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Characterization of an experimental strange attractor by periodic orbits
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We describe a general procedure to locate periodic saddle orbits in a chaotic attractor recon-
structed from experimental data. The method is applied to data from a Belousov-Zhabotinskii
chemical reaction. The eigenvalues associated with the saddle orbits are used to estimate the
Lyapunov exponents. An analysis of the next amplitude map determines the allowable periodic or-
bits and yields an estimate of the topological entropy.

Recent theoretical work suggests that periodic saddle
orbits determine much of the dynamics on typical attrac-
tors. ' In hyperbolic attractors, for example, the natural
measure, fractal dimension, and Lyapunov exponents can
be expressed as limits involving the periodic saddle or-
bits. ' Moreover, the saddle orbits can provide a useful
characterization of the structure and dynamics of the at-
tractor as a parameter varies. In this paper, we show
how to extract the periodic saddle orbits from an attrac-
tor reconstructed from experimental data. These orbits
are used to estimate the Lyapunov exponents, informa-
tion dimension, and topological entropy of the attractor.
The estimates compare well with those obtained by con-
ventional methods.

The attractor is obtained from a time series from an os-
cillating Belousov-Zhabotinskii (BZ) chemical reaction.
The experiment consists of a continuously stirred tank
reactor into which various chemical species are fed at a
constant rate. The bromide ion concentration in the
reactor is recorded at equally spaced intervals, giving a
time series of 65 000 values.

A phase-space attractor is reconstructed from the data
using the standard method of time delays. ' The experi-
mental data consist of a scalar time series, denoted
Is; I,",. The attractor is the set of points x,
=( , , ,s„s.+. . , , ~sd +i~, ) where d is the embedding di-
mension and w is the time delay. In this discussion, we
choose d =3 and ~= 124 on the basis of the mutual infor-
mation criterion discussed in Ref. 8. Figure l(a) shows a
two-dimensional projection of the reconstructed attrac-
tor.

The saddle orbits that we consider are periodic, and
they appear to have one repelling direction. In this
three-dimensional reconstruction, they also have one at-
tracting direction. Trajectories approach the saddle orbit
along this direction and remain nearby for a time before
they are pushed away. While a point remains near the
saddle orbit, it moves with a frequency which is approxi-
mately the same as that of the saddle orbit. The saddle

orbits therefore can be located as follows. Let e&0, and
let x,- be a point on the reconstructed attractor. We fol-
low the observed images x, +„x;+2, . . . of x, until we
find the smallest index k) i such that ~~xk

—
x;~~ &e. If

such a k exists, we define m =k —i and say that x, is an
(m, e) recurrent point.

In this analysis, we fix a=0.005 and compute distances
in terms of the maximum norm. (The time series is nor-
malized to the unit interval. ) The value of m can be cal-
culated using the above procedure for 51000 out of
65000 attractor points. We find that over 95% of the re-
currence times m are clustered in small intervals around
m =125, 250, 375, 500, 625, 750, 875, and 1000, as illus-
trated by the histogram in Fig. 2. The scatter in the m

(a)

FICx. 1. (a) The BZ attractor. (b) —(d) Trajectories near the
period-1, -2, and -3 saddles, respectively.
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15 TABLE I. Eigenvalues associated with the periodic saddle
orbits for the BZ attractor.
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FIG. 2. Histogram showing the number of attractor points
associated with each recurrence time m.

values occurs for two reasons. First, the recurrence time
of a trajectory depends on how closely it approaches a
saddle orbit. Second, we record the time when the trajec-
tory first returns to the e neighborhood of the reference
point x, ~ This time may differ slightly from the time the
trajectory most closely approaches x, .

The trajectory through each point x, in Fig. 1(b) comes
back within @=0.005 of x; approximately 125 time steps
later. This orbit has the shortest period, so we call it a
period-1 saddle. (In what follows we define a "period" as
125 time steps. ) Figures 1(c) and 1(d) show portions of
the trajectories which lie near the period-2 and -3 saddles,
respectively. In this paper we consider orbits up to
period 8. It is important to include periodic saddles of
sufficiently high period in order to capture most of the at-
tractor points.

