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Recently, Huberman and Hogg [in The Ecology of Computation, edited by B. A. Huberman
(North-Holland, 1988), pp. 77—115] analyzed the dynamics of resource allocation in a model of
computational ecosystems which incorporated many of the features endemic to large distributed
processing systems, including distributed control, asynchrony, resource contention, and cooperation
among agents and the concomitant problems of incomplete knowledge and delayed information. In
this paper we supplement an analysis of several simple examples of computational ecosystems with
computer simulations to gain insight into the effects of time delays, cooperation, multiple resources,
inhornogeneity, etc. The simulations verify Huberman and Hogg's prediction of persistent oscilla-
tions and chaos, and confirm the Ceccatto-Huberman [Proc. Natl. Acad. Sci. U.S.A. 86, 3443
(19891]prediction of extremely long-lived metastable states in computational ecosystems. Extending
the analysis to inhomogeneous systems, we show that they can be more stable than homogeneous
systems because agents with different computational needs settle into different strategic niches, and
that overly clever local decision-making algorithms can induce chaotic behavior.

I. INTRODUCTION

The emergence of distributed parallel processing in
large computer networks' has opened up an interesting
new frontier of computer research. The growing inter-
connection of diverse processors in networks allows for a
loosely coupled form of concurrency with complex inter-
dependencies, leading to self-regulating computational
entities very diferent in nature from their individual
components. Competition and cooperation abound in the
form of resource contention and the sharing of informa-
tion from databases, sensors, and other knowledge
sources, and even a sort of reproductive behavior can be
achieved by spawning remote processes. Given the many
characteristics it shares with biological and social organi-
zations, one may regard such a collection of interacting
computational agents as a computational ecosystem.

Some systems which are not necessarily distributed
among many computers can also be thought of as compu-
tational ecosystems. Robots, monitoring systems, pro-
cess schedulers for integrated circuit fabrication, and
other systems which interact directly with the physical
world through sensors or motors must respond in real
time to information which is not only constantly chang-
ing, but often inconsistent and incomplete. This is due to
inherent limitations in the accuracy and interpretation of
sensory signals and in the time available to obtain or pro-
cess information from other components of the system.
One approach to these problems is to organize the system
as a loosely coupled collection of agents which specialize
in various strategies for dealing with diA'erent contingen-
cies and compete among themselves for resources with
which to address the overall goals of the system.

Just as the computation within a computational
ecosystem is distributed, so must be the resource alloca-
tion. Since the composition of such a system continually

evolves in unforeseen directions, a central controller can-
not be kept up to date about the state of the system, re-
sulting in delayed responses to new opportunities. Even
more importantly, the system must continue to operate
even if a few machines or agents, including any central
one, fail. The necessity for local decisions about resource
management and communication in order to ensure
robustness to change and failure raises a number of basic
issues concerning the behavior and, ultimately, the design
of computational ecosystems. In particular, it is vital to
understand how the overall behavior of a group of
cooperating agents depends upon that of the individuals
which comprise it, and what implications this relation-
ship has for system design principles and heuristics. This
issue is also of central importance to proposed problem-
solving strategies in distributed artificial intelligence sys-
tems. "

Some qualitative insight into this and related issues has
been provided by exploiting superficial analogies between
computational network architectures and various human
and natural organizational structures, such as groups of
human experts, " the scientific community, economic
markets, ' the Society of Mind, and biological ecosys-
tems. Such analogies have led to a number of proposals
for the design of computational ecosystems. For exam-
ple, one method for deciding among conflicting messages
is due-process reasoning, which entails procedures very
similar to those used to validate scientific claims in the
face of possibly conflicting results. In analogy to
economic markets, limited resources such as memory and
processor time can be allocated in a distributed fashion
by allowing processes to bid for them, resulting in a more
el.cient system than can be achieved using standard
queueing techniques. A further improvement of this ap-
proach allows several bidding strategies for the processes,
leading to the interesting question of the existence of evo-
lutionarily stable equilibria' for the system as a whole.
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Recently, Huberman and Hogg" analyzed the dynami-
cal behavior of computational ecosystems from a more
quantitative perspective. They found that such systems
can display a panoply of behavioral regimes which, de-
pending on particular system parameters, are character-
ized by fixed points, oscillations, or even chaos. In this
paper we elaborate their theory, compare it to computer
simulations, and show that its predictions are generally
quite accurate when there are at least a few hundred
agents in the system. We also present a number of new
properties of computationa1 ecosystems. These include
our observation that the presence of several different de-
lays in a system do not greatly affect its tendency to oscil-
late, that enhancing the decision-making abilities of some
of the individual agents can actually decrease overall sys-
tem performance and lead to chaotic behavior, and that
systems can remain in nonoptimal metastable states for
extremely long periods of time before escaping to the glo-
bally optimum state, in agreement with theoretical pre-
dictions. ' After studying the dependence of the system's
behavior upon several different parameters, we are able to
offer a number of general heuristics which ought to be
helpful in the design of such systems. We show that un-
desirable oscillatory behavior can be reduced or eliminat-
ed by purposely introducing randomness into the decision
procedures used by the agents, or by introducing agents
into the system which use different decision procedures.

Specifically, in Sec. II we discuss our basic model,
which incorporates many of the characteristic features of
computational ecosystems. In Sec. III we present various
aspects of the model's behavior and compare the results
of theory and simulations. Finally, we discuss implica-
tions and possible extensions of our work in Sec. IV.

II. MODEL OF COMPUTATIONAL KCOSYSTEMS

To investigate the behavior of computational ecosys-
tems, we consider a particular model which incorporates
the essential features described above. These include dis-
tributed control, asynchrony in execution, resource con-
tention, and cooperation among agents, along with the
concomitant problems of incomplete knowledge and de-
layed information. We suppose that a large number of
tasks are to be performed on a network of interconnected
computers. The tasks, which could be generated continu-
ally by user requests or as spawned processes, are
managed by active agents, which are responsible for
choosing among various computational resources to per-
form the task. In the simplest ease, these are hardware
resources, such as execution time on a computer or use of
a communication line, but more generally they could in-
clude use of specific software packages or access to infor-
mation in various databases.

