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Recently, Huberman and Hogg [in The Ecology of Computation, edited by B. A. Huberman
(North-Holland, 1988), pp. 77-115] analyzed the dynamics of resource allocation in a model of
computational ecosystems which incorporated many of the features endemic to large distributed
processing systems, including distributed control, asynchrony, resource contention, and cooperation
among agents and the concomitant problems of incomplete knowledge and delayed information. In
this paper we supplement an analysis of several simple examples of computational ecosystems with
computer simulations to gain insight into the effects of time delays, cooperation, multiple resources,
inhomogeneity, etc. The simulations verify Huberman and Hogg’s prediction of persistent oscilla-
tions and chaos, and confirm the Ceccatto-Huberman [Proc. Natl. Acad. Sci. U.S.A. 86, 3443
(1989)] prediction of extremely long-lived metastable states in computational ecosystems. Extending
the analysis to inhomogeneous systems, we show that they can be more stable than homogeneous
systems because agents with different computational needs settle into different strategic niches, and
that overly clever local decision-making algorithms can induce chaotic behavior.

I. INTRODUCTION

The emergence of distributed parallel processing in
large computer networks' has opened up an interesting
new frontier of computer research. The growing inter-
connection of diverse processors in networks allows for a
loosely coupled form of concurrency with complex inter-
dependencies, leading to self-regulating computational
entities very different in nature from their individual
components. Competition and cooperation abound in the
form of resource contention and the sharing of informa-
tion from databases, sensors, and other knowledge
sources, and even a sort of reproductive behavior can be
achieved by spawning remote processes. Given the many
characteristics it shares with biological and social organi-
zations, one may regard such a collection of interacting
computational agents as a computational ecosystem.

Some systems which are not necessarily distributed
among many computers can also be thought of as compu-
tational ecosystems. Robots, monitoring systems,? pro-
cess schedulers for integrated circuit fabrication,? and
other systems which interact directly with the physical
world through sensors or motors must respond in real
time to information which is not only constantly chang-
ing, but often inconsistent and incomplete. This is due to
inherent limitations in the accuracy and interpretation of
sensory signals and in the time available to obtain or pro-
cess information from other components of the system.
One approach to these problems is to organize the system
as a loosely coupled collection of agents which specialize
in various strategies for dealing with different contingen-
cies and compete among themselves for resources with
which to address the overall goals of the system.

Just as the computation within a computational
ecosystem is distributed, so must be the resource alloca-
tion. Since the composition of such a system continually
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evolves in unforeseen directions, a central controller can-
not be kept up to date about the state of the system, re-
sulting in delayed responses to new opportunities. Even
more importantly, the system must continue to operate
even if a few machines or agents, including any central
one, fail. The necessity for local decisions about resource
management and communication in order to ensure
robustness to change and failure raises a number of basic
issues concerning the behavior and, ultimately, the design
of computational ecosystems. In particular, it is vital to
understand how the overall behavior of a group of
cooperating agents depends upon that of the individuals
which comprise it, and what implications this relation-
ship has for system design principles and heuristics. This
issue is also of central importance to proposed problem-
solving strategies in distributed artificial intelligence sys-
tems.*

Some qualitative insight into this and related issues has
been provided by exploiting superficial analogies between
computational network architectures and various human
and natural organizational structures, such as groups of
human experts,* the scientific community,’ economic
markets,®” the Society of Mind,® and biological ecosys-
tems.” Such analogies have led to a number of proposals
for the design of computational ecosystems. For exam-
ple, one method for deciding among conflicting messages
is due-process reasoning,* which entails procedures very
similar to those used to validate scientific claims in the
face of possibly conflicting results. In analogy to
economic markets, limited resources such as memory and
processor time can be allocated in a distributed fashion
by allowing processes to bid for them, resulting in a more
efficient system than can be achieved using standard
queueing techniques.’ A further improvement of this ap-
proach allows several bidding strategies for the processes,
leading to the interesting question of the existence of evo-
lutionarily stable equilibria'® for the system as a whole.

404 © 1989 The American Physical Society



40 DYNAMICS OF COMPUTATIONAL ECOSYSTEMS 405

Recently, Huberman and Hogg!! analyzed the dynami-
cal behavior of computational ecosystems from a more
quantitative perspective. They found that such systems
can display a panoply of behavioral regimes which, de-
pending on particular system parameters, are character-
ized by fixed points, oscillations, or even chaos. In this
paper we elaborate their theory, compare it to computer
simulations, and show that its predictions are generally
quite accurate when there are at least a few hundred
agents in the system. We also present a number of new
properties of computational ecosystems. These include
our observation that the presence of several different de-
lays in a system do not greatly affect its tendency to oscil-
late, that enhancing the decision-making abilities of some
of the individual agents can actually decrease overall sys-
tem performance and lead to chaotic behavior, and that
systems can remain in nonoptimal metastable states for
extremely long periods of time before escaping to the glo-
bally optimum state, in agreement with theoretical pre-
dictions.!? After studying the dependence of the system’s
behavior upon several different parameters, we are able to
offer a number of general heuristics which ought to be
helpful in the design of such systems. We show that un-
desirable oscillatory behavior can be reduced or eliminat-
ed by purposely introducing randomness into the decision
procedures used by the agents, or by introducing agents
into the system which use different decision procedures.

Specifically, in Sec. II we discuss our basic model,
which incorporates many of the characteristic features of
computational ecosystems. In Sec. III we present various
aspects of the model’s behavior and compare the results
of theory and simulations. Finally, we discuss implica-
tions and possible extensions of our work in Sec. IV.

II. MODEL OF COMPUTATIONAL ECOSYSTEMS

To investigate the behavior of computational ecosys-
tems, we consider a particular model which incorporates
the essential features described above. These include dis-
tributed control, asynchrony in execution, resource con-
tention, and cooperation among agents, along with the
concomitant problems of incomplete knowledge and de-
layed information. We suppose that a large number of
tasks are to be performed on a network of interconnected
computers. The tasks, which could be generated continu-
ally by user requests or as spawned processes, are
managed by active agents, which are responsible for
choosing among various computational resources to per-
form the task. In the simplest case, these are hardware
resources, such as execution time on a computer or use of
a communication line, but more generally they could in-
clude use of specific software packages or access to infor-
mation in various databases.

The basic model considered in this paper,!! illustrated
in Fig. 1, consists of 4 agents which are free to choose
among R resources according to the perceived (i.e., not
necessarily correct) payoff for using each resource. The
payoff is related to actual computational measures of per-
formance, such as time to complete the task, accuracy of
the solution, amount of memory used, etc. Competition
and cooperation among the agents are taken into account
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FIG. 1. Model of a computational ecosystem with n; agents
using the ith resource. The circles denote computational
resources, and the solid rectangles, agents in the system whose
behavior is determined by three computations. Lowest solid
rectangle is expanded to show then in detail.

by allowing the payoff for using a particular resource to
depend on the number of agents already using it. For ex-
ample, in a purely competitive environment, the payoff
for using a particular resource r would decrease mono-
tonically with the fraction of agents already using it,
f,(t). Alternatively, the agents using a resource could as-
sist one another in their computations, as might be the
case if the overall task could be decomposed into a num-
ber of subtasks. In this case, the payoff might increase as
more agents used that resource. Each agent evaluates the
payoff associated with each resource asynchronously at
an average rate a and switches to the resource with the
highest payoff. To account for the fact that its informa-
tion about the current state of the system can be some-
what imperfect and delayed, we add a normally distribut-
ed quantity with zero mean and standard deviation o to
each payoff, and delay the information available to each
agent by a time 7.

