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Noise-induced escape from attractors in one-dimensional maps
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The addition of external noise to a dynamical system described by an iterated map causes the or-
bit to escape from the attractor. The escape time ~ has the behavior 7 vpexp(Ep/I ), where I is

the noise temperature, Ep is the minimum escape energy, and ~p is the inverse of the attempt rate.
We will describe an analytical method for calculating the mean escape time based on the principle
of minimum escape energy. Analytical solutions for Ep are presented for values of the mapping
control parameter a close to tangent bifurcations and interior crises. The minimum escape energy
displays a power-law dependence on the control parameter near tangent bifurcations
(Eo —

~
a —a,

~
) and near interior crises (Eo —

~
a —a,

~
). Numerical solutions are given for

control-parameter values throughout the range of the attractor. The results agree with the results
of Monte Carlo simulations of the logistic map and with independent work on the noise stability of
rf-driven Josephson junctions.

Recent work' on the stability of rf-driven Josephson
junctions to the addition of thermal noise indicates that
the escape time from a phase-locked attractor increases
exponentially as the inverse of noise temperature in the
circuit. This is explained in terms of the minirnurn es-
cape energy from the attractor and a prescription is given
for the calculation of that escape energy. ' A large
literature exists for the calculation of the thermal escape
rate from local minima of the potential energy. The
diA'erence here is that the escape is from the attractor of a
dynamical system and not from a minimum in the poten-
tial energy. However, it has been shown, ' ' that this es-
cape rate is characterized by a definite minimum escape
energy.

The attractor of the rf-driven Josephson equation '

has been mapped by a number of authors. ' ' '' Numeri-
cal studies' in which white noise is added to the rf-
driven Josephson equation indicate that the escape ener-

gy tends to zero at both ends of the stability range of
periodic attractors. The periodic attractors are bounded
by a tangent bifurcation and an interior crisis as the con-
trol parameter is varied. Because of the highly nonlinear
form of the Josephson equation in the region of the at-
tractors of interest, it is difficult to give analytical argu-
ments for the behavior of the minimum escape energy as
a function of the control parameter.

This difficulty can be overcome by the study of a
simpler dynamical system which exhibits the same quali-
tative behavior. " ' Universality arguments can then be
applied to extend the results to other systems. In the ab-
sence of noise and in the parameter range near phase-
locked attractors the resistively shunted Josephson equa-
tion ' exhibits' a tangent bifurcation' ' to a period
one solution, a series of period doubling bifurcations to a
strange attractor, ' '' and, finally, an interior crisis' at
which the phase lock is lost. With the addition of a small
amount of additive noise, the escape time (the average
time for the system to lose phase lock) r is of the form'

7 1 pexp(EO /1 )

where I is the noise temperature and Eo is the minimum
escape energy. We will demonstrate that for the logistic
map" ' the minimum escape energy is nonzero
throughout the attracting region and tends to zero at the
tangent bifurcation and the crisis. Also, the minimum es-
cape energy is largest roughly in the middle of the one-
cycle region. The point of maximal minimum escape en-
ergy is interesting for applications because it is the point
where the system is most stable to the addition of thermal
noise.

The model we will use has the same qualitative features
as the driven Josephson junction. For simplicity we
chose the logistic map" ' plus additive noise. ' '' The
dynamics are given by

x„+,=f (x„)+g„
where f is the logistic map"

f (x)=a —x'

and the noise term is Gaussian white noise

(4)

The brackets denote a statistical average, I is the noise
temperature, and 6, „ is the Kronecker delta. In the ab-
sence of noise (I =0) the map exhibits a single attrac-
tor"' for each a in the range —

—,
' a ~2. The tangent

bifurcation' '' to a one-cycle occurs at a =a, = —
—,', the

one-cycle is superstable at a=0, a pitchfork bifurcation
from the one-cycle to a two-cycle occurs at a=0.75, the
two-cycle is superstable at a= 1, the Feigenbaum chaotic
at tractor ' ' appears at a = l.401 155, the superstable
three-cycle is at a = 1.754 877 666, and the interior
crisis' is at a =a, =2. A plot of the attractor as a func-
tion of a is shown in Fig. 1. One might note the similari-
ty between the attractor in Fig. 1 and the attractor in Fig.
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suit shown in Eq. (1). The validity of Eq. (1) is demon-
strated in Fig. 2 using Monte Carlo results described
below. The average of the logarithm of the escape time is
shown versus 1/I . The slope of the line is the minimum
escape energy Eo for this value of the control parameter
a. The prefactor 7o, the time between attempts or the in-
verse of the attempt rate, is proportional to the number
of paths close to the path with minimum escape energy.

