as a function of initial oscillator state, laser
intensity, and laser frequency.

severe restriction on the length of At. Typically we set it
equal to —„', of the period of the oscillator, or At =2 fs.

A calculation of the evolution of an initial state ~no)
proceeds as follows. The state no ) is expanded in a basis
of momentum eigenstates and multiplied by the right-
hand kinetic-energy propagator of Eq. (8). The result is
inverse Fourier transformed into position space and mul-
tiplied by the potential-energy propagator. Fourier trans-
formation back into momentum space and multiplication
by the remaining kinetic-energy propagator completes
the evolution over one time increment At. Repeating this
sequence of steps N times yields a quantum-mechanical
simulation of the Morse oscillator dynamics over a time
t =cVht.

The numerical implementation of the Fourier-
transform method requires discretization of both position
and momentum space in addition to the time grid intro-
duced above. The initial wave function is typically
placed in a 2048-element complex array with a spacing
of Ax=0.01ao and extends from x;„=—4ao to x
=16ao. The corresponding momentum-space grid has
b, k =2vrl(x, „—x;„)and k,„=~/bx.

A principal advantage of the FFT grid method is that
it includes the continuum states of the Morse oscillator in
a natural way. It, thereafter, allows us to simulate the
dissociation dynamics. The amount of dissociation that
takes place from an initial state ~no ) after at time t is
given by

where the summation extends over all bound states of the
oscillator. A simpler procedure, which we find to work
well, is to determine the probability of dissociation from

P;,(t) = f dx
~
(x ~Q(t) ) )

C

(10)

where x, is typically set to 10ao. The right-hand turning
points of the bound states lie at smaller distances; there-
fore P~;, (t) is not sensitive to the precise choice of x, .
The reader will find a more complete description of the
FFT grid method and its use to study the dissociation of
the Morse oscillator in Refs. 44 and 45.

Both the Floquet analysis and the FFT grid method re-
quire knowledge of Morse oscillator wave functions
g„(x) for highly excited states (up to n =179). For the
Floquet analysis they are needed to compute matrix ele-
ment of the dipole moment operator; for the quantum
simulation, they provide the expansion coefficients of the
initial state in the basis of position eigenstates. These
wave functions are known analytically in terms of hyper-
geometric functions; however, numerical evaluation of
the high-order ( ) 20) wave functions in this way is
difficult because of errors due to finite precision. Instead,
we solve numerically the Schrodinger equation,
&op„(x)=E„g„( ), uxsing the Sams and Kouri method
and the known Morse oscillator eigenvalues,
E„=oi,(n + —,

'
)
—co, ( x+ n—,

' )~. The solution is propagat-
ed in increments of 0.001ao from x = —1.2ao until O. lao
beyond the right-hand classical turning point, at which
point a Wentzel-Kramers-Brillouin (WKB) solution is
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used. As a safeguard the number of nodes is counted and
the solution is rejected if this number does not equal n

III. QUASIENERGY STATES

The Floquet Hamiltonian contains the essential
ynamical information for a periodi ll t' dca y ime- ependent

system; in a stroboscopic sense it is a constant of the
motion for the s stem.y tern. How the quasienergy states
change as a function of the frequency and intensity of the
radiation should reAect the manner in which th d
ics

ic e ynam-

When t
of the Morse oscillator change with th ese parameters.
en t e laser intensity is zero the ~uasiener

states ar e identical to the Morse oscillator states. Figure
quasienergy eigen-

2 illustrates the situation for relatively low intensit radi-
artree/ao, having a frequency of co=60

w in ensity ra i-

cm '. lt shows the expansion coefficients (s uared) f
series ofof quasienergy state in the basis of bound Morse
eigenstates, or, equivalently, the expansion coefficients
(squared) for the Morse eigenstates in a basis of quasien-
ergy states. At low intensity radiation there remains a
nearly one to one correspondence between a large num-

er of Morse and Floquet eigenstates. Note that these
narrow Floquet states correspond to low excitation of the
oscillator (n (70). Ar n 70~. As the excitation increases, the

(70(a (120.
quasienergy states broaden and d 1n eve op structure(a ( 120). At the highest excitations (a ) 120) the
quasienergy states begin to overlap with a broad range of

orse states. In comparing the Floquet analysis to the
e . , we are particu-quantum simulation reported in R f 45

ar y interested in the fate of the initial state no=50.
Note that at this field intensity it overlaps only with nar-
row Floquet states. Accordingly, by Eq. (5) it has little
c ance of dissociating. This is confirmed by the simula-
tion.

y radiation is increased tohen the intensit of
=0.136 hartree/a h/ 0, the situation changes dramaticall .