The basic model considered in this paper, " illustrated
in Fig. 1, consists of A agents which are free to choose
among R resources according to the perceiued (i.e., not
necessarily correct) payoff for using each resource. The
payoff is related to actual computational measures of per-
formance, such as time to complete the task, accuracy of
the solution, amount of memory used, etc. Competition
and cooperation among the agents are taken into account
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FIG. 1. Model of a computational ecosystem with n; agents
using the ith resource. The circles denote computational
resources, and the solid rectangles, agents in the system whose
behavior is determined by three computations. Lowest solid
rectangle is expanded to show then in detail.

by allowing the payoff for using a particular resource to
depend on the number of agents already using it. For ex-
ample, in a purely competitive environment, the payoff
for using a particular resource r would decrease mono-
tonically with the fraction of agents already using it,
f„(t).Alternatively, the agents using a resource could as-
sist one another in their computations, as might be the
case if the overall task could be decomposed into a num-
ber of subtasks. In this case, the payoff might increase as
more agents used that resource. Each agent evaluates the
payoff associated with each resource asynchronously at
an average rate a and switches to the resource with the
highest payoff. To account for the fact that its informa-
tion about the current state of the system can be some-
what imperfect and delayed, we add a normally distribut-
ed quantity with zero mean and standard deviation o to
each payoff, and delay the information available to each
agent by a time ~.

Due to the variation in reevaluation times and the un-
certainty of information, the dynamics of the system
must be described probabilistically. The system's behav-
ior is fully specified by the probability distribution func-
tional which describes the probability of obtaining a par-
ticular evolution of the system. Unfortunately, evaluat-
ing it in realistic situations is extremely difficult. Howev-
er, it is possible to find coarser-grained quantities which
provide clear and reasonably complete characterizations
of the overall system dynamics, and are also amenable to
theoretical analysis and computer simulation.

Theoretical analysis" of the model, described in some
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detail in Sec. III, leads to a differential-delay equation for
the time-evolution of the average of the vector f(t),
whose components specify the fraction of agents using
each resource at time t. The average behavior of various
quantities of interest which depend upon f(t) (e.g. , corre-
lations, oscillation periods, and total system performance)
can be evaluated with a mean-field approximation. Cor-
respondingly, our simulation is a straightforward, event-
driven implementation of the model. In this case, the
various quantities of interest are evaluated over a single
simulation run and the result averaged over several runs.

Theoretical analysis and computer simulation are com-
plementary in at least two important respects. The ap-
proximations of the theory, which involve replacing aver-
ages of functions by functions of averages (mean-field ap-
proximation), and those of the simulation, which are re-
lated to the finite sampling of the probability-distribution
functional, are completely different in nature, so that
agreement between the two is a clear indication of correct
conclusions about the behavior of the model. In addition
to corroborating the predictions of mean-field theory, the
simulations enable finite-size and Auctuation effects to be
measured.

The very differences that make the two techniques
complementary also create certain subtleties in their
comparison. For example, in a system with sustained os-
cillations, the period and amplitude are trivial to extract
from the theoretical predictions of (f(t)). However, an
average of f(t) over several simulation runs yields an
(f(t) ) which initially oscillates with the same period and
amplitude, but eventually decays and settles to some fixed
value. The reason is that, while any one simulation run
bears a strong qualitative resemblance to that predicted
by the theory, random-phase drifts between different
simulation runs cause (f(t) ) to settle to a fixed value on
a time scale which depends on the number of agents.
Thus, in the simulations, oscillation periods and arnpli-
tudes cannot be extracted from (f(t)). However, as de-
scribed in Appendix B, they can be extracted from corre-
lation functions measured within a single simulation run
and then averaged over several runs. As we shall see in
Sec. III, the results of this method agree well with
theoretical predictions.

III. BEHAVIOR OF COMPUTATIONAL ECOSYSTEMS

In this section, we present a number of behavioral phe-
nomena which can be expected in computational ecosys-
tems of the type described above, starting with the sim-
plest systems and gradually working towards more com-
plicated ones. Theoretical analysis and simulations are
used to determine the conditions under which various
types of behavior occur. First, in Sec. III A, we examine
a simple system of identical agents which compete for
two resources. Next, in Sec. III B, we introduce time de-
lays into the system and show that they can induce per-
sistent oscillations. Then, we complicate the system still
further by making the agents somewhat cooperative (Sec.
III C) or by introducing more resources (Sec. III D),
finding that under such circumstances the behavior can
become chaotic. In Sec. III E, we remove the restriction

that all agents behave identically and show that inhomo-
geneity can increase the stability of the system. Finally,
we explore the consequences of introducing more sophis-
ticated algorithms for choosing resources (Sec. III F) and
discuss issues of metastability in systems with more than
one mode of behavior (Sec. III G).

A. Exact solution for zero delay

( A —j)p( j), j=i —1

M; = —[(A j)p(j )+—j (1—p(j))], j=i
j(1—p(j)), j=i+1,

(2)

and p(i) is the probability that an agent will choose
resource 1 if i agents are already using it.

In general, p might be an arbitrary function of i, which
could be thought of as characterizing an arbitrary deter-
ministic or probabilistic classifier. For example, if, for all
0&i & 3, p(i) is equal to either 1 or zero, p(i) corre-
sponds to a deterministic classifier. Otherwise, the de-
cision regions are somewhat fuzzy, the most extreme ex-
ample of which is p(i) =

—,
' for all i However. , in the mod-

el of Fig. 1, the form of p(i) is restricted somewhat be-
cause it is determined by payoffs. In terms of G, (i) and
G2(i), the payoffs for using resources 1 and 2, and the un-
certainty O. ,p is given by"

1 G, (i) —G2(i)
p(i) =—1+erf

2 2CT
(3)

where erf(x) denotes the error function of x.
In order to facilitate comparison of systems with

different numbers of agents, it is convenient to express
the payoffs and the preference probability p in terms of
the fraction of agents using resource 1, introduced earlier:
f—:i /A. With this reinterpretation, Eq. (3) remains val-
id if f is substituted for i

If the agents are in competition with one another, the
payoffs decrease monotonically with their number, as il-
lustrated in Fig. 2(a), because each resource becomes
saturated as it is used by more agents. The correspond-
ing p(f) is displayed in Fig. 2(b) for two values of the un-
certainty, o. =0 and 0.125.

