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In this paper we present a combined analytical and numerical study of transport properties of
Levy walks. Here, within the framework of continuous-time random walks (CTRW's) with coupled
memories, we focus on the probability Po(t) of being at the initial site at time t and on S(t), the
mean number of distinct sites visited in time t. We use the connection between Po(t) and S(t),
which are related via their Laplace transform, and we reanalyze our previous findings for (r'(t) ),
the mean-squared displacement. Furthermore, S (t) shows, as a function of the memory parameters,
a very interesting, nonuniversal, nonmonotonic behavior, which we corroborate by numerical simu-
lations in one dimension. We compare the findings with those for decoupled CTRW's on regular
lattices and on fractals.

I. INTRODUCTION

with hz%1. Examples for Eq. (1) are to be found in chaot-
ic dynamics, which generally leads to enhanced diffusion
(e.g. , for turbulent motion a=3) on the one hand, ' but
also in systems with geometric constraints (doped crys-
tals, glasses, fractals), for which the diffusion is disper-
sive, i.e., a & 1, on the other hand. '

Another quantity, which is of relevance in transport
phenomena, ' the mean number of distinct sites visited,
shows the proportionality

S(t) -tt', (2)

where P= 1 for regular random walks in three-
dimensional (3D) ordered systems. p& 1 is found in low
dimensions, ' restricted geometries, ' and amorphous sys-
tems. '

In a review article' we have summarized the different
models —continuous-time random walks (CTRW's), frac-
tals, and also ultrametric spaces (UMS) —which give rise
to tz & 1 and p& 1. As noted above, in turbulent motion
in Auids one encounters a superlinear dependence of the
mean-squared displacement between two particles as a
function of time, ' typical values of a in Eq. (1) being

Recently, much research has centered on dynamical
processes in disordered media. Interestingly such pro-
cesses may differ, however, from simple Brownian
motion, a fact manifested through the dependence of the
mean-squared displacement (r (t) ) on time. Whereas
for simple diffusion (r (t)) —t, anomalous diffusion is
characterized by

(r'(t) & -t

around a=3. This result is remarkable, since for corre-
lated simple random walks or for coherent motion [where
(r(t)) —t] one attains at most a=2. The finding a=3 is
due to the eddy structures of fully developed turbulence,
for which a complete microscopic understanding is still
lacking.

An analytical approach based on asymptotic expan-
sions has been developed by us in recent work. ' There
both patterns of anomalous diffusion follow from an
integro-differential approach, whose basis is continuous-
time random walks. ' ' ' ' The main ingredients of
this approach are spatio-temporal couplings, ' '' which
give rise to Levy walks. ' The formalism connects the
dispersive region o. & 1, which obtains from temporal and
geometric constraints, with the region a) 1, typical for
chaotic dynamics and turbulence.

In this paper we present a combined analytical and nu-
merical approach for the determination of P(r, t ) and of
S(t) for different parameters of the coupled memories.
Here, P(r, t ), the probability of being at r at time t, plays
a central role, since its Fourier-Laplace transform p(k, u)
is simply related both to S(t) and also to (r (t)), the
mean-squared displacement. Of importance is the limit
u ~0, k small. Furthermore, the analysis makes exten-
sive use of the coupled-memory term, which in the
Fourier-Laplace space is written g(k, u ). For long times
the limiting behavior u ~0 is required. Now, in the cal-
culation of (r (t)) also the limit k~O is needed, and
care has to be taken to the order in which the limiting
process has to be performed, since one should have
k « u. On the other hand, for the calculation of S (t) the
full k behavior is needed and the k values with k)&u
usually contribute most. We find that S(t) displays a
very rich behavior, since P turns out to be a nonuniversal,
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nonmonotonic function of the parameters involved in the
coupled-memory term.

The paper is structured as follows. In Sec. II we recall
the basic features of CTRW with coupled memories. In
Sec. III we evaluate p(k, u ) for diff'erent memory terms
and apply the results to the calculation of S(t) and
(r (t)). Section IV is devoted to numerical examples.
We close the paper with a comparison with other types of
random walks, both on regular and on hierarchical struc-
tures. The mathematical details on the P(k, u ) behavior
are presented in the Appendix.