Due to the variation in reevaluation times and the un-
certainty of information, the dynamics of the system
must be described probabilistically. The system’s behav-
ior is fully specified by the probability distribution func-
tional which describes the probability of obtaining a par-
ticular evolution of the system. Unfortunately, evaluat-
ing it in realistic situations is extremely difficult. Howev-
er, it is possible to find coarser-grained quantities which
provide clear and reasonably complete characterizations
of the overall system dynamics, and are also amenable to
theoretical analysis and computer simulation.

Theoretical analysis!! of the model, described in some
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detail in Sec. III, leads to a differential-delay equation for
the time-evolution of the average of the vector f(t),
whose components specify the fraction of agents using
each resource at time ¢. The average behavior of various
quantities of interest which depend upon f(¢) (e.g., corre-
lations, oscillation periods, and total system performance)
can be evaluated with a mean-field approximation. Cor-
respondingly, our simulation is a straightforward, event-
driven implementation of the model. In this case, the
various quantities of interest are evaluated over a single
simulation run and the result averaged over several runs.

Theoretical analysis and computer simulation are com-
plementary in at least two important respects. The ap-
proximations of the theory, which involve replacing aver-
ages of functions by functions of averages (mean-field ap-
proximation), and those of the simulation, which are re-
lated to the finite sampling of the probability-distribution
functional, are completely different in nature, so that
agreement between the two is a clear indication of correct
conclusions about the behavior of the model. In addition
to corroborating the predictions of mean-field theory, the
simulations enable finite-size and fluctuation effects to be
measured.

The very differences that make the two techniques
complementary also create certain subtleties in their
comparison. For example, in a system with sustained os-
cillations, the period and amplitude are trivial to extract
from the theoretical predictions of { f(¢)). However, an
average of f(z) over several simulation runs yields an
{f(t)) which initially oscillates with the same period and
amplitude, but eventually decays and settles to some fixed
value. The reason is that, while any one simulation run
bears a strong qualitative resemblance to that predicted
by the theory, random-phase drifts between different
simulation runs cause  f(#)) to settle to a fixed value on
a time scale which depends on the number of agents.
Thus, in the simulations, oscillation periods and ampli-
tudes cannot be extracted from ( f(¢)). However, as de-
scribed in Appendix B, they can be extracted from corre-
lation functions measured within a single simulation run
and then averaged over several runs. As we shall see in
Sec. III, the results of this method agree well with
theoretical predictions.

III. BEHAVIOR OF COMPUTATIONAL ECOSYSTEMS

In this section, we present a number of behavioral phe-
nomena which can be expected in computational ecosys-
tems of the type described above, starting with the sim-
plest systems and gradually working towards more com-
plicated ones. Theoretical analysis and simulations are
used to determine the conditions under which various
types of behavior occur. First, in Sec. III A, we examine
a simple system of identical agents which compete for
two resources. Next, in Sec. III B, we introduce time de-
lays into the system and show that they can induce per-
sistent oscillations. Then, we complicate the system still
further by making the agents somewhat cooperative (Sec.
IIIC) or by introducing more resources (Sec. III D),
finding that under such circumstances the behavior can
become chaotic. In Sec. III E, we remove the restriction

that all agents behave identically and show that inhomo-
geneity can increase the stability of the system. Finally,
we explore the consequences of introducing more sophis-
ticated algorithms for choosing resources (Sec. III F) and
discuss issues of metastability in systems with more than
one mode of behavior (Sec. III G).

A. Exact solution for zero delay

Consider a system with two resources and A4 identical
agents. In this case, the probability distribution P;(t) for
i agents to be using resource 1 at time ¢ evolves according
toll

dP(1)
dt
where «a is the rate at which each agent reevaluates its

choice, and M is the tridiagonal matrix derived in Ref. 11
and which is given by

=aMP(1), (1)

(A —jiplj), j=i—1
M= i—[(4 —jp(H+j(1—p(iN], j=i (2)

Jj(1—p(j)), j=i+]1,

and p(i) is the probability that an agent will choose
resource 1 if i agents are already using it.

In general, p might be an arbitrary function of i, which
could be thought of as characterizing an arbitrary deter-
ministic or probabilistic classifier. For example, if, for all
0=i= A4, p(i) is equal to either 1 or zero, p(i) corre-
sponds to a deterministic classifier. Otherwise, the de-
cision regions are somewhat fuzzy, the most extreme ex-
ample of which is p(i)=1 for all i. However, in the mod-
el of Fig. 1, the form of p(i) is restricted somewhat be-
cause it is determined by payoffs. In terms of G,(i) and
G,(i), the payoffs for using resources 1 and 2, and the un-
certainty o,p is given by}

1+erf
er Py

, (3)

=1
pli)= >

where erf(x) denotes the error function of x.

In order to facilitate comparison of systems with
different numbers of agents, it is convenient to express
the payoffs and the preference probability p in terms of
the fraction of agents using resource 1, introduced earlier:
f=i/A. With this reinterpretation, Eq. (3) remains val-
id if f is substituted for i.

If the agents are in competition with one another, the
payoffs decrease monotonically with their number, as il-
lustrated in Fig. 2(a), because each resource becomes
saturated as it is used by more agents. The correspond-
ing p(f) is displayed in Fig. 2(b) for two values of the un-
certainty, 0 =0 and 0.125.

When there is no uncertainty, it is intuitively clear that
the system will tend towards an equilibrium f, in which
the two payoffs are equal. If f < f, then G,(f) <G,(f),
so the next agent to reevaluate its choice will choose
resource 1. Therefore, f will either stay the same or in-
crease. Similarly, if f > f, f will either decrease or stay
the same. A simple extension of this reasoning shows
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FIG. 2. (a) Monotonically decreasing payoffs G,=7—f,,

G,=T7—13f,. (b) Preference probability function p(f) for these
payoffs for two values of the uncertainty parameter o =0 and
0.125. The dashed line is p= f and its intersection with the p(f)
curves gives the equilibrium values, f, =0.75 and 0.724, respec-
tively.

that, for o >0, the system will tend towards an equilibri-

um value given by the solution to

fo=pfo) . 4)

This is confirmed by Fig. 3, which plots the mean and
standard deviation of the probability distribution P (f,t)

oy L

04 4

time

FIG. 3. Mean and standard deviation of P(f,t) calculated
from Eq. (1) using the payoffs of Fig. 2, 0=0.125, and 4 =25.
Initially, all of the agents are using resource 2. The dark line
shows the mean value of f; the lighter lines which flank it are
one standard deviation from the mean.
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given by the solution to Eq. (1). As t— o, the mean of
P(f,t) monotonically approaches a value close to that
given by Eq. (4).

By setting the left-hand side of Eq. (1) equal to zero,
and rewriting Eq. (2) and p in terms of f, one can show
that, as 4 — o, the equilibrium distribution P(f,t — o)
approaches a Gaussian with mean f, given by Eq. (4) and
variance

52= _I_M . (5)
A1l _pl(f() )
These results are compared with the actual values ob-
tained from the eigenvectors of M in Fig. 4. As can be
seen, they are accurate to within a few percent when the
number of agents exceeds a few dozen.