When there is no uncertainty, it is intuitively clear that
the system will tend towards an equilibrium fo in which
the two payoffs are equal. If f &fo, then G, (f) & G2 (f),
so the next agent to reevaluate its choice will choose
resource 1. Therefore, f will either stay the same or in-
crease. Similarly, if f )fo, f will either decrease or stay
the same. A simple extension of this reasoning shows

Consider a system with two resources and A identical
agents. In this case, the probability distribution P, (t) for
i agents to be using resource 1 at time t evolves according
to"

"""= Mp(t)
dt

where a is the rate at which each agent reevaluates its
choice, and M is the tridiagonal matrix derived in Ref. 11
and which is given by
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B. Time delays

Agents in a computational ecosystem will often base
decisions on information whichh is no ion er current. Ing
this section we sh' tion we show how the presence of time delays in a
system can ea1 d to oscillations and instabilities. As an ex-
ample, we consider a system with the same payoffs and

F . 3 but with a nonzero time delay v..
Figure 5(a) shows two typical simulation runs wit

'
h I9= =0.04 and the other withagents, one wit I9

—=o.~=
=0.40. For P=0.04, the simulation looks very similar

to Fig. 3; the system evolves essentially monotonically to-

with some small fluctuations due to the finite number of
agents. However, or I9=~ f I9=0.40 the fixed point is unstable,
and f (t) exhibits oscillations which fluctuate slightly in
phase and amplitude.

In order to understand this behavior, we would like to
to that of Sec.anal ze the system in a manner analogous to a oana yze e

III A. A phenomenological approach leads o eads to the follow-
ing form:.11

(7)

where, for the sake of legibility, we have dropped the ex-

confirm the validity of this equation by extensive comput-
er simulations.

ofE . (7)Fi ure 5(b) displays the numerical solutions of q.
for the same values of P as in Fig. 5(a). The agreement
b t een the theory and simulation in g.Fi . 5 is excellent.e we

rd theForp= . , ep=0.04, th theoretical solution tends toward t
la-correct asymp o e at t t nearly the same rate as the simu a-

tion, and for P=O. 40 the period and amplitude of the os-
cillation and the average value of f are in agreement to
within a few percent.

instabili-The conditions under which oscillations and instabi i-
ties occur can be obtained by linearizing Eq. 7 in the
neighborhood of the fixed point. Defining the variation
around the fixed point (i(t) =f(t) fo, we o—btain

where y=p p . e'(f ). The behavior of solutions to this equa-
14tion can be characterized by making the substitution

(9)

0

P =0.40

10

(a) simulation

"0

time

)0

where ((3=ate. In general, Eq. (9) has infinitely many
complex solutions g=g„+if; The as.ymptotic behavior
of the solution to Eq. (8) can be determined from the
roots of Eq. (9) with the largest real parts.

Th 1 b havior of Eq. (8) for various regimes ofe genera e

y and P is represented in the phase diagram o ig.

5(b) are denoted by asterisks. In the shaded region, t ere
is at least one solution to Eq. (9) wit )0 so the fixed

stability and instability depends upon P. We shall hence-
forth refer to this critical threshold for instability as (t32.

Within the stable region, the light curve indicates t e

1.(3

(b)theory
0

OH
P = 0.40

VVVVI

(3 0

.i(3

time

FIG. 5. (a) Simulated (200 agents) and (b) theoretical f (t) for
a system o pure y cf 1 competitive agents with the same payoffs and
uncertainty as in ig. . nunc

'
y

' F' . 3 In each case, results are displaye or
wo

' =— 0.04 and 0.40. The initial condi-two diff'erent values of P=ar: 0.04 an . . e
'

tions are f (t) =0 for —r & t &0. Time is measured in units of r.

FIG. 6. Stability and oscillation regimes as as a function of P
and = '(f0 ) for an arbitrary system with two resources.and y =p'( o or an ar

ion. Within the stableSh d d area represents the unstable region. i

region (unshaded), the light curve is the boundary belowbelow which
non oscillatory ecay o e eadu t th fixed point is not possible; instead,
all solutions ex i it ampeh b' d d oscillations. Asterisks indicate t e
parameters used in Fig. 5.



DYNAMICS OF COMPUTATIONAL ECOSYSTEMS

boundary below which the solution to Eq. (8) exhibits
damped oscillations about the fixed point; this critical
threshold for oscillation will be referred to as p, . Note
that, for all y, p, (p2, i.e., the threshold for oscillation is
always less than that for instability. Analytic expressions
for the critical values p, and pz can be derived from Eq.
(9):

Pi = —7' e = I/( I'Y le

(10)

aIld

cos ( I /7 )

(
2 1)1/2

where the principle value of the arccos is to be taken.
For the payoffs of Fig. 2 and F7=0. 125, Eqs. (10) and

(11) yield the oscillation and instability thresholds
Pi =0.0464 and P2=0. 2271. The decay rate r, = I/a~/„~
and the oscillation frequency v—:ag;/2' can be calculat-
ed as a function of p from Eq. (9) for p(p2. For p& p2,
the fixed point is unstable, and the amplitude of oscilla-
tion grows until it is limited by nonlinearities in p( f). In
this unstable regime, Eq. (7) can be solved numerically to
obtain v and s, the rms amplitude of the oscillations
about the average value of f. In order to compare these
quantitative theoretical predictions with the results ob-
tained by simulation, we calculate the autocorrelation
function C(t') defined in Appendix B. Estimates of s, g„,
and g, (and hence r, and v) are extracted from C(t') by
methods also described in that appendix.

Figures 7, 8, and 9 compare the theoretical values of
~„,v, and s to those obtained from simulations with
di6'erent numbers of agents. In all cases, the agreement
between theory and simulation is best when there are
more agents in the simulation.