The method for calculating the minimum escape ener-

gy is the following. In Eq. (7) let x„~x„+il„where ]7„
is an arbitrary small variation. The boundary conditions
on g„are go=0 and qN=O. All the remaining g, 's are
arbitrary. The approach is to find paths in which the es-
cape energy is extremal with respect to variations in the
g„'s. We have

FIG. 1. The attractor for the logistic map (3) in the absence
of noise. All variables plotted in this and all of the remaining
figures are dimensionless.

where

N —1

&E = g [x„, f (x„)][g„—+, —f'(x„)i)„)+O(i)') .
n=Q

1(b) of Ref. 1.
When noise is added to the mapping' ' the orbit will

eventually escape from the attractor' ( ~x
~

( —,
' [1

+(1+4a)' ]). The escape rate can be determined by
the following argument based on the minimum escape en-

ergy technique. The rate of escape is given by

R= g gP~,
paths of N =0
length N

where the sum is over all independent paths that begin on
the attractor and end on the boundary of the basin of at-
traction at the unstable fixed point x *= —

—,
' [1+( 1

+4a)'~ ], and Pv is the probability that a given path of
N steps can occur. This probability is given by

1
N —]

P]i(2T~I ) exp
n=0

(10)

The function f '(x) is the first derivative off (x). By rela-
beling the terms proportional to 71„(i)„~i)„+]), Eq. (10)
can be rewritten as

N —1

6E = y Ix„+] f(x„)—[x„+—2 f (x„+])]f'(x—„+])]
n=0

n++][ ]v+]
—f( ]v)]f'( ]v)n]v

—[x, f (xo ) ]f '(xo )il—o+ 0 (il ) .

The terms outside the summation vanish because of the
boundary conditions. The function in the curly brackets

I

)'

since the noise terms are uncorrelated and have a Gauss-
ian distribution with width I ' . In the limit of small
noise temperature the rate will be dominated by the path
which has the highest probability. We can define the
noise energy for a given escape path by

N —1 N —1

E =
—,
' g g„=—,

' g [x„+, f(x„)]—(7)
n=0 n=0

where xo is on the attractor and xN =x*, where x is the
boundary of the basin of attraction of the map. The most
probable escape path is the one in which E is minimized
over all possible paths. The value of E on this path is the
IHinimum escape energy Eo. The escape rate will be
dominated by this path so as to give

1
R =—exp( E/1 o) . —

7O

The escape time 7=1/R is then given by the general re-

14

FICr. 2. The logarithm of the escape time vs 1/I for a=0.50.
The line is a fit to the data indicating that Eq. (1) is valid. The
fit gives E =0.371+0.016 and ln(7o) = 1.563+0.258.
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inside the summation must vanish for every term. The
equation of motion for an extremal path is then given by

1x„+2=f(x„+,)+, [x„+/ f (x—„)] .'(x„+, )
(12)

Note that a given point in the extremal trajectory x„de-
pends on the two previous values, x„, and x„2. It is
necessary to start the motion along the extremal path in
the following manner. The first value, xp, must be an ele-
ment of the attractor since the orbit starts on the attrac-
tor prior to the addition of the noise. The second element
is given by x, =f (xo)+go. The remaining points in the
orbit are determined by (12). The orbit is followed until
x„ is outside the basin of the attractor, ~x„~ ~ ~x*~. The
minimization procedure is carried out by minimizing the
energy given by Eq. (7) over all values of go and all ele-
ments of the attractor.