II. CONTINUOUS-TIME RANDOM WALKS

An efticient way to treat the dynamics of stochastic
processes consists in following the trajectories of discrete
particles: For a discrete underlying space this leads to
random walks.

We now recall the basic ingredients of random walks in
continuous time, the so-called CTRW. ' ' ' Let g(r, t)
be the probability distribution of making a step of length
r in the time interval t to t+dt. The total transition
probability in this time interval is

g(t)=g P(r, t)=g(k=O, t} (3)

(where, in the last expression we reverted to the Fourier
space, r~k). Furthermore the survival probability at the
initial site is

C(t)=1—f g(~}d~, (4)
0

so that, switching to the Laplace space (t~u ) one has

4(u)=[1 —P(u)]/u .

Now the probability density g(r, t ) of just arriving at r in
the time interval t to t+dt follows in the usual way

g(r, t)=g f g(r', ~)g(r —r', t ~)1~+5(t)5, 0 . (6)
r

Here we have incorporated the initial condition of start-
ing at t =0 from r=0. Equation (6) leads to an integral
equation for the probability P(r, t ) that the particle is at r
at time t, by observing that

P(r, t)= f ri(r', t ~')N(r')d~' . (7)
0

With Eq. (7) and a change in the order of the integra-
tions, Eq. (6) takes the form

P(r, t)=& f P(r', ~)P(r —r', t r)d~+e(t)5—, 0 . (8)
0

apply, for which the analysis is much simplified. In gen-
eral, ho~ever, the ensemble-average transport through
substitutionally disordered media obeys the CTRW Eq.
(8), with a probability distribution P(r, t ) in which r and t
are coupled. ' Attention should also be drawn to the fact
that a careful use of the projection operator technique
has shown that there can also appear inhomogeneous
terms which must be included when the initial conditions
are not uniform.

Basic quantities in our further analysis are the mean
waiting time per step

~, = f dtt f P(r, t)dr

and the mean-squared displacement per step

o = f dt f r P(r, t)dr .

(12)

(13)

In Ref. 8 it was shown that for decoupled memories the
mean-squared displacement is either divergent or in-
creases sublinearly or at most linearly in time. In order
to obtain finite (r (t)) with a superlinear temporal be-
havior coupled g(r, t) forms have to be applied.
A suitable function is

P(r, t)= Ar "5(r—t "} (14)

where, through the 5 function, r and t are coupled. These
processes are also called Levy walks. ' Equation (14}
allows steps of arbitrary length (as for Levy flights' ), but
long steps are penalized by requiring longer time to be

as the natural extension of diffusive processes to random
media, the functional f(r, t ) form resulting from diff'erent
types of disorder. For particular cases, such as ordered
arrays, ' decoupled memories, i.e.,

P(r, t) =k(r)P(t)

1 —P(u) 1

1 —P(k, u )
(10)

We may thus view Eqs. (8) and (10) in their general form

From the last expression one has, in Fourier-Laplace
space,

p(k, u )=p(k, u )g(k, u )+@(u)

with the solution

FICx. 1. Realization of a Levy walk, obtained from the distri-
bution probability Eq. (14), where @=3.5 and v=1. The situa-
tion depicted evolved after 3000 steps.
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performed. Or, stated differently, in a given time window
only a finite shell of points may be reached: hierarchical-
ly, nearer points are no more and farther points not yet
accessible.

To visualize a realization of such a Levy walk we
present in Fig. 1 the situation for a two-dimensional
geometry where we chose p =3.5 and v= 1. One should
remark the self-similar aspect of the picture: a series of
small steps is followed by larger ones, which are, after a
while, followed by larger ones still; furthermore, no par-
ticular length scale dominates. Figure 1 may be corn-
pared to the very similar Figs. 296 and 297 of Ref. 26.

To close this section we again stress that the CTRW
model results in enhanced diffusion when a spatio-
temporal coupled memory is used. '' We will do-
cument this statement in the next section, where we will

apply this memory form to compute the mean-squared
displacement (r (t)) and the mean number of distinct
sites visited, S(t).