For p ((p, , the system takes a very long time to reach

FIG. 8. Oscillation frequency v vs p for the situation de-
scribed in Fig. 7. Discontinuities in the slope of the theoretical
v(f3) occur at the oscillation and stability thresholds p, and p, .
For sufficiently large P, beyond the range plotted here, v ap-
proaches —' asymptotically (e.g. , at p= 10, v is 0.46).

equilibrium, and does so without oscillation. For p=p„
relaxation to equilibrium is fastest, taking just a few delay
times. This may be an advantageous regime in which to
operate because of the rapid, yet stable, response of the
system. Figure 8 confirms that the onset of decaying os-
cillations occurs at p=p, . As p increases towards pz, v
increases towards its asymptote of —,', and the relaxation
time r„increases. The theoretical values of dv/dp and
ds/dp are both discontinuous at p~. Since the oscillation
amplitude grows suddenly beyond pz, the linearized
analysis in the neighborhood of the fixed point fails to
provide an accurate description of the global behavior of
f (t) for P)Pz.

The mean-field theory predicts that ~„becomes infinite
at p=pz and remains infinite for p) pz, i.e., the system

"i)

C0
e5

L0
lo

0.0il

FIG. 7. Correlation time r„vsp for the conditions of Fig. 5.
The theoretical mean-field results (dark curve) are compared to
results obtained from simulations of systems with 25, 200, and
500 agents as indicated in the figure. The oscillation and stabili-
ty thresholds P, =0.0464 and Pi=0.2271 are indicated by
dashed vertical lines. For P (P„isrthe relaxation time, while
for P) P2 it is the phase coherence time of oscillations about the
fixed point.

FIG. 9. rms oscillation amplitude s vs p for the situation de-
scribed in Fig. 7. Discontinuities in the slope of the theoretical
s(P) occur at the oscillation and stability thresholds Pi and P2.
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FIG. 15. Theoretical (dark curve) and simulated (light curve)

autocorrelations calculated from the f(t) displayed in Fi . 14.
Thee doubled period is clearly visible. The slight decay in ampli-
tude of the autocorrelation obtained from simulation is due to
phase incoherence arising from the finite number of agents.
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FIG. 16. (a) Theoretical and (b) simulated (400 agents) f(t)
for a system of partially cooperative agents with the same pa-
rameters as in Fig. 12(b) and P=6.0 (chaotic regime). The ini-

tial conditions are f(t)=0. 5 for —r&t &0. Time is measured
in units of ~.
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FIG. 17. Theoretical {dark curve) and simulated (light curve)
autocorrelations calculated from the chaotic f (t) displayed in

Fig. 16. The decreased predictability of the system's behavior in

the chaotic regime is reflected by the relatively strong decay in

oscillation amplitude of the autocorrelation function.

on the mean-field dynamics which decreases in magni-
tude as the number of agents increases.

For P)13„simulations exhibit many of the charac-
teristics of chaotic behavior. Figure 16(b), which displays
a simulation of 400 agents using the same parameters as
were used in Fig. 15, appears to be much more random
and unpredictable. It bears a strong resemblance to its
mean-field counterpart in Fig. 16(a). More quantitative-
ly, the decreased predictability of the system in the chaot-
ic regime is rejected by a dramatic drop in the correla-
tion time rwhen )t3) P, . As illustrated in Fig. 17, r„is
reduced to about 40~ in the mean-field case and 15~ for a
simulation of 400 agents when P=6.0, compared to
infinity and 110&, respectively, when @=4.0 (Fig. 15).

In Sec. III B we found that persistent oscillations could
be eliminated by deliberately increasing the randomness
of a decision procedure. Chaotic behavior can be elim-
inated by the same technique. Figure 18, an extension of
Fig. 10 a) to cooperative agents, shows how the critical
values R P PR, , P2, Pd, and P, depend upon o. Interestingly,
the boundaries for bifurcation and chaos double back on
themselves. Consequently, as one increases the uncer-
tainty from zero while holding the reevaluation rate fixed,

oscillat'
it is possible to pass from a region of simple pe d-perio -one
osci ation through the full bifurcation sequence to the
chaotic regime, then back in reverse order to simple oscil-
lation, and, finally, stability. The critical values of o.2,
o z, and o

„

for which P2, Pd, and P, become infinite, can
be determined by noting that Eq. (7) is equivalent to a
discrete map from the unit interval onto itself when P is
set to infinity:

f(t)=p(f(t —r)) . (12)

Since Eq. (12) involves so much less computation than
Eq. 7), it is useful for determining a.~, od, etc , and for.
obtaining a good estimate of the form of f(t) when g is
large. In many cases, f (t) converges in mean square to a
series of plateaus of duration ~ corresponding to the
discrete series given by Eq. (12).
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FIG. 18. Behavior phase diagram in terms of P and o. for

payoffs of Fig. 12. As in Fig. 10, the unshaded area represents
stable behavior. Light gray, period-1 oscillations; dark gray, bi-
furcations; black, chaotic regime. Windows of periodicity
within the chaotic region are not shown. The values of o at
which instability, bifurcation, and chaos are eliminated for arbi-
trarily large /3 are indicated on the right-hand axis.

D. Multiple resources

FIG. 19. Decision regions for a system of purely competitive
agents vying for three resources. The payoffs used by each
agent are G, =12—lnf, , G, =12—6f, , and G, =12—2f& The.
decision regions are labeled according to the resource yielding
the highest payoff when the state of the system is within that re-

gion, assuming that o.=0. As in Fig. 2, the boundaries between
decision regions become fuzzy when o. & 0. The asterisk marks
the equilibrium point to which the system will settle in the ab-
sence of delays.

In most systems of interest, agents will have many pos-
sible resources from which to choose. In order to investi-
gate the consequences of having more than two resources
in the system, we generalize Eq. (7) to include R
resources by defining f„(t)to be the fraction of agents us-

ing resource r at time t. Note that, sincef„=1 —g~:,'f„it is sufficient to consider the (R —1)-
dimensional vector f. Equation (7) generalizes to

(13)

where p„ is the probability that an agent will select
resource r when it performs its evaluation. An expression
for p„in terms of the payoffs and the uncertainty is easily
derived from the more general expression given in Ap-
pendix A. As in the scalar case considered previously,
this differential-delay equation can give rise to oscilla-
tions and chaotic behavior.