It is interesting to note the similarity of this result to
Kautz's results as the minimum noise energy method is
applied to a second-order differential equation. He finds
that the escape path with minimum noise energy is de-
scribed by a fourth-order differential equation with
boundary conditions that the path begins on the attractor
and ends on the boundary of the basin of attraction.

Equation (12) cannot be solved analytically in general
even for the logistic map. However, analytical solutions
can be found when the control parameter a is close to the
tangent bifurcation point (a, = —

—,
'

) or close to the crisis
point (a, =2).

Near the tangent bifurcation it is possible to expand
Eq. (12) in terms of the small parameter a —a, . In that
limit Eq. (12) becomes

The escape energy for the resistively shunted Joseph-
son equation also tends to zero at the tangent bifurcation.
A calculation based on the Fokker-Planck equation' [see
Eq. (12) of Ref. 1] also predicts the dependence
Eo=~a —a, ~

. Based on these two results we conjec-
ture that the exponent —,

' is universal for escape from at-
tractors close to tangent bifurcations. The prefactor in
(16) is nonuniversal.

At the other end of the attracting range the system has
an interior crisis. The small parameter in this case is
a —a, . The crisis is caused by the critical point x=0 be-
ing mapped onto the boundary of the attractor x * in two
iterations of the map. For most of the parameter values
near a =a, =2 the attractor is chaotic and the distribu-
tion of x's on the attractor is continuous. When a =a,
the escape path with minimum noise energy is

x0=0,
x, =2—(a, —a)+go,

xz = —2+3(a, —a) ——",go+0((a, —a) ),
(17)

where

go= —,'(a, —a) . (18)

(19)

This particular choice of go gives a geometric approach
to the unstable fixed point at x * = —2+ —,

' (a, —a)
+O((a, —a) ). We have

)=(x„~—x*)/[4 —
—,'(a, —a)] for n ) 2 .

y„+&—2y + &+y„=—2(a —a, )y„+ &

+2y„'+, +O((a —a, ) ), (13)

The escape energy for this path is obtained by summing
Eq. (7) exactly using Eqs. (17—19):

d = —2(a —a, )y +2y
dll

(14)

This is possible because in the limit of small a —a, y„ is a
slowly varying function of n The soluti. on of (14) is

y„=(a —a, )'~ tanh[(a —a, )' n], (15)

and the minimum escape energy (7) is given by

Eo= —'(a —a )
~

0 (16)

The minimum escape energy tends to zero as a~a, .
This result scales in the same manner as the results for
the laminar How time for intermittency plus noise just on
the other side of the tangent bifurcation. That theory'
predicts that the laminar How time for a just beyond
the tangent bifurcation scales with the variable
(~a —a, ~

)/I which is also what we observe on the
stable side of the tangent bifurcation.

where y, =x, + —,', the initial value for y is the one-cycle
attractor y = (a —a, ) '~, and the final value is

y = —(a —a, )' . For a —a, sufficiently small, Eq. (13)
can then be written as a differential equation

Eo = —,', (a, —a) 2 (20)

The minimum escape energy vanishes quadratically in

a, —a as a ~a, . Arecchi et al. ' and Takesue and
Kaneko' also predict that Ep tends to zero quadratically
as a ~a, but with a different prefactor.

Similar behavior was observed in the resistively shunt-
ed Josephson equation. Kautz's numerical results' give
a dependence Eo —(a, —a)' but with no estimate of the
statistical error of the exponent. Based on the similar be-
havior of these different systems we conjecture that Ep al-
ways will tend to zero quadratically as a ~a, for any sys-
tem which exhibits an internal crisis. The prefactor in
(20) is, of course, nonuniversal.

For other values of the control parameter one must
resort to numerical techniques in which a search is con-
ducted for the path which satisfies (12) and has minimum
energy (7). This is easily done for the low-order periodic
orbits. One merely sets xp to be an element of the attrac-
tor and varies go numerically so as to minimize the escape
energy. One must of course do this for each element of
the attractor. This is not possible for the chaotic orbits
but on these orbits the escape path with minimum energy
always starts with x0=0 since x& is the maximal point in
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the orbit and x2 is the point in the orbit closest to x
The solid line denotes the minimum escape energy as
determined numerically from Eq. (7).