III. APPLICATIOIV OF THE COUPLED MEMORIES
TO (r (t)) ANDS(t)

1 —Cu'"* ', 1&v@*&2
(u)= '

1 1iu, vp )2 (16)

The analysis of g(k, u ) is more involved and requires at-
tention to the small ( k, u ) expansion, depending on
whether k «u or k ))u. The former case is relevant for
the mean-squared displacement, as is evident from the re-
lation

where we set p'=p —d+1 and indicated the lower-
bound cutoffs by 0, , using the relation 02=01 . The
quantity 0 may be viewed as describing the distance of
nearest approach between active centers; for molecules in
condensed matter this would correspond to the average
nearest-neighbor intermolecular spacing. From the nor-
malization condition P( u =0)= 1 one finds a lower bound
for the exponent: vp ) 1. Moreover, a finite ~1 obtains
for vp* )2. Hence, for the asymptotic expansion of f(u)
it follows that

P(u) = f dt f dr g(r, t )e
0 0

= A f f ™drr " 'Sir t )e "'dt—
0 01

(d —P. —1)e "ddt Q f t
——~P e

—"t
02 02

(15)

We begin this section by deriving the space-averaged
waiting time distribution a2

(r (t)) =f r P(r, t)dr= — p(k, t)
Bk 1=0

where the right-hand side may be found by an expansion
in k. As is obvious one has

ij'r(k, u) —g(u)= f dt f dr(e'"' —1)g(r, t)e
0 0

= A f dt e "'f dr r " f d(cosy)(e'"""'"—1)5(r—t )
0 01 —

1

Aft P d~ e 1k' x
02 —1

g(k u ) —g(u)- —k f t " 'e "'dt
02

—:—k I(u) . (19)

For v(p* —2) ) 1, the integral I(u) is finite for all u, even
for u =0. For v(p* —2) & 1 we find that I(u) diverges for
u =0, only for u )0 the integral is finite. Therefore

—C, k, vp* ) 1+2v

For kt «ut the term in brackets changes little during
the decay of exp( —ut) and may be expanded in powers of
k. Thus for k «u this results in

Using now Eq. (10) gives

71
p(k, u )—

~,u+C, k
(22)

t((k, u ) —1 —r, u —C, k u '" (23)

We note here the space-time correlation, namely, that the
first k term involves u. From Eqs. (10) and (23) it fol-
lows that

from which, considering Eq. (17), we recover Brownian
behavior, and thus ( r (t) ) —t. For vp* & 1+2v one finds

1((k, u ) —g(u)- (20)—C1k u '" ' ', vp &1+2v .
v(2 —p )+ 1

T1
p(k, u )—

v(2 —p )+2+ C k 2
%1u 1

(24)

P(k, u )-1—r, u —C, k (21)

From Eqs. (16) and (20) it is now obvious that four
different cases may arise. We begin with the cases in
which w, is finite, vp* )2. For vp* ) 1+2v one obtains

1 k
p(k, u )-——C a+1 (25)

As is amply discussed in Ref. 8, to a small k, k « u be-
havior of the form
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corresponds an anomalous behavior for t, r (t))t, where
for large t

and Po(u). In the Laplace space one has for
P, (t) =P(r =0, t )""

S(u)=[u Po(u)] (33)

[Eq. (13) of Ref. 8]. Thus, from Eq. (24), either by
differentiating twice with respect to k, as in Eq. (17), or
by use of Eqs. (25) and (26) the mean-squared displace-
ment is

where we have set Po(u)=X[PO(t)], i.e., Po(u)—=P(r=0, u ). The calculation of Po(u) requires the
Fourier back transformation of Eq. (10) at r=O:

(r2(t)) t~(2 P' )+2 (27) Po(u)= 1 —g(u} ~ dk
urdu o 1 —itj(k, u)

'

vp 2

p(k, u )-
Cu " '+C1k

(29)

and we have (r (t) ) —t"" ', i.e., dispersive trans-
t 10, 13

Finally, for vp* & 1+2v it follows that

P(k, u) —1 —Cu'" ' —C, k u'" (30)

Turning now to the cases of infinite ~, , 1&vp*~2, we
obtain for vp* ~ 1+2v

P(k, u )-1—Cu"" ' —C, k

hence

Our interest centers on long times, i.e., low u values,
u «1. Now one should remark the very important fact
that the evaluation of Eq. (34) requires the knowledge of
f(k, u ) values for k values of the order of unity. In fact
these values are in many cases dominant.