Since P(f,t) is arbitrarily narrow for sufficiently large
A, the most important aspect of the distribution is its
average { f). By making a mean-field approximation in
which {p(f)) is replaced by p({ f }), Eq. (1) becomes

g%ft1=—oz[<f>~p<<f>)]. (©)

Since each agent interacts with each of the other agents
though the global variable f, the interactions in the sys-
tem are effectively infinitely ranged, a situation in which
mean-field theory is expected to work very well.
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FIG. 4. (a) Mean and (b) standard deviation of the distribu-
tion P(f,t— o) vs the number of agents 4. The light curves
are calculated from Eq. (1). The dark lines are calculated from
Egs. (4) and (5), which are provably accurate in the limit
A— .
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B. Time delays

Agents in a computational ecosystem will often base
decisions on information which is no longer current. In
this section we show how the presence of time delays in a
system can lead to oscillations and instabilities. As an ex-
ample, we consider a system with the same payoffs and
uncertainty as in Fig. 3, but with a nonzero time delay 7.
Figure 5(a) shows two typical simulation runs with 200
agents, one with B=a7r=0.04, and the other with
B=0.40. For 3=0.04, the simulation looks very similar
to Fig. 3; the system evolves essentially monotonically to-
wards the fixed value f;=0.724 predicted by the theory,
with some small fluctuations due to the finite number of
agents. However, for =0.40, the fixed point is unstable,
and f(t) exhibits oscillations which fluctuate slightly in
phase and amplitude.

In order to understand this behavior, we would like to
analyze the system in a manner analogous to that of Sec.
IIT A. A phenomenological approach leads to the follow-
ing form:!!

%;t—)=—a[f(t)—p(f(t—r))], )

(a) simulation

B=0.40

Y

f
04
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FIG. 5. (a) Simulated (200 agents) and (b) theoretical f(?) for
a system of purely competitive agents with the same payoffs and
uncertainty as in Fig. 3. In each case, results are displayed for
two different values of B=ar: 0.04 and 0.40. The initial condi-
tions are f(t)=0 for —7<t <0. Time is measured in units of 7.

where, for the sake of legibility, we have dropped the ex-
plicit angle brackets on (f). This equation can also be
obtained from a master equation.!*> In what follows we
confirm the validity of this equation by extensive comput-
er simulations.

Figure 5(b) displays the numerical solutions of Eq. (7)
for the same values of 3 as in Fig. 5(a). The agreement
between the theory and simulation in Fig. 5 is excellent.
For =0.04, the theoretical solution tends toward the
correct asymptote at nearly the same rate as the simula-
tion, and for $=0.40 the period and amplitude of the os-
cillation and the average value of f are in agreement to
within a few percent.

The conditions under which oscillations and instabili-
ties occur can be obtained by linearizing Eq. (7) in the
neighborhood of the fixed point. Defining the variation
around the fixed point 6(¢)= f(t)— f,, we obtain

48) _ o150 — vt —1)] (8)
dt
where y =p'(f). The behavior of solutions to this equa-
tion can be characterized by making the substitution'*
8(t)=e*", which yields

ye'Bg—é’—l:O , 9)

where B=ar. In general, Eq. (9) has infinitely many
complex solutions £=§,+i&;. The asymptotic behavior
of the solution to Eq. (8) can be determined from the
roots of Eq. (9) with the largest real parts.

The general behavior of Eq. (8) for various regimes of
y and S is represented in the phase diagram of Fig. 6.
The parameters corresponding to the two curves in Fig.
5(b) are denoted by asterisks. In the shaded region, there
is at least one solution to Eq. (9) with &, >0, so the fixed
point f, is unstable. For y < —1, the boundary between
stability and instability depends upon 3. We shall hence-
forth refer to this critical threshold for instability as f3,.
Within the stable region, the light curve indicates the

B

FIG. 6. Stability and oscillation regimes as a function of 3
and y=p'(f,) for an arbitrary system with two resources.
Shaded area represents the unstable region. Within the stable
region (unshaded), the light curve is the boundary below which
nonoscillatory decay to the fixed point is not possible; instead,
all solutions exhibit damped oscillations. Asterisks indicate the
parameters used in Fig. 5.
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boundary below which the solution to Eq. (8) exhibits
damped oscillations about the fixed point; this critical
threshold for oscillation will be referred to as 3,. Note
that, for all y, 3, <f,; i.e., the threshold for oscillation is
always less than that for instability. Analytic expressions
for the critical values B and 3, can be derived from Eq.
(9):

31:“7/41€¥(HBI)=l/(|7/|e—1) when |y|>>1/e
(10)
and
_cos Y1/y)
B=" A (1

where the principle value of the arccos is to be taken.

For the payoffs of Fig. 2 and o =0.125, Egs. (10) and
(11) yield the oscillation and instability thresholds
B,=0.0464 and 3,=0.2271. The decay rate 7, =1/al|,|
and the oscillation frequency v=aé&,; /27 can be calculat-
ed as a function of B from Eq. (9) for 8<f3,. For B>B,,
the fixed point is unstable, and the amplitude of oscilla-
tion grows until it is limited by nonlinearities in p(f). In
this unstable regime, Eq. (7) can be solved numerically to
obtain v and s, the rms amplitude of the oscillations
about the average value of f. In order to compare these
quantitative theoretical predictions with the results ob-
tained by simulation, we calculate the autocorrelation
function C(t’) defined in Appendix B. Estimates of s, &,,
and §; (and hence 7, and v) are extracted from C(t') by
methods also described in that appendix.

Figures 7, 8, and 9 compare the theoretical values of
7,, v, and s to those obtained from simulations with
different numbers of agents. In all cases, the agreement
between theory and simulation is best when there are
more agents in the simulation.

For B <<f3,, the system takes a very long time to reach

—

correlation time
i
1

FIG. 7. Correlation time 7, vs 3 for the conditions of Fig. 5.
The theoretical mean-field results (dark curve) are compared to
results obtained from simulations of systems with 25, 200, and
500 agents as indicated in the figure. The oscillation and stabili-
ty thresholds B3,=0.0464 and 3,=0.2271 are indicated by
dashed vertical lines. For B<f3,, 7, is the relaxation time, while
for B> 3, it is the phase coherence time of oscillations about the
fixed point.

0.0

00

FIG. 8. Oscillation frequency v vs B for the situation de-
scribed in Fig. 7. Discontinuities in the slope of the theoretical
v(B) occur at the oscillation and stability thresholds 3, and ,.
For sufficiently large 3, beyond the range plotted here, v ap-
proaches % asymptotically (e.g., at =10, v is 0.46).

equilibrium, and does so without oscillation. For 8~f8,,
relaxation to equilibrium is fastest, taking just a few delay
times. This may be an advantageous regime in which to
operate because of the rapid, yet stable, response of the
system. Figure 8 confirms that the onset of decaying os-
cillations occurs at B=f,. As S increases towards f3,, v
increases towards its asymptote of %, and the relaxation
time 7, increases. The theoretical values of dv/df and
ds /d 3 are both discontinuous at 3,. Since the oscillation
amplitude grows suddenly beyond f3,, the linearized
analysis in the neighborhood of the fixed point fails to
provide an accurate description of the global behavior of
f () for B> 5.