As Fig. 3 shows th, there is a marked distinction between
broad and narrow Floquet st t Tha es. e increase in field in-
tensity has caused the region of b dn o roa states to grow ex-

F=0.019 hartrees/a0, ~=60crn

Cd

0
rd

FIG. 3. The uq asienergy eigenstates for a "moderate"
sity field. Note the

era e inten-
'

y e ~ ote t e s arp transition from narrow to broad
eigenstates.

bet
tensively. At this intensity there is an abrupt trans t

ween these two classes of Floquet t t
ransi ion

e s a es at approxi-
mate y n =55, or, equivalently, a =55. uasienergy
states for a(55 each overlap only with a local distribu-
tion of Morse states. This suggests that it is possible to
define a localization length for the perturbed oscillator

threshold statestate, the quasienergy states overlap with the
entire range of Morse states above n =55. Ther
reason

ere is no
n to believe that this overlap would not extend to

t e continuum states were they included in the Floquet
ana ysis. At this field intensity, the initial state no=50
shows some overlap with the broada quasienergy states, in
addition to its overlap with the narrow states. This im-

p ies that at F =0.136 hartree/ao no =50 should begin to
issociate. Further increase in the field te in ensity ea s to

even larger regions of broad quasienergy states implyin
that dissociation of n

s a es imp ying

o
—&A becomes progressively more

efficient.
It is possible to make quantitative the idea of broad

versus narrow quasienergy states by definin the width
function

ning e wi t

W(a) =exp —g [ (n a )
~

ln( [ (n ~a )
~

)

f't

150

FICx. 2. TThe quasienergy eigenstates for a "low" intensit
field. For reference

ow intensity

f
e, the field frequency is approximat l —' the ey — e

undamental frequency of the oscillator.

When the field is turned off, the width function is unity;
whereas if the Floquet state ~a) is distributed evenly over

~ ~

Morse eigenstates, then W(a)=k F' 4igure presents an
idealized version of the transition between these two ex-
tremes of narrow and broad Floquet states.

For a given field intensity and frequency, W(a) is a
measure of now many Morse states overlap with a partic-
ular Floquet state. When W(a) is large the state ~a)
provides t e means for extensive excitation of th li-e osci a-
or y t e radiation. Figure 5 illustrates how the width

varies with quasienergy state ~a) for four field strengths
(a~ marks the onset of broad states). Note that while it

is possible to rank Morse states according to their energy
eigenvalues, the same cannot be done for the Floquet
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Bt onil

100

80

[

i

I I

60

Xcl J ) Ow'

20

FIG. 4. Simplified illustration of the transition from narrow
to broad states in the width function 8'(a). 50

I

100 150

states, because the quasienergies are only defined modulo
2m. /~. Therefore in Fig. 5 they are ranked according
to their average energy, as defined by n co

=co n cx n

Ranked by average energy, the widths in Fig. 5 bear a
strong resemblance to the idealized version presented in
Fig. 4. Alternative ordering schemes are certainly possi-
ble; for example, one could simply rank the Floquet states
by their width. Another approach is to abandon alto-
gether trying to rank the quasienergy state and examine
the widths of the Morse eigenstates when expanded in the
quasienergy basis. The width function W(n) is 'identical
to Eq. (11),except that the sum is taken over a instead of
n. The widths of the Morse states, shown in Fig. 6, are
very similar to their a counterparts in Fig. 5 and confirm
the distinction between narrow and broad states.

Both Figs. 5 and 6 indicate that the transition from
narrow to broad states moves to lower energy (i.e., lower
n or a) as the field intensity increases. This is a conse-
quence of increasing importance of the dipole moment
operator in establishing the character of the quasienergy
states as F becomes larger. Also apparent is a concomi-

120

FIG. 6. Widths of the Morse eigenstates with respect to the
quasienergy basis for a variety of field intensities. The frequen-
cy is co =60 cm

—1

tant increase in the breath of the broad states. This in-
crease follows an approximately W-&F dependence on
field intensity, where 8'is the average width of the broad
states.