As a simple example, we shall consider a system of
purely competitive agents vying for three resources. The
dynamics of the system is described in terms of the two
components f, (t) and fz(t) Figure 19 .displays the de-
cision regions for a particular set of payoffs which de-
crease monotonically with resource usage. When o &0,
the boundaries between these regions become somewhat
fuzzy, and the equilibrium point drifts away from the op-
timal position at ( —,', , —,', ) towards ( —,', —,') (just as in Fig. 2

the fixed point drifts from fo=0.75 towards fo=0.50 as
rr is increased).

As P is increased while o. is held fixed, the behavior of
the system passes through the same stages as were ob-

served for the two-resource case in Sec. III 8, with a fre-
quency that decreases towards the asymptotic value of
1/(2r). The oscillation and instability thresholds p& and

P2 can be determined from Eqs. (10) and (11). For even
larger values of P, the three-resource system can exhibit
the period-doubling and chaotic behavior that were de-
scribed in Sec. III C. It is interesting that these types of
behavior are observed only for partially cooperative
agents in a two-resource system, whereas in a three-
resource system they occur even when the agents are
purely competitive.

The double-loop limit cycle in the phase-plane portrait
of Fig. 20(a) illustrates period-doubling behavior in the
system described in Fig. 19. Figure 20(a) is generated by
solving Eq. (13) with p=0. 25 and a =0.125, starting
from the initial condition (f, ,f2) =( —,', —,') for —r(t (0,
letting the transient behavior die out, and then plotting
f2(t) versus fi(t). Provided that there are enough
agents, period doubling can be observed in simulations as
well. Figure 20(b) is a noisy simulacrum of Fig. 20(a),
which was obtained by running a simulation with 300
agents for the same parameters. The general shape and
double-loop behavior of the attractor in Fig. 20(a) is still
perceptible.

When P is increased further to 0.50, the phase-plane
portrait is a chaotic attractor, as illustrated in Fig. 21.
The statistical Auctuations in a simulation would almost
certainly obscure the chaotic nature of the attractor un-
less the number of agents was drastically increased or the
parameters were changed. As was the case for the par-
tially cooperative agents of Sec. III C, the chaotic regime
is punctuated by windows of periodic behavior, a fact
which will be made use of in Sec. III G.
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FIG. 21. Chaotic attractor observed in a system with param-
eters identical to those of Fig. 20, except that @=0.50. The at-
tractor is plotted for 100~( t & 150~, which ensures that all ini-
tial transients have died out.

FIG. 20. (a) Theoretical and (b) simulated (300 agents)
phase-plane portraits of the system described in Fig. 19 for
25r&t &50r, with P=0.25 and o =0.125. The initial condi-
tions are (f, ,f2) =( —', —') for —r & t &0. The asterisk marks the

optimal equilibrium points to which the system would converge
in the absence of delays.

Computational ecosystems are likely to contain agents
engaged in a large variety of tasks with differing compu-
tational needs. This will lead to corresponding
differences in how various resources are valued. For ex-
ample, other factors being equal, an agent performing a
numerical simulation will assign more value to a machine
with floating-point hardware than would one searching
through a large database. Other factors which might
differ among the various agents include the sophistication
of the payoff evaluation strategies, the relative preference
for speed versus accuracy of results, and the time delay.

Such differences in preferences or other characteristics
among the agents can be included in our model by sup-
posing that there are S different species of agents, each
with a different payoff function G„„whichdescribes how
much agents of species s value resource r. The generali-
zation of the mean-field equation to inhomogeneous
agents competing for multiple resources, given in Appen-
dix A, has the same form as Eq. (13), except that now f
and p are to be interpreted as doubly indexed vectors.

We will now consider two simple examples of such sys-
tems. In both cases, there are two resources and two
species which are purely competitive, i.e. , the payoffs de-
crease monotonically with resource usage.

First, we consider a system in which the two species
have different preferences as embodied in their payoff
functions, and all other parameters are identical. For
both species, the payoffs are the same as in Fig. 2, except
that the slope of G2 is modified such that species 1 and
species 2 have greater and lesser preferences for resource
2, respectively.

With these payoffs and an uncertainty of o =0.125,
homogeneous systems consisting entirely of either species
1 or species 2 possess instability thresholds of P~=0.277
and )33, =0.200, respectively. However, as illustrated in

Fig. 22, a system consisting of an even mixture of the two
species is stable even when P=0.5. In the inhomogene-
ous system, species 1 tends towards an equilibrium in
which the fraction of such agents using resource 1 is
fo=0.372, whereas species 2 tends towards fo=0.999.
Thus each species has its own niche, species 2 preferring
resource 2 and vice versa. Interestingly, in the corre-
sponding homogeneous systems, the fixed points are
fo=0.645 for species 1 and fo =0.774 for species 2, so
that both species prefer resource 1.

In order to provide a better understanding of the in-
creased stability of inhomogeneous systems, the depen-
dence of the instability threshold P2 upon the fraction g
of agents of species 1 is shown in Fig. 23. If a homogene-
ous system of one species is contaminated by the intro-
duction of some agents of the other species„ the instability
threshold increases, eventually reaching a maximum of
P2=0. 92 at go=0. 35. If the uncertainty is increased to
o. =0.25, the maximum shifts to an entirely different po-
sition. The oscillation threshold Il, mimics the behavior
of f32, peaking at the same percentage g as P2 for both
values of o. . In no case does the system exhibit period-
doubling or chaotic behavior. As demonstrated in Fig.
24, the system performance peaks near its maximum pos-



DYNAMICS OF COMPUTATIONAL ECCOSYSTEMS 415

0.(i

0.0

10 'PO

time

:JO

FIG. 22. Fraction of a ents oo agents o species 1 (li htg " p

in reg resource 1 as in Fi 2
wo resources and tw

' gcies dark curve u

ig. : ~) —7—
w en s. oth s eci

u as a unction of

7 2
—2

n 0.=0.125, and

&, w ereas for species 2, G, = 7 —4es, 2
= — 2. =0.5.

sible value in th
stable.

e vicinity of go, where the systemys em is

In Sec. III 8 we found
in a ho

und that increasin tg

ossi e expense of deerHo, Fi . 23 ho hs ows that, for certain in
u res increasing the unce uncertainty can actually de-

crease the stability of the s
n e second example, all of the a eg

nentia on the ri ht-
an average of exponentials

is

weighted by the l

en ia s of the same form

species:
e reative ro oe p portion of agents of each

0—a)e '+(1——g)) e (14)

I) u

This tends too make the system behave o g

and ~ . As we have verified
e ay given by the wei ht

ing etween the two s
well-defined oscillati f

o species results in a
a ion frequency wh' h

'
y e-w ic is midway be-

o =0.125

C$

E u;

CL

FIG. 23. Oscillation ana ion and stability threshold
a unction of the f16 )

pecies 1 in the inhin omogeneous s
raction of agentnsgo

The curves wh' h
system described i F

ic are calculated b so gix, are displayed for t
n- e Eq.