The mean-field theory predicts that 7, becomes infinite
at =, and remains infinite for B> f3,, i.e., the system

012

0190

0.08

s 006

004

0.00

FIG. 9. rms oscillation amplitude s vs 3 for the situation de-
scribed in Fig. 7. Discontinuities in the slope of the theoretical
s(jB) occur at the oscillation and stability thresholds 8, and ,.
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exhibits coherent oscillations that do not decay in time.
In the simulations, however, 7, is always finite, being
larger when there are more agents. The finite value of 7,
in the simulations cannot be attributed to a decay in the
oscillation amplitude. For example, the oscillation ampli-
tude of the S=0.4 simulation run in Fig. 5(a) does not
appear to decay at all within 507, whereas according to
Fig. 7, 7, is only 19.17. Figure 9 further confirms that
the oscillation amplitude in the simulations does not de-
cay when 8> f3,. In this regime, the magnitude of the
fluctuations is slightly greater than the rms amplitude of
the coherent oscillations predicted by the mean-field
theory, provided that the number of agents is sufficiently
large. The remaining component of s can be attributed to
random statistical fluctuations which scale approximately
as 1/V' 4. [Note that, according to Eq. (4), the magni-
tude of the random statistical fluctuations is exactly pro-
portional to 1/V 4 in the limit as 8—0.] Therefore, we
conclude that, in the simulations, 7, for 8> f3, is to be in-
terpreted as the phase coherence time for persistent oscil-
lations.

Now we shall consider the effect of modifying the pa-
rameter o, which reflects a number of different sources of
uncertainty, e.g., in the information about resource allo-
cation, the payoff function, and perhaps some additional
randomness in the decision procedure, which is intention-
ally introduced by the system designer for reasons which
we shall soon elucidate. Figure 10, which is essentially a
transformed version of Fig. 6, illustrates how the onsets
of damped and persistent oscillations depend upon o. If
o is greater than the critical value o,, p'(fy)> —1, so
that, according to Eq. (11) and Fig. 6, 3, becomes infinite.
Thus, by intentionally increasing the randomness in the
decision procedure used by each agent, persistent oscilla-
tions can be eliminated entirely. This is reasonable, since,
in the limit as o — o, agents make completely random
decisions independent of the payoffs, and the system set-

FIG. 10. Oscillation and stability thresholds B, and 3, as a
function of the uncertainty o, given the payoffs of Fig. 2. As in
Fig. 6, the shaded area represents the unstable region. The as-
terisks indicate the parameters used in Fig. 5.

tles into the equilibrium f,=4. Figure 11 demonstrates
that elimination of persistent oscillations can result in a
dramatic improvement in the system performance (as
defined by the sum of the payoffs of the individual
agents). For fixed S3, the best possible performance is ob-
tained when o is just enough to suppress persistent oscil-
lations. The increase in performance can be particularly
impressive for large reevaluation rates—from worse than
that for completely random decisions to almost as good
as that for perfect decisions (i.e., decisions made in the
absence of uncertainty and delays). Figures 10 and 11
show that this system with an arbitrarily large reevalua-
tion rate can always be made to operate at greater than
76% of the optimal performance, provided that the in-
trinsic uncertainty is less than o,.

C. Cooperative agents

In Sec. III B it was assumed that the agents were com-
pletely independent of one another and, therefore, pre-
ferred resources solely on the basis of their capacity.
However, in some cases an agent can benefit from results
being generated by others. For example, agents search-
ing through a common database could leave a record of
discovered relations which are useful to others. In this
case, if communication overhead costs between agents us-
ing different resources are significant, an agent might
prefer to choose a resource that is simultaneously being
used by others rather than one that is relatively unused.
In this case, the payoff for using a resource could be max-
imal somewhere in the interval 0< f < 1.

Figure 12(a) displays payoff functions which are identi-
cal to those of Fig. 2(a) in the neighborhood of the stable
fixed point, but with a quadratic maximum in G,(f). As
displayed in Fig. 12(b), p(f) for 0 =0.125 has a stable
fixed point at f;=0.700. Thus, by design, the behavior
of this system is essentially the same as that of the com-

performance

o 4

FIG. 11. Dependence of system performance upon the uncer-
tainty for several different values of 8 as indicated in the figure.
The performance is calculated by adding time-averaged payoffs
for all agents and normalizing to 1 for perfect information
(0=0 and 7=0), and 0 for completely random decisions
(00— o and 7=0).
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FIG. 12. (a) Cooperative payoffs: G,=4+7f,—5.333f3,
G,=7—3f,. (b) Preference probability function p(f) for these
payoffs for 0 =0.25. The equilibrium value is f;=0.700 as in-
dicated by the intersection with the dashed line p=f.

petitive case of Fig. 2 for B=J3,.

However, the notch in p(f) in the vicinity of f =0 in
Fig. 12(b) leads to new types of behavior in the regime
B>>P,, such as period-doubling bifurcations and chaos.
As displayed in Fig. 13, numerical solution of Eq. (7) re-
veals that the frequency of the persistent oscillations in
f(t) increases initially towards v=1. However, at the
critical value B;=2.93, v is suddenly reduced by a factor
of 2. A typical example of the behavior of f (¢) in this re-
gime is displayed in Fig. 14(a). As (3 is increased further,
v resumes its upward climb, but it is soon interrupted

—

o1

} | 1
0o } 4 b

00 10 20 50 0 50

FIG. 13. Oscillation frequency v vs 8 for the parameters of
Fig. 12(b). The sequence of bifurcations starts at 8, =2.93 and
culminates in chaotic behavior at the critical value 8. =4.63.
Beyond this value lies a chaotic regime which is punctuated by
numerous windows of periodic behavior.
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again by another bifurcation. The infinite sequence of bi-
furcations accumulates at 3. =4.63, at which point f ()
becomes chaotic. For B> 3., there are numerous win-
dows of B in which there are oscillations of period S, 7, 8,
10, etc. For a fuller exposition of period doubling and
chaos in solutions to differential-delay equations, along
with a discussion of Lyapunov exponents, dimensions,
and entropy, see Ref. 15.

Period-doubling bifurcations can also be observed in
simulations of this system. As shown in Fig. 14(b), a typi-
cal simulation of 400 agents with the same parameters as
in Fig. 14(a) displays a noticeable alternation in the suc-
cessive maxima of f(z) which is qualitatively similar to
that predicted by the theory. The excellent quantitative
agreement between theory and simulation is demonstrat-
ed in Fig. 15, which compares the corresponding auto-
correlations. The presence of a subharmonic at twice the
fundamental period of oscillation is clearly visible. How-
ever, the rest of the period-doubling bifurcation sequence
is usually not observed in the simulations; instead, there
appears to be a direct transition from period-two oscilla-
tion to chaos. This loss of the fine period-doubling struc-
ture in the route to chaos is typically observed in noisy
systems.'® The existence of a bifurcation gap shows that
fluctuation corrections act as an external random force

(a) theory
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FIG. 14. (a) Theoretical and (b) simulated (400 agents) f(¢)
for a system of partially cooperative agents with the same pa-
rameters as in Fig. 12(b) and B=4.0 (period-doubling regime).
The initial conditions are f(¢)=0.5 for —7<t<0. Time is
measured in units of 7.
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FIG. 15. Theoretical (dark curve) and simulated (light curve)
autocorrelations calculated from the f(¢) displayed in Fig. 14.
The doubled period is clearly visible. The slight decay in ampli-
tude of the autocorrelation obtained from simulation is due to

phase incoherence arising from the finite number of agents.

on the mean-field dynamics which decreases in magni-
tude as the number of agents increases.