The variations in the width of the quasienergy states
and the onset of broad states a as a function of field fre-
quency are more complex. For example, as Fig. 7 shows,
they are not monotonic in co. The onset of broad states
shifts to small a (equivalently n) as co increases, reaching
a maximum in the vicinity of co=170 cm ', but then
shifts back to larger a as the frequency is increased fur-
ther. The likely reason is that ~=170 cm ' in an aver-
age sense best satisfies resonance for this anharmonic sys-
tem. Increasing ~ implies that the radiation will lie
above resonance for too many Morse levels; thus, excita-
tion of the oscillator becomes less efficient. Similarly, de-
creasing cu implies that the radiation will be below reso-
nance for too many levels, again lowering the excitation
efficiency.

100—

80

60

F=0.2, a„=30
F=0.136, n =55

120

100

80

1 I f I

40

20

40

50 100 150

0 50 100 150

FIG. 5. Widths of the quasienergy states as a function of a
for various field intensities. a~ indicates the approximate onset
of broad states. The frequency is co=60 cm

—l

FIG. 7. Widths of the quasienergy states as a function of a
for various field frequencies. a~ indicates the approximate on-
set of broad states. The field intensity is F =0.136 hartree/a0.
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IV. COMPARISON 0
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as a function f '
a

'
o time for aawi eranange of initial Morse oorse oscillator excitation asci ation as obtained from the
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I I I I I I I [ 80

i.0
o FFT

0.8

40

0.4

0.136 hartrees/ao

60cm

20

0 P5 50 75 100 125

FIG. 9. Comparison of the width function 8'(n) to the simulated dissociation probability as a function of initial Morse oscillator
excitation.
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FIG. 10. Comparison of P&(no), the projection of the initial oscillator state onto the broad state subspace, and the dissociation
probability predicted via the FFT grid method as a function of initial oscillator state. P&(no) is shown by the solid and dashed curves
for two choices for the onset of broad states.
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onto the narrow and broad quasienergy states, respective-
ly. The assumption, based on Eq. (5), is that only the
projection of the initial Morse state onto the broad state
space is capable of contributing to dissociation. There-
fore, we define a "dissociation probability"

Ps(no)= (Pano!P&no &
= g l (no!a & l, (14)

broad

based on the probability that the initial oscillator state
belongs to the broad state subspace. As Fig. 10 illus-
trates, there is good agreement between the projection of
no onto the broad states and they probability given by the
simulation [calculated after 18 field cycles via Eq. (10)].
In reality, of course, the time-dependent exponential
terms in Eq. (5) also play an important role. The results
in Fig. 10, however, suggest that while they may
influence the time dependence of the dissociation, the

l

probability of whether or not the oscillator eventually
dissociates is primarily determined by the projection of
the initial state onto the broad states and is not depen-
dent on time.

The assumption of the previous paragraph explains
another observation from the simulation, namely, that
after Pd;, (t) levels off in time, the bound portion of the
wave function exhibits recurrences to states in the vicini-
ty of n o. Heller has shown that these recurrences lead
to a slowdown in the rate of phase space flow, and there-
fore to the decrease in dissociation rate observed in Fig.
8. Within the Floquet picture, we associate the slow-
down in phase space low with the complementary pro-
jection of no onto the narrow quasienergy state space.
This projection leads to localization of the oscillator, with
localization length defined, for example, as

1(n o)=exp — g l(nola& I »(l&nola&l
narrow

a
narrow

a

l(n, la&l' (15)

Thus, if we assume that all the broad states lead to disso-
ciation, then the remaining bound portion of oscillator
remains localized to a relatively small range of Morse
states. Casati and co-workers have observed similar

bound-state localization in their studies of H atom ioniza-
tion. Localization in momentum space is also found for
the periodically kicked rotor. '

The correlation between the probability that no pro-

o Eq, (14)

FFT gri

0. 1 0.2
F (hartrees/ao)

FICx. 11. Comparison of P&, the projection onto the broad state subspace of the initial oscillator state, and the dissociation proba-

bility predicted via the FFT grid method as a function of field intensity. The choice for the onset of broad states is indicated by n in

Fig. 5.
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FIG. 12. Comparison of the projection of the initial oscilla-
tor state onto the broad state subspace and the dissociation
probability predicted via the FFT grid method as a function of
field frequency. The error bars indicate the variation in I'& with
the choice for the onset of broad states. The numbers next to
the error bars represent the choice of o.'~.