We have tested these predictions with a Monte Carlo
simulation. We simply iterate Eq. (2) starting at random-
ly selected points on the attractor. It is essential to use a
Gaussian distribution for the random variables since the
theory above is based on the statistics of Gaussian ran-
dom numbers. Two uniformly distributed random num-
bers, u i and u2, on the interval (0, 1) are used to generate
the variable s:

The uniformly distributed random numbers are generated
by a feedback shift-register technique. The noise terms
g„are given by g„=(I )' r„.

The initial point in each orbit is a randomly selected
element of the attractor. The iteration of (2) continues
for ~ iterations until the orbit leaves the basin of the at-
tractor, ~x, ~

& ~x*~. An average of 1n(r) is kept for each
value of the noise temperature I . (We use an average
over 1n(r) since r is log-normally distributed. ) One hun-
dred different paths are used for each value of a and I .
The function (ln(r)) is fit to an equation of the form
(In(r)) =in(~o)+Eo/I . Only points with r&&ro are
used in the fits since Eq. (1) is valid only for I «Eo. In
no case are orbits with average escape time ~(400 used
in the fits. The maximum escape time used is ~=50000.
The results are shown in Fig. 3. The minimum escape en-

0.50:

0.40:
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LIJ

0.30:

0.20:

0. 10:

0.00-
0.0 0.5 1.0 2.G

FIG. 3. The minimum noise energy Eo as a function of the
control parameter a. The minimum noise energy vanishes at the
tangent bifurcation (a =a, = ——„' ) and at the crisis (a =a, =2).
The line is the theory and the data points are the results of the
Monte Carlo simulation.

s =(2u, —1) +(2u~ —1)

if s ~ 1 then two new variables u
&

and u z are generated.
We then generate Gaussian random number r with zero
mean and unit variance ' by the formula

r =(2u, —1)[—21n(s)/s] .

ergy vanishes as a~a, and a~a, . The point of maxi-
mal noise stability is approximately in the middle of the
one-cycle region (however this is not near the superstable
point at a=0). The points with error bars are the results
of the Monte Carlo simulations. The line is the theoreti-
cal minimum escape energy as determined analytically
[Eqs. (16) and (20) near the endpoints of the attractor)
and numerically for the remainder of the attracting
range. The shape of the minimum escape energy curve is
qualitatively similar to minimum escape energy in the rf-
driven Josephson equation (Fig. 5 in Refs. 1 and 2). The
escape energy from the rf-driven Josephson equation
peaks in the middle of the one-cycle region, tends to zero
rapidly at the tangent bifurcation and the crisis point.
The theoretical curve in Fig. 3 always lies on or below the
Monte Carlo values. This can be explained since there
can be a large number of escape paths with escape ener-
gies close to but above the minimum escape energy path.
These paths are sampled significantly unless the noise
temperature is much smaller than the energy gap between
the minimum escape energy and the escape energy of the
other paths.

It is useful to test the exact results of the theory care-
fully near the tangent bifurcation and the crisis point.
These results are shown in Figs. 4(a) and 4(b). The lines
are the theory [Eqs. (16) and (20) with no adjustable pa-
rameters] and the data are the Monte Carlo results. The
statistical errors are smaller than the data points. The
theory is extremely accurate near the tangent bifurcation.
Near the crisis point the theory slightly underestimates
the minimum escape energy. This appears to be due to
the strong divergence of the time between attempts near
the crisis since the agreement improves when points with
shorter escape times are removed from the fit.

Kautz observed that the time between attempts ~o in
the rf-driven Josephson equation appears to diverge at
the tangent bifurcation and the crisis point. To compare
with this work, a plot of logio(ro) versus a is shown in
Fig. 5. Note that ~o appears to diverge at both the
tangent bifurcation and the crisis point. The minimum in
7 o appears to be close to the superstable fixed point of the
one-cycle in agreement with Kautz's results' (see Fig. 6
in Ref. 1 and Fig. 5 in Ref. 2). Figures 6(a) and 6(b) show
fits to power laws for the divergence of ~o near the
tangent bifurcation and crisis point. Near the tangent bi-
furcation the divergence of the attempt time is consis-
tent with a power-law dependence on a —a„ro- (a
—a, )