For B>f,, simulations exhibit many of the charac-
teristics of chaotic behavior. Figure 16(b), which displays
a simulation of 400 agents using the same parameters as
were used in Fig. 15, appears to be much more random
and unpredictable. It bears a strong resemblance to its
mean-field counterpart in Fig. 16(a). More quantitative-
ly, the decreased predictability of the system in the chaot-
ic regime is reflected by a dramatic drop in the correla-
tion time 7, when B> f3.. As illustrated in Fig. 17, 7, is
reduced to about 407 in the mean-field case and 157 for a
simulation of 400 agents when B=6.0, compared to
infinity and 1107, respectively, when 8=4.0 (Fig. 15).

In Sec. III B we found that persistent oscillations could
be eliminated by deliberately increasing the randomness
of a decision procedure. Chaotic behavior can be elim-
inated by the same technique. Figure 18, an extension of
Fig. 10(a) to cooperative agents, shows how the critical
values B, B,, B4, and B, depend upon o. Interestingly,
the boundaries for bifurcation and chaos double back on
themselves. Consequently, as one increases the uncer-
tainty from zero while holding the reevaluation rate fixed,
it is possible to pass from a region of simple period-one
oscillation through the full bifurcation sequence to the
chaotic regime, then back in reverse order to simple oscil-
lation, and, finally, stability. The critical values of o,
o4, and o, for which (3,, B, and B, become infinite, can
be determined by noting that Eq. (7) is equivalent to a
discrete map from the unit interval onto itself when S is
set to infinity:

FO=p(fit—7)) . (12)

Since Eq. (12) involves so much less computation than
Eq. (7), it is useful for determining o,, o 4, etc., and for
obtaining a good estimate of the form of f(z) when S is
large. In many cases, f(z) converges in mean square to a
series of plateaus of duration 7 corresponding to the
discrete series given by Eq. (12).
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FIG. 16. (a) Theoretical and (b) simulated (400 agents) f(¢)
for a system of partially cooperative agents with the same pa-
rameters as in Fig. 12(b) and 8=6.0 (chaotic regime). The ini-
tial conditions are f(7)=0.5 for —7<t <0. Time is measured
in units of 7.
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FIG. 17. Theoretical (dark curve) and simulated (light curve)
autocorrelations calculated from the chaotic f(¢) displayed in
Fig. 16. The decreased predictability of the system’s behavior in
the chaotic regime is reflected by the relatively strong decay in
oscillation amplitude of the autocorrelation function.
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FIG. 18. Behavior phase diagram in terms of 8 and o for
payoffs of Fig. 12. As in Fig. 10, the unshaded area represents
stable behavior. Light gray, period-1 oscillations; dark gray, bi-
furcations; black, chaotic regime. Windows of periodicity
within the chaotic region are not shown. The values of o at
which instability, bifurcation, and chaos are eliminated for arbi-
trarily large 3 are indicated on the right-hand axis.

D. Multiple resources

In most systems of interest, agents will have many pos-
sible resources from which to choose. In order to investi-
gate the consequences of having more than two resources
in the system, we generalize Eq. (7) to include R
resources by defining f,(¢) to be the fraction of agents us-
ing resource r at time ¢  Note that, since
fr=1— B! f,, it is sufficient to consider the (R —1)-
dimensional vector f. Equation (7) generalizes to

df(t)
dt

=—q[f(t)—p(f(t —7))], (13)

where p, is the probability that an agent will select
resource » when it performs its evaluation. An expression
for p, in terms of the payoffs and the uncertainty is easily
derived from the more general expression given in Ap-
pendix A. As in the scalar case considered previously,
this differential-delay equation can give rise to oscilla-
tions and chaotic behavior.

As a simple example, we shall consider a system of
purely competitive agents vying for three resources. The
dynamics of the system is described in terms of the two
components f(¢) and f,(¢). Figure 19 displays the de-
cision regions for a particular set of payoffs which de-
crease monotonically with resource usage. When o >0,
the boundaries between these regions become somewhat
fuzzy, and the equilibrium point drifts away from the op-
timal position at (%, %) towards ({,1) (just as in Fig. 2
the fixed point drifts from f,=0.75 towards f,=0.50 as
o is increased).

As B is increased while o is held fixed, the behavior of
the system passes through the same stages as were ob-
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FIG. 19. Decision regions for a system of purely competitive
agents vying for three resources. The payoffs used by each
agent are G, =12—10f,, G,=12—6f,,and G;=12—2f;. The
decision regions are labeled according to the resource yielding
the highest payoff when the state of the system is within that re-
gion, assuming that 0 =0. As in Fig. 2, the boundaries between
decision regions become fuzzy when o >0. The asterisk marks
the equilibrium point to which the system will settle in the ab-
sence of delays.

served for the two-resource case in Sec. III B, with a fre-
quency that decreases towards the asymptotic value of
1/(27). The oscillation and instability thresholds 3, and
B, can be determined from Egs. (10) and (11). For even
larger values of 3, the three-resource system can exhibit
the period-doubling and chaotic behavior that were de-
scribed in Sec. III C. It is interesting that these types of
behavior are observed only for partially cooperative
agents in a two-resource system, whereas in a three-
resource system they occur even when the agents are
purely competitive.

The double-loop limit cycle in the phase-plane portrait
of Fig. 20(a) illustrates period-doubling behavior in the
system described in Fig. 19. Figure 20(a) is generated by
solving Eq. (13) with 8=0.25 and o =0.125, starting
from the initial condition (f, f,)=(4,3) for —7<1 <0,
letting the transient behavior die out, and then plotting
f>(t) versus f,(t). Provided that there are enough
agents, period doubling can be observed in simulations as
well. Figure 20(b) is a noisy simulacrum of Fig. 20(a),
which was obtained by running a simulation with 300
agents for the same parameters. The general shape and
double-loop behavior of the attractor in Fig. 20(a) is still
perceptible.

When B is increased further to 0.50, the phase-plane
portrait is a chaotic attractor, as illustrated in Fig. 21.
The statistical fluctuations in a simulation would almost
certainly obscure the chaotic nature of the attractor un-
less the number of agents was drastically increased or the
parameters were changed. As was the case for the par-
tially cooperative agents of Sec. III C, the chaotic regime
is punctuated by windows of periodic behavior, a fact
which will be made use of in Sec. III G.
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FIG. 20. (a) Theoretical and (b) simulated (300 agents)

phase-plane portraits of the system described in Fig. 19 for
257 <t <507, with =0.25 and 0=0.125. The initial condi-
tions are (f,f,)=(+,1) for —7 <t <0. The asterisk marks the
optimal equilibrium points to which the system would converge
in the absence of delays.
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FIG. 21. Chaotic attractor observed in a system with param-
eters identical to those of Fig. 20, except that =0.50. The at-
tractor is plotted for 1007 < ¢ < 1507, which ensures that all ini-
tial transients have died out.
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E. Inhomogeneous agents

Computational ecosystems are likely to contain agents
engaged in a large variety of tasks with differing compu-
tational needs. This will lead to corresponding
differences in how various resources are valued. For ex-
ample, other factors being equal, an agent performing a
numerical simulation will assign more value to a machine
with floating-point hardware than would one searching
through a large database. Other factors which might
differ among the various agents include the sophistication
of the payoff evaluation strategies, the relative preference
for speed versus accuracy of results, and the time delay.