The stability of each saddle orbit is estimated from a
linear approximation of the dynamics at points on nearby
trajectories. Let x„& be an (m, e) point, and let [x;)";
be a collection of points in a 6e neighborhood of x„f.
We assume that the dynamics in this neighborhood is
nearly linear; that is, we write the map f which takes x;
to x, + as f(x)=Ax+b for some 3X3 matrix 3 and a
three-vector b. A least-squares procedure similar to that
described in Refs. 7 and 10 is used to calculate A and b.
Here 2 is an approximation of the Jacobian matrix
Df(x„&). The absolute value of the largest eigenvalue of
A provides an estimate of the stability (more precisely,
the strength of the repulsion) of the saddle orbit near x„&.

Table I contains a list of the periodic saddle orbits and
their associated eigenvalues, which are calculated as fol-
lows. Each (m, e) point associated with the orbit of
period p is used as a reference point x„f. The Jacobian
matrix Df~(x„&) and the magnitude L of its largest eigen-
value is computed using least squares whenever 50 or
more points can be found in a 6e neighborhood of x„f."
The median value of L over the total number of reference

points is listed in the table.
One's ability to estimate the eigenvalues associated

with a given saddle orbit depends on the number of tra-
jectories that lie nearby. Saddle orbits in densely popu-
lated regions of the attractor (where the natural measure
is large) are easier to characterize than those in regions
which are rarely visited.

The Lyapunov exponents (also called characteristic ex-
ponents) measure the rate of separation of nearby initial
conditions on the attractor (see Ref. 7 for a precise dis-
cussion and additional references). An attractor is chaot
ic if the largest Lyapunov exponent k, is positive.
Roughly speaking, this implies the distance between a
typical pair of nearby points on the attractor grows as

A. 11
2 ' for small t.

The basic idea behind existing algorithms' ' to esti-
mate Lyapunov exponents from experimental data is to
follow sets of trajectories for short intervals to measure
the observed rates of separation and average them.
(Another, more ambitious method is described in Ref.
14.) We now consider a different approach, where we
evaluate the Lyapunov exponents in terms of the eigen-
values of the periodic orbits.

Most of the points on the BZ attractor are within
@=0.005 of the periodic saddles listed in Table I. Thus
an estimate of the Lyapunov exponents can be obtained
from a weighted average of the eigenvalues of the saddle
orbits. In this case we weight the eigenvalues according
to the number of associated (m, e) points. This yields the
estimate 11=0.56 bits/period, which agrees well with the
estimate 11=0.50 bits/period using the algorithm of
Wolf et al .

In this experiment it appears that an embedding di-
mension of 3 is sufficient to reconstruct the attractor (no
trajectory crosses another). Under this assumption, there
are three Lyapunov exponents for the BZ attractor: a
positive exponent (A. &, estimated above), a zero exponent,
and a negative exponent (A.3). The negative exponent
measures the rate at which points near the attractor ap-
proach it. Negative Lyapunov exponents are difficult to
estimate from experimental data often because one can-
not observe how different parts of the attractor (or the as-
sociated return map ) contract onto each other. If we
suppose that the data in this experiment are accurate to
0.1%, then two points whose initial separation contracts
by a factor of 1000 after one period will be indistinguish-
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able because of the noise. In other words, we cannot
measure the negative Lyapunov exponent if A.3

—10
bits/period.

This consideration leads to an approximate value of the
information dimension Dz. ' Assuming that the Kaplan-
Yorke' conjecture holds for this attractor, then

DJ=2+(A, i+A~)/iA3i .