+— ' ' . Kautz's exponent for the resistively
shunted Josephson equation is —0.5. Near the crisis we
find that ro —(a, —a) ' — ' in disagreement with
Kautz's exponents' of —1.4 and —0.8. Unfortunately,
the method of minimum escape energy is not very helpful
in resolving this discrepancy because the attempt rate is a
difficult quantity to calculate within the formalism. It in-
volves enumerating the number of paths with escape en-
ergy near the minimum escape energy. A Fokker-Planck
approach would probably be more helpful for resolving
this point.

We can now address the question of the manner in
which the escape energy depends on the details of the
mapping f (x). If the logistic mapping is changed merely
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by a rescaling x„~y„=ax,, the escape energy is re-
scaled by Eo~a Eo. For unimodal maps with quadratic
maxima one would then expect that the escape energy
would approximately scale with the square of the x dis-
tance between the maximum and the unstable fixed point
x*. This was checked by a Monte Carlo simulation of
the escape from the superstable three-cycle of the logistic
map. The mapping function is taken to be
F(x)=f(f(f (x))) and a is chosen so as to give a su-
perstable three-cycle (a =1.754877666). The noise is
added only when the trajectory returns to the portion of
the attractor which straddles x=O. Escape is defined
as the number of iterations taken for the trajectory to
lose three-cycle phase coherence. The unstable fixed
point of F (x ) near the origin is x *=0.109 65. One
would then expect the escape energy to be Eo
= ( 0. 109 65 ) ( 0.3 19 09 ) =3.84 X 10, where 0.3 19 09 is

2.0

i
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FIG. 4. A comparison of theory and Monte Carlo results (a)
near the tangent bifurcation and (b) near the crisis. The lines
are the theoretical predictions (16) and (20) with no adjustable

parameters.
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FICz. 5. The logarithm of the attempt time vs the control pa-
rameter. Note that ~o appears to diverge near the tangent bifur-
cation and the crisis, and that v.

o is smallest near the superstable
one-cycle (a =0.0).

FIG. 6. The logarithm of the escape time ~0 vs (a) the loga-
rithm of a —a, and (b) the logarithm of a, —a. The slopes of
these lines are the power-law divergence exponent for ~o at these
two points. The slope in (a) is —0.62+0.10 and the slope in (b)
is —0.42+0.15.
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x3 xo+kof'(x i )f '(x2)+kerf '(x2 )+4+O(k )

where

X, =f (xo),

X~=f(x, ),
x, =f(x, ) .

The effective noise is

Of '(X, )f'(x, )+k,f '(x, )+4+
and the effective noise temperature is

(21)

(22)

(23)

I eff ((jef)2)

=I [I+[f'(x2)] +[f'(x, )f'(x2)] I . (24)

For the superstable three-cycle the effective noise temper-
ature is

I ' =99.SI (25)

the minimum escape energy for the superstable one-cycle.
From the Monte Carlo simulation we found
Eo =(3.50+0. 16)X 10 in reasonable agreement with
the prediction.

We also investigated the three-cycle when the noise is
added at every step rather than every third step. The
effect of the noise is multiplied because of the combined
effect of the noise added at each step of the three-cycle.
For example,

so that the minimum escape energy should be approxi-
mately

(0. 109 65) (0.31909)
(99.8)

(26)
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The escape energy found from the Monte Carlo simula-
tion in which noise was added every step was
Eo=(3.96+0. 19)X 10 . A numerical calculation of the
minimum escape energy based on Eqs. (7) and (12) gives

E,=4. 13X10 '.
In conclusion, we calculated the minimum escape ener-

gy for noise-induced escape from the attractor of the
logistic map. Near a tangent bifurcation the minimum
escape energy is proportional to (a —a, )3~ and near an
internal crisis the escape energy is proportional to
(a, —a) . We conjecture that these exponents are univer-

sal. The point of minimum escape energy is largest
roughly in the center of the one-cycle region and the at-
tempt time diverges at both the tangent bifurcation and
the crisis.
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