Such differences in preferences or other characteristics
among the agents can be included in our model by sup-
posing that there are S different species of agents, each
with a different payoff function G,,, which describes how
much agents of species s value resource r. The generali-
zation of the mean-field equation to inhomogeneous
agents competing for multiple resources, given in Appen-
dix A, has the same form as Eq. (13), except that now f
and p are to be interpreted as doubly indexed vectors.

We will now consider two simple examples of such sys-
tems. In both cases, there are two resources and two
species which are purely competitive, i.e., the payoffs de-
crease monotonically with resource usage.

First, we consider a system in which the two species
have different preferences as embodied in their payoff
functions, and all other parameters are identical. For
both species, the payoffs are the same as in Fig. 2, except
that the slope of G, is modified such that species 1 and
species 2 have greater and lesser preferences for resource
2, respectively.

With these payoffs and an uncertainty of o =0.125,
homogeneous systems consisting entirely of either species
1 or species 2 possess instability thresholds of 3,=0.277
and [3,=0.200, respectively. However, as illustrated in
Fig. 22, a system consisting of an even mixture of the two
species is stable even when $=0.5. In the inhomogene-
ous system, species 1 tends towards an equilibrium in
which the fraction of such agents using resource 1 is
f0=0.372, whereas species 2 tends towards f,=0.999.
Thus each species has its own niche, species 2 preferring
resource 2 and vice versa. Interestingly, in the corre-
sponding homogeneous systems, the fixed points are
f0=0.645 for species 1 and f,=0.774 for species 2, so
that both species prefer resource 1.

In order to provide a better understanding of the in-
creased stability of inhomogeneous systems, the depen-
dence of the instability threshold 3, upon the fraction g
of agents of species 1 is shown in Fig. 23. If a homogene-
ous system of one species is contaminated by the intro-
duction of some agents of the other species, the instability
threshold increases, eventually reaching a maximum of
B,=0.92 at g,=0.35. If the uncertainty is increased to
o =0.25, the maximum shifts to an entirely different po-
sition. The oscillation threshold 3, mimics the behavior
of B,, peaking at the same percentage g as 3, for both
values of 0. In no case does the system exhibit period-
doubling or chaotic behavior. As demonstrated in Fig.
24, the system performance peaks near its maximum pos-
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FIG. 22. Fraction of agents of species 1 (light curve) and species 2 (dark curve) using resource 1 as a function of time in an inho-
mogeneous system with two resources and two species of agents. Both species use 7=1.0 and 0 =0.125, and the same payoff for us-
ing resource 1 as in Fig. 2: G,=7— f,. For species 1, G, =7—2f,, whereas for species 2, G,=7—4f,. =0.5.

sible value in the vicinity of g,, where the system is
stable.

In Sec. III B we found that increasing the uncertainty
in a homogeneous system always led to increased stability
(albeit at the possible expense of decreased performance).
However, Fig. 23 shows that, for certain inhomogeneous
mixtures, increasing the uncertainty can actually de-

Lo1

bos

FIG. 23. Oscillation and stability thresholds 3, (light curve)
and f3, (dark curve) as a function of the fraction of agents g of
species 1 in the inhomogeneous system described in Fig. 22.
The curves, which are calculated by solving the mean-field Eq.
(A6) of Appendix A, are displayed for two different values of the
uncertainty: ¢ =0.125 and 0 =0.25. The parameters of Fig. 22
are indicated by an asterisk.

crease the stability of the system.

In the second example, all of the agents use the same
payoffs as given in Fig. 2, but species 1 and 2 have un-
equal delay times 7, and 7,. Simplifying Eq. (A6), we find
that the exponential on the right-hand side of Eq. (9) is
replaced by an average of exponentials of the same form
weighted by the relative proportion of agents of each
species:

a-rlg (11-25

E=gye T CH(1—glye “F—1. (14)

This tends to make the system behave much as though it
had an effective delay given by the weighted average of 7,
and 7,. As we have verified by numerical solution of Eq.

(A1), the coupling between the two species results in a
well-defined oscillation frequency which is midway be-

performance
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FIG. 24. Performance vs g for the inhomogeneous system of
Fig. 22. For each value of g, performance is normalized to zero
for purely random decisions and unity for perfect decisions
(those which would be made in the absence of delays or uncer-
tainty).
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tween those of the corresponding homogeneous systems.
As illustrated in Fig. 25, the fractions of agents of species
1 and 2 using resource 1 oscillate with the same frequen-
cy. Even though 7, and 7, differ by 40%, the phase shift
between the two species in Fig. 25 is less than 0.6 rad —
small enough so that the overall oscillation amplitude of
the system is still quite large. This suggests that the pres-
ence of multiple delays in a system does not greatly
reduce the susceptibility of that system to the large oscil-
lations described in this and preceding sections.

F. Smart agents

In preceding sections we have shown that the nonlinear
dynamics of interacting agents can lead to oscillations
and chaos, which tend to reduce overall system perfor-
mance. We have also seen that performance could be in-
creased if the agents deliberately used a probabilistic de-
cision procedure. In this case, an agent sometimes
chooses a resource other than the one which appears to
be best in light of the information available to it at the
time. An alternative approach is to provide agents with
more sophisticated, deterministic methods for deciding
among resources.

As an example, we reconsider the system discussed in
Sec. III B, in which purely competitive agents vie for two
resources. The normal agents use the most recently
available information in their decisions. When this infor-
mation is uncertain and delayed, these agents make
suboptimal decisions, leading to global oscillations with a
well-defined period and amplitude. By contrast, we now
introduce “smart” agents which try to take advantage of
these simple oscillations to better estimate current
resource utilization. Specifically, a smart agent continu-
ally monitors the oscillation period, estimating it as the
time between successive maxima in f(z). Knowing this
period, the agent can estimate current utilization by its
value at some number of periods in the past. Thus it will
(presumably) have more accurate information upon
which to base its decision.

To assess the efficacy of this technique, we consider an
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FIG. 25. Fraction of agents of species 1 (light curve) and
species 2 (dark curve) using resource 1 as a function of time in
an inhomogeneous system with two resources and two species of
agents. Both species use the payoffs of Fig. 2 and o =0.125, and
their respective time delays are 7,=1.0 and 7,=1.4. $=0.5.

inhomogeneous system consisting of smart and normal
agents. As shown in Fig. 26(a), a system containing 10%
smart agents and 90% normal ones becomes somewhat
more stable after the smart agents determine the oscilla-
tion period (which takes a few periods). The amplitude of
the oscillations is reduced by 24%, and the period is de-
creased by about 6%. Encouraged by this success, one
might be tempted to make all of the agents smart. How-
ever, as shown in Fig. 6(b), this leads to very large and
complex oscillations, and the overall system performance
is degraded substantially below that of a system consist-
ing of all normal agents. For other mixtures of smart and
normal agents, the behavior of the system can even be
chaotic. There does not appear to be any regularity in
the dependence of the qualitative behavior upon the per-
centage of smart agents.