=0 125u
' . —. and o.=0.25. The

ueso the

d' tdb t ik

FIG. 24. Performance vs
Fi ~ 22.'g. . For each value of

vs g for the inhomoogeneous system of

for
e o g, performanc

om ecisions and unit p

tainty).
u e made in the absence of d le o e ays or uncer-



416 J Q. KEPHART, T. HOOGG AND B. A. HUBERMAN

e corres onding homogeneous systems.tween those of the co espon in
in Fi . 25, the fractions o agen s

ith th frin resource 1 oscillate wit e1 and 2 using re
'fI' b 40%, the phase shiftghou h ~ and ~& difI'er y o,

11 11 1 d
two s ecies in Fig. 25 is ess a

nou h so that the overa osci a i

g .

reduce the susceptibility of t at sys em
lations descri e inb d this and preceding sections.

F. Smart agents

In preceding sesections we ave s owse h hown that the nonlinear
1 d to oscillationsactin a ents can ea odynamics of interac i g g

ll s stem perfor-aos which tend to reduce overa sys emand chaos, w ic
m ance. ee. We have also seen t at per orma

1 t 1 sed a probabilistic de-g nts deli crate y use
rocedure. In this case, an agen

chooses a resource orce other t an t e one
ilable to it at theli ht of the information avai a e o i

e h ro ide agents withti e. alte a i ppve a roac is to prov
more sophistica e,h t d deterministic metho s orn, sider the system discussed inn exam le, we reconsi er e
Sec. IIIB, nw c pu eyco

formation in their decisions. en
1 d h kn is uncertain and de aye, e

d' t lobal oscillations with a'''da. ..„.„.....al decisions, leading to g o a
well-defined p eriod and amp itu e. y

h tr to take advantage of"smart" agents which try to a e
o better estimate currente sim le oscillations to e er

he oscillation period, es ima
time between succecessive maxima in

tilization by itsa ent can estimate current uti iza i

mber of periods in t e pas .value at some numbe
te information upon(presuma ybl ) have more accurate in orma i

To assess the efficacy of t is tec ni ue,

1o eneous system consistin of smart and norma
n in Fi . 26(a), a system containing 10%

90 o normal ones ecomessmart agents and 90 o n
'

e the oscilla-er the smart agents determine emore stable after e s
ds). The amplitude ofwhich takes a few perio s . e a

24%%u and the period is de-
d b thi

s is reduced by o, an
d b about 6%. Encourage ycrease y a

11 of the agents smart. How-ht be tempted to ma e a o
andn in Fi . 6(b), this leads to very large ang.

tions, and the overa sys em
h fis degraded substan ia y htiall below that o a sy

1 a ents. For other mixtures o sf martanding of all normal agen s.
stem can even beents, the behavior of t e sys em

to be any regularity inchaotic. There does not appear o e
ualitative behavior upon the per-the dependence of the qualitative e a

'

centage of smart agents.
als that, when on y o o1 10'7 of agents areFigure 27 reveals t a,

e level (defined in Sec.
atel 100%, while the performance lev-pp

al a ents doubles to near y o-el of the norma ag
r when the proportion oftrick e-le-down effect. However, w en e

s %%u, h
'

erformance can be sub-s ar age s excee s 80%, t eir per
'

ll lower than that of the norma agen s.stantia y ower
11 system performance iss stem, the best overa sys

atel 20—50%%u' of the gents areobtained when approximately
smart.

{a)

time

(b)

time

n of a ents of species 1 (light curve) and
rve usin resource 1 as a unc ion o

nd two species ofs stem with two resources an wan inhomogeneous sys em
=0.125, ande the ayoffs of Fig. 2 and o =ag t . Both species use e p y

their respective time delay s are ~ = 1.0 and ~&=

time

s usin resource 1 as a function ofFIG. 26. Fraction of agents using resour
ce urely competitive system wit smarp

agents. All system paarameters are the same as in ig.
f(t) =0.5 forthe initial conditions arethat P= 1.0, and the

art. " (b) 100% of the—~ ( t &0. (a) 10% of the agents are "smart.
agents are "smart. "



DYNAMICS OF COMPUTATIONAL ECOSYSTEMS 417

Sm;l I I

C
().(}

E

+ -0;

;)0 100

fraction of smart agents(%}
FIG. 2'7. Performance of a system with the same parameters as in Fig. 26 as a function of the percentage of smart agents. The

dark curve is overall system performance. The performances of the smart- and normal-agent populations are given by the light solid
curve and the dashed curve, respectively.

The problem with the smart agents is that their tech-
nique for detecting periodicity is based on the simple os-
cillations that occur when all of the other agents in the
system are normal. This technique is adequate when only
10% of the agents are smart, but, when too many smart
agents are present, the increased complexity of the dy-
namics causes this technique to give horribly inaccurate
estimates of the oscillation period.

One might try to ameliorate this problem by making
the agents even smarter, either by giving them more so-
phisticated ways to extrapolate from the available histori-
cal data or by providing them with knowledge of the in-
telligence level of the other agents in the system. This
raises some important issues and potential problems.
First, computational cost places a bound on the sophisti-
cation of any decision-making algorithm. Second, as we
have just seen, an increment in intelligence may, if adopt-
ed by a sufficiently large fraction of the agents, alter the
behavior of the system in such a way as to render the ex-
tra sophistication useless or even harmful. Finally, if an
agent has the ability to predict the system's future behav-
ior based upon knowledge of the decision-making algo-
rithms of the other agents, the fact that ather agents must
predict its decisions could lead to an undecidable infinite
regression or other paradoxes of rationality. ' Even if an
agent's choice of resource is decidable, the solution may
be suboptimal in much the same way as in the prisoner' s
dilemma' ' or the tragedy of the commons. ' An amal-
gam of analysis, simulation, and game theory might yield
a great deal of insight into these issues.