Using the estimates for the Lyapunov exponents obtained
above, we have Dz-2+0. 6/10=2. 06. Although this es-
timate of k3 is somewhat speculative, it is consistent with
calculations of the information dimension using the
method of nearest neighbors, ' which gives Dz
=2. 12+0.04. (The estimates depend on which nearest
neighbors are used; this is reflected in the variance. )

Additional information about the periodic saddle or-
bits can be obtained from an analysis of the next ampli-
tude map f(x„)=x„+,, shown in Fig. 3. Here we have
plotted the (n +1)st relative minimum in the time series
as a function of the nth relative minimum. For conveni-
ence, we normalize the time series to the unit interval so
that f is defined on [0,1]. This return map has a single
critical point: an absolute maximum at x, . Let
3 =[0,x, ) and B =(x„1]. A careful examination of the
experimental data reveals that points in A map only to
points in B [i.e. , if x (x, then f(x) &x, ], but points in B
map to points in A UB. We represent this rule with the
transition matrix'

B
M A 0 1

B 1 1

containing a zero entry for the disallowed transition A A.
This observation yields an estimate of the topological

entropy. Let X be the number of periodic orbits of
period p in the attractor. The topological entropy h, is

given as'

1
h, = lim —log, X, .

phoo P

'I

~ ~
~ ~ ~

FIG. 3. Return map for the BZ attractor.

For example, the map f(x)=4x(1 —x ) has 2~ periodic
orbits of period p. ' ' (The initial conditions can be
represented as binary strings and the dynamics as a left
shift by one bit. The number of points of period p is the
number of different binary strings of length p. ) The topo-
logical entropy of this map is 1.

In this BZ attractor, not all binary sequences (strings of
A's and B's) are possible; in particular, the sequence A A

is disallowed. (This exclusion principle is called prun
ing '. ) The easiest way to determine the possible se-
quences is to use the transition matrix M given above. It
can be shown' that the number of orbits of period p for a
map of the interval is given by trM . Assuming that
the dynamics is described by M, then

1
h, = lim —log2trM

phoo P

In this case, h~ ~ log2~max as ~ ~ ~ ~he~e ~ma= (1+&5) /2 is the largest eigenvalue of M. Hence
h, =0.696 bits/orbit.

This estimate of the topological entropy of the BZ at-
tractor is an upper bound because we have used only the
lowest-order transition matrix. A better upper bound can
be obtained by examining longer sequences of strings.
For example, if we examine the data further to determine
which pairs of three-digit strings occur, we find the tran-
sition matrix

ABA
ABB
BAB
BBA
BBB

ABA ABB BAB BBA BBB
0 0 1 1 0
1 1 1 0 0
1 1 1 1 0
0 0 1 1 1

1 1 1 0 1

Proceedings as before, we find A. ,„=1.48, so that
h, =0.563 bits/orbit.

The topological entropy h, is an upper bound for the
metric entropy, which in this case should be equal to the
positive Lyapunov exponent k] since there is only one ex-
panding direction on the attractor. Our estimate of
A, , =0.56 bits/orbit is in excellent agreement with the
value of h, obtained from the transition matrix. (Another
approach to the estimation of topological entropy is dis-
cussed in Refs. 24 and 25.)

The determination of M' depends somewhat on the
choice of the critical point x, in Fig. 3, because there are
a few orbits which pass very close to x, . (In addition,
there are two orbits which lie away from the main curve
of the return map. We attribute them to experimental ar-
tifacts. ) Although the dynamics described by M' suggests
that at least two different period-6 orbits are possible,
only one is observed in the experiment. This implies that
either additional pruning occurs (which is not apparent
from the binary triples), or the other period-6 orbit is
visited too infrequently to be detected in these data.

The determination of the periodic saddle orbits from
experimental data is possible in principle as long as the



CHARACTERIZATION OF AN EXPERIMENTAL STRANGE. . . 4031

underlying dynamics is relatively low dimensional. In ad-
dition, a low noise level and a long time record are impor-
tant so that the recurrent points can be located easily.
Finally, the stability of the saddle orbits determines their
visibility', saddle orbits whose positive eigenvalues are
small can be found more easily than those whose eigen-
values are large.
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