Figure 27 reveals that, when only 10% of agents are
smart, they operate at a performance level (defined in Sec.
ITI B) of approximately 100%, while the performance lev-
el of the normal agents doubles to nearly 50% —a sort of
trickle-down effect. However, when the proportion of
smart agents exceeds 80%, their performance can be sub-
stantially lower than that of the normal agents. For this
particular system, the best overall system performance is
obtained when approximately 20—50 % of the agents are
smart.
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FIG. 26. Fraction of agents using resource 1 as a function of
time in a two-resource, purely competitive system with smart
agents. All system parameters are the same as in Fig. 5, except
that B=1.0, and the initial conditions are f(¢)=0.5 for
—71<t<0. (a) 10% of the agents are “smart.” (b) 100% of the
agents are ‘‘smart.”
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FIG. 27. Performance of a system with the same parameters as in Fig. 26 as a function of the percentage of smart agents. The
dark curve is overall system performance. The performances of the smart- and normal-agent populations are given by the light solid

curve and the dashed curve, respectively.

The problem with the smart agents is that their tech-
nique for detecting periodicity is based on the simple os-
cillations that occur when all of the other agents in the
system are normal. This technique is adequate when only
10% of the agents are smart, but, when too many smart
agents are present, the increased complexity of the dy-
namics causes this technique to give horribly inaccurate
estimates of the oscillation period.

One might try to ameliorate this problem by making
the agents even smarter, either by giving them more so-
phisticated ways to extrapolate from the available histori-
cal data or by providing them with knowledge of the in-
telligence level of the other agents in the system. This
raises some important issues and potential problems.
First, computational cost places a bound on the sophisti-
cation of any decision-making algorithm. Second, as we
have just seen, an increment in intelligence may, if adopt-
ed by a sufficiently large fraction of the agents, alter the
behavior of the system in such a way as to render the ex-
tra sophistication useless or even harmful. Finally, if an
agent has the ability to predict the system’s future behav-
ior based upon knowledge of the decision-making algo-
rithms of the other agents, the fact that other agents must
predict its decisions could lead to an undecidable infinite
regression or other paradoxes of rationality.!” Even if an
agent’s choice of resource is decidable, the solution may
be suboptimal in much the same way as in the prisoner’s
dilemma'”'!® or the tragedy of the commons.!° An amal-
gam of analysis, simulation, and game theory might yield
a great deal of insight into these issues.

G. Punctuated equilibria and metastability

As a computational ecosystem evolves, not only will
the agents adjust their choices of resources, but changes

T T T T
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FIG. 28. p(f) for system of partially cooperative agents vying
for two resources,” with payoffs G,=3.35+12f, —10f3,
G,=6—f3, and uncertainty 0 =0.5. The inset shows the values
for small f. The fixed points are indicated at the intersection of
the curve with the dashed line p=/f: stable equilibria
f4=0.020 (point A4) and fp=0.799 (point B); unstable fixed
point f*=0.053 (point X).
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will be imposed by the external environment. For in-
stance, new machines and databases could be added to
the network, changing the relative payoffs of the
resources. How readily can the systems adapt to such
changes?

Agents using simple competitive payoffs can determine
the benefit of any new resource individually and move to
utilize it accordingly. However, if the agents are
cooperative (e.g., each agent is unwilling to use a new
resource unless many others are using it) or the transition
overhead is high, the transition to the new state can be
hampered by an “optimality barrier.”'?> If the system
possesses more than one attractor, an environmental
change may alter the payoffs, changing the relative
depths of the corresponding minima in the optimality
surface so as to produce a new optimal state. However,
the system might stay in the vicinity of its original state if
it is unable to surmount its local barrier.

Our simulations reveal that statistical fluctuations can
induce the system to jump from one attractor to another,
although the time between jumps grows rapidly with the
number of agents. To illustrate this behavior, we present
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FIG. 29. Punctuated equilibrium in a simulation of ten
agents with parameters as given in Fig. 28 and 8=0.1. After
5307, a random statistical fluctuation induces the system to hop
over the energy barrier at f*, thereby escaping the metastable
equilibrium f, and settling into the globally optimal equilibri-
um fp. The width of the transition region is less than 20r.

0.0

i

1.0

FIG. 30. Two different mean-field limit cycles for the competitive, three-resource system of Fig. 19 with 8=1.0 and o =0.1. Ini-
tial conditions completely determine whether the system ends up in limit cycle 4, which is followed in a clockwise direction as ¢ in-
creases; or B, which is followed in a counterclockwise direction as ¢ increases. Typical initial conditions which lead to each limit cy-
cle are indicated in the figure [assuming f (¢) is constant during the interval —7 <t <0].
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FIG. 31. Punctuated limit cycles in a simulation of 300
agents using the parameters of Fig. 30. The system is quickly
captured into a noisy version of limit cycle 4. Near t =172,
there is a sudden transition taking less than 27 to a noisy version
of limit cycle B. In this simulation run, which lasted for 10007,
the system flipped its state three times.

simulations of two different systems with multiple final
states. In the first example, we increase the depth of the
cooperative notch in p(f) of Fig. 12 to obtain two stable
equilibrium points at f 4, and fp, and an unstable one at
fx, as illustrated in Fig. 28. In this case, the theory pre-
dicts that, for 8<f,, all initial conditions f, <fy will
flow into the fixed point f ,, while all initial conditions
fo>fx will flow into fz. However, if there is a finite
number of agents, it is possible for statistical fluctuations
to jog a system that is stuck in f 4, into f5 or vice versa.
Figure 29 shows a typical simulation run with ten agents,
in which the system is stuck in the locally optimal meta-
stable state f, for some time before it makes a very sud-
den transition to the globally optimal state fz. Accord-
ing to the theory developed by Ceccato and Huberman,'?
the amount of time spent in the metastable state is ex-
ponential in the number of agents, while the transition
time from one state to another is logarithmic in the num-
ber of agents.

This type of metastable behavior is also observed in the
three-resource system of Sec. IIID. With the same
payoffs as in Fig. 19, f=1.0 and o =0.1, there are two
different single-loop limit cycles to which the system can
be attracted, depending upon the initial conditions.
These limit cycles are illustrated in Fig. 30. In a simula-
tion with 300 agents, the system switches spontaneously
between the two limit cycles, as illustrated in Fig. 31.
The metastability of nonoptimal choices and the sudden-
ness of the transition between attractors are reminiscent
of evolutionary models of “punctuated equilibria.””?%?!

Since the adaptability of a system in such a metastable
situation is generally poor, additional mechanisms are
needed to enhance the transition rate. In the case of
cooperative agents and/or multiple resources, the adapta-
bility of the system might be increased dramatically by
giving the agents the capability to negotiate with one

DYNAMICS OF COMPUTATIONAL ECOSYSTEMS 419

another®? or anticipate one another’s choices. Similarly,
if transition overhead costs are preventing the system
from reaching a more optimal state, it might be more ap-
propriate for the agents to forecast expected payoffs over
some future time interval rather than just trying to im-
prove their instantaneous payoffs.