V. CONCLUSION

The question of quantum chaos motivates much of the
work on the microwave ionization of hydrogen atoms
and the continuing study of the periodically kicked rotor.
While stochastic diffusion of the electron in phase space
summarizes the classical description of the microwave

jects onto the broad states Pz and the simulated dissocia-
tion probability Pd;, with respect to their variation with
the intensity and frequency of the radiation further sup-
ports the interpretation of the Floquet states made above.
There is a threshold field intensity for Pz, shown in Fig.
11, that is in excellent agreement with the threshold for
the actual dissociation probability. The variation of Pz
with co, in Fig. 12, also correlates well with dependence of
Pd;, on laser frequency. The error bars for the points
representing P~ arise in the following way. As can be
seen in Fig. 7, the distinction between broad and narrow
Floquet states is sharper for some frequencies than oth-
ers. Typically, the onset of broad states becomes difficult
to ascertain when the dissociation probability is large and
there is only a limited range of narrow states. The error
bars in Fig. 12, represent the range of values of Pz deter-
mined using various values of a ~ from the region
separating broad and narrow states in Fig. 7. Although
this partially obscures the structure observed in the simu-
lation, the overall agreement is good.

ionization problem, localization and an absence of
quantum chaos seem to be the accepted conclusion
within the quantal description of that system. A
similar situation exists for the Morse oscillator. Wyatt
and co-workers ' have shown that a classical descrip-
tion of the dissociation of the HF molecule involves
chaotic trajectories; however, a quantal wave packet un-
der the same conditions is localized by cantori structures.
Our work too shows the importance of localization in the
quantum-mechanical description of the dissociation pro-
cess. Within the Floquet analysis, however, this naturally
follows from the structure of the quasienergy states.

The quasienergy states for a Morse oscillator in a
strong laser field fall into two distinct classes: (i) Narrow
states that resemble very much the Morse eigenstates
themselves, and (ii) broad states that overlap with the en-
tire range of Morse states having eigenvalues above a
given threshold value. The resolution of the initial state
of the Morse oscillator onto these two subspaces explains
both the dissociation probabilities and localization ob-
served by the quantum simulation of the oscillator dy-
namics. The underlying assumption is simple; broad
states dissociate, whereas narrow states do not. By their
nature, the narrow states imply localization of the oscilla-
tor. Within this picture the fate of the oscillator appears
to be determined solely by its initial condition. More pre-
cisely, knowledge of the evolution of the system over one
period is necessary to find the quasienergy states. Thus,
the fact that the resolution of the initial oscillator state
with respect to the quasienergy states determines its dy-
namics is a consequence of Floquet's theorem for periodi-
cally time-dependent linear differential equations.

Given the above interpretation of Morse oscillator dy-
namics, what is of interest is how the quasienergy states
vary with the physical parameters of the system, for ex-
ample the frequency and intensity of radiation and the in-
itial state of the oscillator. Within the scope of the
present study, the region of broad states, and the comple-
mentary region of narrow states are found to vary in a
regular manner with all three of these parameters. In-
creasing the intensity of radiation increases the region of
broad states. Because of the sharp transition from nar-
row to broad quasienergy states, this translates into a
sharp threshold for dissociation. For the same reason,
there is a sudden onset for dissociation with respect to
the initial excitation of the oscillator. With respect to
laser frequency, there is an optimum value that best
satisfies resonance for the anharmonic Morse oscillator.
Frequencies close to this value have a stronger infiuence
on the oscillator than frequencies well removed from this
value. Neither the size of the region of broad states nor
the dissociation probability, however, have a monotonic
dependence on the frequency of radiation. In fact the
dependence is reminiscent of that found within the classi-
cal description of microwave ionization in hydrogen. '

The agreement between the Floquet analysis and the
quantum simulation supports the idea that the dissocia-
tion dynamics is largely a bound-state phenomenon.
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