Thus we are in the regime k »u. For a relatively con-
venient discussion in the rest of this section we restrict
the treatment to one dimension; a generalization to
higher dimensions will be presented elsewhere.

We continue by taking the Laplace-Fourier transform
of the stepping probability, Eq. (14), which results in

P(k, u ) = Ag' J dt e '"" "'Sir —t')r ", (35)
0

and thus

p(k, u )- (31) (36)

where the sum runs over all integers except r =0. This
yields

g(k, u )=2A g cos(kr }e "" r
r)0

Hence, differentiating twice with respect to k it follows
that (r (t) ) —t This is a.gain our expression for anom-
alous transport: for v & —,

' the transport is dispersive
while for v& —,

' it is enhanced.
Summarizing the results for the mean-squared dis-

placement we have for long times

vp*&1+2v, (r (t)) —t

vp ) 1+2v, (r (t)) —t

for vp*&2 and

vp*&1+2v, (r (t)) —t ",
vp* & 1+2v, (r (t)) —t "

(32a)

(32b)

(32c)

(32d)

for 1 & vp* & 2. These expressions can be interpreted as
follows. Keeping v fixed while varying p* we observe
that the exponent a reaches a plateau for small p*, Eq.
(32c), and for large p*, Eq. (32b). For small p,

* we have
anomalous diffusion which is either dispersive for v & —, or
enhanced for v& —,'; for large p' the behavior is always
Brownian. In the intermediate p* region, the exponent u
varies linearly between the limiting cases: for v & —,

(r (t) ) is given by Eq. (32d) and for v& —,
' by Eq. (32a),

respectively.
As pointed out above, the analysis of p(k, u ) is compli-

cated for coupled f(r, t ), a fact which renders delicate the
derivation of S(t), the mean number of distinct sites visit-
ed in time t. Assuming translational symmetry for the
underlying lattice there is a simple relation between S(u)

1 —P(k, u) =C, u r+ C2k' . (37)

As we will show in the following, this expression is also
sufficient for the calculation of Po(u) and, using Eq. (33),
also for the evaluation of S (u } and S(t}.

As a first step towards establishing Eq. (37) let us con-
sider the special cases k=0 and u =0 in Eq. (36). For
k =0 it follows that

I /v

1 —P(O, u)=2A g
0 r

(38)

The sum in Eq. (38) converges for p —1/v) 0, i.e., pv & 1,
as stated before. If also p —2/v&0, i.e., pv&2, holds,
then the leading term in Eq. (38) is proportional to u.
For 1 & pv &2 we may approximate the sum by an in-
tegral over r. A change of variables, x =ur ' shows that
the leading term is now proportional to u" ', in agree-
ment with Eq. (16). The details are presented in the Ap-
pendix, and we find the following general form:

1 —y(o, u)-C, ur, (39)

We obtain 3 from the normalization condition
1((0,0)=1; thus A =1/[2$(p+1 —1/v)] where g is the
Riemann-g function.

As stated before, the analysis of P(k, u) is delicate. We
only outline the procedure here, and will refer to the Ap-
pendix for the details. The main factor is that one can, to
a very good approximation, express the term 1 —g(k, u)
needed in the integration of Eq. (34) as
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where

y =min(pv —1, 1)

and

—2A vl (1—pv), 1 & pv & 2

2A g(lj. + 1 —2/v), lj,v) 2 .

For u =0 we similarly find

1 —g(k, O)=23 g
0

(40)

(41)

(42)

C3-—'

Ci
E&1

n'( I —e)cz

C 1 1&E&2 .
sin(n. /e)ecz '

(48)

Using Eq. (47) we now calculate $(t) by taking the La-
place inverted form of Eq. (33},which then gives

C4t~, @&1

C~" 1 2
(49)C4t~~', 1&a&2

The sum in Eq. (42) again converges for pv) l. If also

p —1/v —2&0, i.e., pv& 2v+1 holds, then the leading
term in Eq. (42) is proportional to k . For 1 (pv & 2v+ 1

we can again approximate the sum by an integral over r.
The change of variables x =kr shows that the leading
term is now going as k '" " . We present the details in
the Appendix. Here the general form is

and the prefactor C4 is

C ='
4

vr'( I —e)C2
E&1

I (1+y)ci
e sin(m. /e)cz '

1&E&2.
I (I+y/e)C, ' '

(50)

1 —itj(k, O) —C2k',

where

Summarizing the results for different domains, see Eqs.
(45), (48), and (49), one finds that S(t) shows a rich pat-
tern, namely, (i) for v & —,

' and
E=min((pv —1)/v, 2},

3 mcosec[(p —I /v)~/2]
p —1/v&2

C, = r(l +1—1/v)
A g(p —1 —1/v), p —1/v) 2 .