G. Punctuated equilibria and metastability

As a computational ecosystem evolves, not only will
the agents adjust their choices of resources, but changes

0.'2

FIG. 28. p(f ) for system of partially cooperative agents vying
for two resources, with payotfs G~ =3.35+ l2f ~

—l0f &,

G, =6—f'„and uncertainty rr =0.5. The inset shows the values
for small f The fixed points are indicated. at the intersection of
the curve with the dashed line p =f: stable equilibriaf„=0.020 (point 3) and fs =0.799 (point 8); unstable fixed
point f*=0.053 (point X).
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will be imposed by the external environment. For in-
stance, new machines and databases could be added to
the network, changing the relative payofts of the
resources. How readily can the systems adapt to such
changes?

Agents using simple competitive payofts can determine
the benefit of any new resource individually and move to
utilize it accordingly. However, if the agents are
cooperative (e.g., each agent is unwilling to use a new
resource unless many others are using it) or the transition
overhead is high, the transition to the new state can be
hampered by an "optimality barrier. "' If the system
possesses more than one attractor, an environmental
change may alter the payofts, changing the relative
depths of the corresponding minima in the optimality
surface so as to produce a new optimal state. However,
the system might stay in the vicinity of its original state if
it is unable to surmount its local barrier.

Our simulations reveal that statistical Auctuations can
induce the system to jump from one attractor to another,
although the time between jumps grows rapidly with the
number of agents. To illustrate this behavior, we present

time

FIG. 29. Punctuated equilibrium in a simulation of ten
agents with parameters as given in Fig. 28 and P=0. 1. After
530~, a random statistical fluctuation induces the system to hop
over the energy barrier at f*, thereby escaping the metastable
equilibrium f„and settling into the globally optimal equilibri-
um fs The widt. h of the transition region is less than 20'.

f2

0,0

1.0

f2

0.0

0.0 1.0

FIG. 30. Two different mean-field limit cycles for the competitive three-resource system of Fig. 19 with P= 1.0 and o =0.1. Ini-
tial conditions completely determine whether the system ends up in limit cycle 3, which is followed in a clockwise direction as t in-
creases; or B, which is followed in a counterclockwise direction as t increases. Typical initial conditions which lead to each limit cy-
cle are indicated in the figure [assuming f (t) is constant during the interval —

w & t &0].
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another or anticipate one another's choices. Similarly,
if transition overhead costs are preventing the system
from reaching a more optimal state, it might be more ap-
propriate for the agents to forecast expected payoffs over
some future time interval rather than just trying to im-
prove their instantaneous payoffs.

IV. CONCLUSION

FIG. 31. Punctuated limit cycles in a simulation of 300
agents using the parameters of Fig. 30. The system is quickly
captured into a noisy version of limit cycle A. Near t =172~,
there is a sudden transition taking less than 2~ to a noisy version
of limit cycle B. In this simulation run, which lasted for 1000~,
the system Hipped its state three times.

simulations of two different systems with multiple final
states. In the first example, we increase the depth of the
cooperative notch in p( f ) of Fig. 12 to obtain two stable
equilibrium points at f~ and f~, and an unstable one at
f», as illustrated in Fig. 28. In this case, the theory pre-
dicts that, for p&pz, all initial conditions fo & f» will

flow into the fixed point f„,while all initial conditions
fo) f» will flow into fs. However, if there is a finite
number of agents, it is possible for statistical fluctuations
to jog a system that is stuck in f„,into fs or Vice uersa.
Figure 29 shows a typical simulation run with ten agents,
in which the system is stuck in the locally optimal meta-
stable state f „

for some time before it makes a very sud-
den transition to the globally optimal state f~. Accord-
ing to the theory developed by Ceccato and Huberman, '

the amount of time spent in the metastable state is ex-
ponential in the number of agents, while the transition
time from one state to another is logarithmic in the num-
ber of agents.

This type of metastable behavior is also observed in the
three-resource system of Sec. III D. With the same
payoffs as in Fig. 19, p=1.0 and cr =0.1, there are two
different single-loop limit cycles to which the system can
be attracted, depending upon the initial conditions.
These limit cycles are illustrated in Fig. 30. In a simula-
tion with 300 agents, the system switches spontaneously
between the two limit cycles, as illustrated in Fig. 31.
The metastability of nonoptimal choices and the sudden-
ness of the transition between attractors are reminiscent
of evolutionary models of "punctuated equilibria. "

Since the adaptability of a system in such a metastable
situation is generally poor, additional mechanisms are
needed to enhance the transition rate. In the case of
cooperative agents and/or multiple resources, the adapta-
bility of the system might be increased dramatically by
giving the agents the capability to negotiate with one

Using both theoretical analysis and simulations, we
have studied in detail the dynamics of a model which
captures the essential features of computational ecosys-
tems. We have illustrated and quantified the dependence
of the model's behavior upon delays and uncertainty in
information, the degree of cooperation and competition
among the agents, and the degree of inhomogeneity in the
system. In addition, we have determined the quantitative
conditions under which a system of cooperating agents
can function acceptably well in the absence of central
control. In general, the predictions of the theory of
Huberman and Hogg" are validated by computer simula-
tions, particularly in the limit of large numbers of agents.
These experiments reveal that, in most cases, statistical
fluctuations (neglected in the theory) do not shift the
boundaries between various behavioral regimes; they
merely blur them. One notable exception is the
phenomenon of punctuated equilibria, which depends
critically on the presence of fluctuations, and can only be
explained by theories which explicitly incorporate
them. ' ' The basic lesson that emerges from this study
is that the same complex global behavior observed in
many physical systems can arise in computational ecosys-
tems from simple interactions among programs. Given
that slight complications introduced into the model tend
to yield new behavioral phenomena, it is likely that real
systems would exhibit behavior at least as exotic as that
illustrated here.