IV. CONCLUSION

Using both theoretical analysis and simulations, we
have studied in detail the dynamics of a model which
captures the essential features of computational ecosys-
tems. We have illustrated and quantified the dependence
of the model’s behavior upon delays and uncertainty in
information, the degree of cooperation and competition
among the agents, and the degree of inhomogeneity in the
system. In addition, we have determined the quantitative
conditions under which a system of cooperating agents
can function acceptably well in the absence of central
control. In general, the predictions of the theory of
Huberman and Hogg'! are validated by computer simula-
tions, particularly in the limit of large numbers of agents.
These experiments reveal that, in most cases, statistical
fluctuations (neglected in the theory) do not shift the
boundaries between various behavioral regimes; they
merely blur them. One notable exception is the
phenomenon of punctuated equilibria, which depends
critically on the presence of fluctuations, and can only be
explained by theories which explicitly incorporate
them.'>%° The basic lesson that emerges from this study
is that the same complex global behavior observed in
many physical systems can arise in computational ecosys-
tems from simple interactions among programs. Given
that slight complications introduced into the model tend
to yield new behavioral phenomena, it is likely that real
systems would exhibit behavior at least as exotic as that
illustrated here.

A number of system design principles can be deduced
from our work. For example, as illustrated in Fig. 7, the
system’s responsiveness will be optimal if the decision
rate is adjusted so that the system is critically damped
(i.e., B=pB). We have investigated three different heuris-
tics for counteracting the strongly deleterious effect that
delays have upon system performance. In Sec. III B, we
found that a judicious increase in the randomness of the
decision-making process of the individual agents can
greatly ameliorate the problem of oscillations (Fig. 11).
In Sec. IIIE we noted that an inhomogeneous system
consisting of agents with different computational needs
can be considerably more stable than a homogeneous sys-
tem because the agents automatically create their own
niches. As a result, the system performance can be opti-
mized by purposely adjusting the heterogeneity of the
system (Fig. 24). Finally, in Sec. III F we investigated the
effect of using deterministic control algorithms which are
more intelligent from the standpoint of an individual
agent, and found that over-proliferation of that algorithm
in the population of agents can actually decrease the
overall system performance (Fig. 27).

An important attribute of computational ecosystems
which is readily suggested by the analogy to biological
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ecosystems is their ability to adapt to changing environ-
ments. The brief consideration of this issue in Sec. III G
exposed a potentially serious problem: the lifetime of
suboptimal metastable states is extremely long. Possible
mechanisms for enhancing the transition rate (and hence
the adaptability), which include negotiation among
agents and forecasting of future payoffs, offer an interest-
ing area for future research. It is also necessary to study,
not just the evolution of the system for fixed payoffs, but
the evolution of the individual agents on a slower time
scale during which the agents modify their decision pro-
cedures so as to maximize their individual efficiencies.
We must seek feedback mechanisms which can give com-
putational ecosystems the same evolutionary capability as
their biological counterparts. Such a study should also
provide insight into the tradeoffs between a system’s abil-
ity to adapt to a wide range of possible environments and
its performance in a particular environment.

As has been suggested by several authors,®’ the most
successful architectures might be founded upon economic
rather than biological principles. The passive resources
of our model could be replaced by ones which participate
in the control of the system by auctioning their wares to
the agents, resulting in a dynamical alteration of the
payoffs. This may be particularly important in systems in
which the distinction between servers and clients be-
comes blurred or nonexistent. For example, a resource
trying to satisfy one agent’s computational demand might
act as a client in consulting with another agent that is
knowledgable about the relative merits of different algo-
rithms,® or an agent that has derived some interesting re-
sult may serve as a resource for other agents. Smart
J

1

agents would be interesting to study in an economic con-
text, particularly if they are endowed with some ability to
anticipate the actions of their fellow agents. It would be
of great interest and value to extend our model to encom-
pass distributed-system architectures modeled after
economic markets in order to determine whether they
might possess some inherent fundamental advantages
over the model we have considered in this work.
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APPENDIX A: INHOMOGENEOUS AGENTS
AND MULTIPLE RESOURCES

For the general case of inhomogeneous agents compet-
ing for multiple resources, the delayed-time mean-field
Eq. (7) generalizes to

df(t) _
dt

where f, f*, and p denote the doubly-indexed vectors f,,,
fr, and p,, respectively. The index r runs from 1 to
R —1, and s runs from 1 to S, where R and S are the total
number of resources and species, respectively. The com-
ponents of f* are given by

fr:(t):frs(t—Trs) >

where 7,, is the time delay between resource r and an
agent of species s. The preference probabilities p,, (f*)
are given in terms of the species-specific payoffs G, (f*)
by

—a[f()—p(£*(1)] , (A1)

(A2)

P (f¥)=—=— 1+erf

V2o,

© *—xz o?
f dxe * % 11 %

r'(#r)

where o is the uncertainty for agents of species s.
In the neighborhood of the fixed point given by
p(fy)="f,, the variation 8(¢)=f(¢)— f, obeys

dd(t)

—— = t)—y8*(1)], (A4)
at a[8(t)—y8*(1)]
where y is the Jacobian
9P,
o= : (AS)
Yrsrs afr’x’ (fO)

and the star notation is defined as in Eq. (A2). The sub-
stitution 8(¢)=ce®’ in Eq. (A4) reduces it to a system of
self-consistent eigenvalue equations of order (R —1)S:

[M(§)—&—1]c=0, (A6)
where the matrix M is given by
Mrsr’x’( g) =Y rsr's€ - aTr'S'gb— Y rsRs'€ ket - (A7)

Note that Egs. (A6) and (A7) reduce i Eq. (9), provided
that p is redefined to be a function of the single variable
f1, which is obtained from p,(f,,f,) by substituting

1—f, for f,.

x+G, (f*)—G, (f*) ] ]

= (A3)
Vo,

APPENDIX B: CORRELATION FUNCTIONS

In order to compare the theoretical results with simu-
lations, it is useful to calculate the autocovariance and
autocorrelation functions V(¢') and C(t’), which, for the
simplest case of two resources and one species of agent,
are defined by

V(t')=V(0)C(z'>=<—1~—fdetf(t)f(z—t'>>-f2
T,—T, 71, ’

(B1)

- 1 Ty
f——<ﬁfn dtf(z)> : (B2)

and T; and T, are sufficiently large to ensure that initial
transients have died out and an adequate sample of f(z)
has been taken. In the mean-field theory, the autocorre-
lation is approximated by replacing the integrand of Eq.
(B1) by (f()){f(t—t")), with the result (valid for

B<B,)
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Clty=e “"coslat;t’) ,
(B3)
V(0)=0 .

In order to compare these predictions with simulation
results, we calculate the autocorrelation function C(t')
with T;>4/a&, and T,>T,;+4/af, [which is sufficient
to ensure that C(t’) is virtually independent of 7; and
T,] and average it over several simulation runs. The re-
sult is then fitted to a decaying sinusoid in the range
0=t'=1.617, to extract estimates of £, and &;, from
which 7, and v are calculated. The standard deviation s

DYNAMICS OF COMPUTATIONAL ECOSYSTEMS 421

of the fluctuations about the average value of f is given
by V'V(0). If B> 3,, the fixed point f, is unstable, and
Eq. (B3) is not strictly valid. In this case, the theoretical
value of &; is obtained by direct measurement of the
period of the nonlinear oscillations in f ().

In more complicated systems with more resources or
more species of agents, the system’s behavior can be ana-
lyzed by calculating cross covariances and cross correla-
tions in a manner similar to that described above. In this
case, all of the cross correlations which describe the sys-
tem have the same decay rate and frequency —that deter-
mined by the eigenvalue with the largest (least negative)
real part.
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