We remark now that the additive combination of Eqs.
(39) and (43) leads to the claimed expression, Eq. (37).
We have carefully checked Eq. (37), by numerical evalua-
tion of the sum in Eq. (36) for whole series of parameter
values. Expression (37) holds very well, as we demon-
strate in the Appendix. The only place where one has to
be careful is the region k «u; as discussed before, there
the functional dependence is given by Eqs. (21), (23), (28),
and (30). Numerically, however, these equations are very
similar to Eq. (37) since for k « u the leading, u-

dependent term always dominates.
Furthermore, logarithmic corrections arise at the

crossovers between the characteristic functional depen-
dencies in Eqs. (41) and (45). Not to burden the descrip-
tion any further, we disregard these corrections here.

Inserting now Eqs. (37) and (39) into Eq. (34) one has

1 &ljv& 1+v, S(t)-t"
1+v(lj,v(1+2v, S(t) t", -
1+2v & pv &2, S(t)—t'"

2&pv, S(t)—t'

(ii) for —,
' & v&1 and

1 & pv & 1+v, S(t)-t"'
I+v(ljv(2, S(t)-t',
2&pv&1+2v, S(t)—t' '""

1+2v & pv, S(t)—t '

and (iii) for 1 & v and

1&@v&2, S(t)-t""
2&ljv&1+v, S(t)-t,
I+v(pv«1+2v, $(t)-t'"j'
1+2v&ljv, S(t) —t'

(5 la)

(51b)

(51c)

Cu&
PQ(lj)— f dk

C& u ~+ C2k'
(46)

P (u)-' C3u, 1 &E &2 (47)

In the same vein as before, for E & 1 the integral con-
verges even for u =0. The leading term is thus propor-
tional to u~ '. For E & 1 the integral diverges for u =0,
and the main contribution to the integral stems from the
small k region. We can then safely extend the integration
in Eq. (46) to infinity. The change of variable x =k/u~~'
shows that the leading term is now proportional to
u ' '. We find, therefore,

C3u~ ', E&1

To demonstrate the typical dependence of the exponent
of S(t), Eq. (2), on p and v we have plotted in Fig. 2 the
exponent p as a function of p for various values of v.

We interpret our results [Eqs. (51)] for S(t) along the
lines used for describing (r (t) }, Eqs. (32). Keeping v
fixed and varying p we observe that p reaches the value —,

'

for large p irrespective of v. This corresponds to the or-
dinary 1D random walk and results in Brownian motion.
For small and decreasing p, the exponent p drops linearly
to zero. This is because for small p values, S(t) is bound-
ed from above by the mean number of steps per time unit.
It turns out that the exponent of this quantity also drops
to zero for low p values. The intermediate regime is
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p phd

e

p~- + -eW+ p

Notoriously difficult for numerical simulations are transi-
tion regimes, and in this respect our system makes no ex-
ception. In the domain 2 & p & 3 the approach to straight
lines is very sluggish and the slopes computed by the re-
gression analysis lie somewhat below the theoretically ex-
pected values; evidently for a closer agreement one would
have to go to much longer times.

To close this discussion on the S ( t ) simulations we
reiterate our major finding, namely, that the dependence
of the parameter P on p is here nonmonotonic, showing a
marked maximum for p=2, in excellent agreement with
the theoretical expectations from Fig. 2 ~

V. CONCLUSIONS

FIG. 4. Summary of the numerically determined asymptotic
behavior from Figs. 3 and 4. The slopes a are presented as a
function of p; we use dots for v=

2
and circles for v=1. The

solid lines give the analytically expected behavior, Eqs. (32).

s(t)
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2.0
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1.7 40
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FIG. 5. The mean number of distinct sites visited, S(t), is
plotted as a function of time on log-log scales. Here v= 1 and p
is given paratnetrically [for clarity the S(t) curves for p, values
larger than two are dashed].