A number of system design principles can be deduced
from our work. For example, as illustrated in Fig. 7, the
system's responsiveness will be optimal if the decision
rate is adjusted so that the system is critically damped
(i.e., p=p&). We have investigated three dift'erent heuris-
tics for counteracting the strongly deleterious effect that
delays have upon system performance. In Sec. III B, we
found that a judicious increase in the randomness of the
decision-making process of the individual agents can
greatly ameliorate the problem of oscillations (Fig. 11).
In Sec. III E we noted that an inhomogeneous system
consisting of agents with different computational needs
can be considerably more stable than a homogeneous sys-
tem because the agents automatically create their own
niches. As a result, the system performance can be opti-
mized by purposely adjusting the heterogeneity of the
system (Fig. 24). Finally, in Sec. III F we investigated the
effect of using deterministic control algorithms which are
more intelligent from the standpoint of an individual
agent, and found that over-proliferation of that algorithm
in the population of agents can actually decrease the
overall system performance (Fig. 27).

An important attribute of computational ecosystems
which is readily suggested by the analogy to biological
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ecosystems is their ability to adapt to changing environ-
ments. The brief consideration of this issue in Sec. III G
exposed a potentially serious problem: the lifetime of
suboptimal metastable states is extremely long. Possible
mechanisms for enhancing the transition rate (and hence
the adaptability), which include negotiation among
agents and forecasting of future payoffs, offer an interest-
ing area for future research. It is also necessary to study,
not just the evolution of the system for axed payoff's, but
the evolution of the individual agents on a slower time
scale during which the agents modify their decision pro-
cedures so as to maximize their individual efficiencies.
%e must seek feedback mechanisms which can give com-
putational ecosystems the same evolutionary capability as
their biological counterparts. Such a study should also
provide insight into the tradeoffs between a system s abil-
ity to adapt to a wide range of possible environments and
its performance in a particular environment.

As has been suggested by several authors, ' the most
successful architectures might be founded upon economic
rather than biological principles. The passive resources
of our model could be replaced by ones which participate
in the control of the system by auctioning their wares to
the agents, resulting in a dynamical alteration of the
payoffs. This may be particularly important in systems in
which the distinction between servers and clients be-
comes blurred or nonexistent. For example, a resource
trying to satisfy one agent's computational demand might
act as a client in consulting with another agent that is
knowledgable about the relative merits of different algo-
rithrns, or an agent that has derived some interesting re-
sult may serve as a resource for other agents. Smart

I

agents would be interesting to study in an economic con-
text, particularly if they are endowed with some ability to
anticipate the actions of their fellow agents. It would be
of great interest and value to extend our model to encom-
pass distributed-system architectures modeled after
economic markets in order to determine whether they
might possess some inherent fundamental advantages
over the model we have considered in this work.
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APPENDIX A: INHOMOGENKOUS AGENTS
AND MULTIPLE RESOURCES

For the general case of inhomogeneous agents compet-
ing for multiple resources, the delayed-time mean-field
Eq. (7) generalizes to

df(t)
dt

= —a[f(t) —p( f*(t))],

where f, f*, and p denote the doubly-indexed vectors f„,,
f„„andp„„respectively. The index r runs from 1 to
R —1, and s runs from 1 to S, where R and S are the total
number of resources and species, respectively. The com-
ponents of f* are given by

(A2)

where ~„,is the time delay between resource r and an
agent of species s. The preference probabilities p„,(f*)
are given in terms of the species-specific payoff's G„,(f*)
by

1 — '~& ', 1 x +G„(f*)—G„,( f*)
p„,(f*)= — I dx e ' g — 1+erf

2770 s r(+ )
2 2CTs

(A3)

d5(t) = —a[5(t)—
) 5*(t)],

dt

where y is the Jacobian

(A4)

where o., is the uncertainty for agents of species s.
In the neighborhood of the fixed point given by

p( fo) = fo, the variation 5(t) = f(t) —fo obeys

APPENDIX B: CORRELATION FUNCTIONS

In order to compare the theoretical results with simu-
lations, it is useful to calculate the autocovariance and
autocorrelation functions V(t') and C(t'), which, for the
simplest case of two resources and one species of agent,
are defined by

~prs
y„,„,= (fo)

l r's'
(A5) V(t')=V(0)C(t')=( —I dtf(t)f(t —t') f ', —T~

T —T

and the star notation is defined as in Eq. (A2). The sub-
stitution 5(t)=ce ~' in Eq. (A4) reduces it to a system of
self-consistent eigenvalue equations of order (R —1)S: where

(B1)

[M(g) —
g
—1]c=0,

where the matrix M is given by

(A6) f=( I dtf(t) (B2)

O.'7 „g CXZg

Mrsr' s'( 0):1rsr' s' . Y sRs—'. (A7)

Note that Eqs. (A6) and (A7) reduce .'::: Eq. (9), provided
that p is redefined to be a function of the single variable
f, , which is obtained from p, (f, ,f2 ) by substituting
1 f, for f, . —

and T, and T& are sufficiently large to ensure that initial
transients have died out and an adequate sample of f(t)
has been taken. In the mean-field theory, the autocorre-
lation is approximated by replacing the integrand of Eq.
(Bl) by (f(t) ) (f(t —t') ), with the result (valid for
P &0,)
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—ag t'
C(t')=e ' cos(ag, t'),

V(0) =0 .
(B3)

In order to compare these predictions with simulation
results, we calculate the autocorrelation function C(t')
with T, &4/a(„and Tf & T;+4/ag„[which is sufficient
to ensure that C(t') is virtually independent of T; and

Tf) and average it over several simulation runs. The re-
sult is then fitted to a decaying sinusoid in the range
0 ~ t ' ~ 1.61'„to extract estimates of g„and g;, from
which ~„and v are calculated. The standard deviation s

of the fluctuations about the average value of f is given
by +V(0). If P&P2, the fixed point fo is unstable, and
Eq. (B3) is not strictly valid. In this case, the theoretical
value of g, is obtained by direct measurement of the
period of the nonlinear oscillations in f (t).

In more complicated systems with more resources or
more species of agents, the system's behavior can be ana-
lyzed by calculating cross covariances and cross correla-
tions in a manner similar to that described above. In this
case, all of the cross correlations which describe the sys-
tem have the same decay rate and frequency —that deter-
mined by the eigenvalue with the largest (least negative)
real part.
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