(r (t)) for marginal values of p* (p*=2 and p*=3, or
p* = 4 and p* = —,', respectively).

The results of a numerical analysis of S(t) are shown in
Fig. 5. Displayed is S(t) as a function of t on a log-log
scale for d= 1 and v= 1. We have varied p between 1.2
and 6. As for (r (t) ) the numerical results of S(t) tend,
for longer times, to straight lines. However, there are,
depending on the p values, marked differences. Whereas
for p~3 a straight line behavior is reached within ap-
proximately 10 time steps for p & 3 it takes considerably
longer.

The computed results clearly show that the slopes at
t =10 reach a maximum for p=2. This finding is in
agreement with the theoretical predictions shown in Fig.
2 and summarized in Eq. (51). We have also performed a
linear least-squares fit for time intervals 10 &t &10 .
The fitted slopes follow as a rule reasonably the theoreti-
cally expected p dependence; especially remarkable is
that for p, around 1 the behavior goes clearly as P=p —l.

In this work we have shown that CTRW's allow the
straightforward extension of Brownian motion to anoma-
lous transport, both in the dispersive and in the enhanced
cases. Whereas in the CTRW framework the dispersive
transport may also be obtained from decoupled kernels, '

the enhanced diffusion can only be achieved by using ker-
nels which couple hierarchically time and space, e.g. , Eq.
(14). The major advantage of using random walks prefer-
entially to diffusion-type equations is that random walks
offer a dynamical picture of the motion, which allows one
to follow the course of chemical reactions in complex sit-
uations, as we have already demonstrated for dispersive
motion. '

The particular kernel used, Eq. (14), leads to a very
rich pattern in the transport phenomena. For the mean-
squared displacement the enhanced diffusion of chaotic
dynamics appears as a special case: the transition shows
an intermediate zone between the Brownian motion and
the fully developed enhanced diffusion. Interestingly, an
intermediate zone is also found for dispersive transport,
where the transition between Brownian behavior and
largest possible dispersion is gradual.

The situation is more complex for S ( t), the mean num-
ber of distinct sites visited, as becomes clear from Fig. 2.
Since only the turning points of the random walk are con-
sidered as sites visited, S(t) may not grow faster than
linear in time. The effect of enhanced diffusion is there-
fore only visible in low dimensions for which a sublinear
behavior is expected for ordinary walks. Moreover, for
small p the exponent of S(t) tends to zero, while that of
(r (t)) reaches a plateau. These behaviors would change
considerably if not only the turning points but the whole
trail of the random walk track were accounted for.

Whether S(t) in its present form or in a form which in-
cludes the whole trail is the relevant quantity for the
description of reactions and relaxations in turbulent flows
must be further investigated. However, even the S(t)
analysis performed here displays the richness of behavior
which can be found when coupled-memory terms are in-
vestigated.

As a note, we remark that nowadays the comparison to
experimental findings should be much enhanced, since
careful measurements should become available. We feel
that the method of choice is to use fluorescent probes,
which are excited by a laser, so that one attains a high
spatial resolution and one does not, through the marking,
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interfere with the flow process. A series of pictures of jet
flows was indeed made visible through luminescence by
Dimotakis et al. Note that up to now the standard
means of marking the velocity regions were by injection
of color plumes or by smoke (aerosols, oil fog). These
means are not very satisfactory, since one has to put the
markers exactly where the vorticity is generated, which
taken strictly is impossible; hence on a small scale the
interface is marked only roughly. For more precision one
has to revert to tracking the molecules of the turbulent
flow by themselves and luminescence measurements are
an obvious candidate for such tracking.

Summarizing, the Levy-walk-CTRW approach pro-
vides a unified theoretical scheme for both types of anom-
alous transport: dispersive motion in disordered materials
and enhanced diffusion in turbulent motion. It is conjec-
tured that spatial and temporal resolved observations of
excited particles in turbulent flows could provide useful
information to further our knowledge of such complex
dynamical systems.
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APPENDIX

In this appendix we derive some of the formulas out-
lined in the main text. We start with an analysis of
1 —g(k, u) relevant for the integration in Eq. (34) of the
main text. We begin with the two limiting cases k =0
and u =0. For k =0 one has Eq. (38):

f(u)=2Au g r " '+ '=2A((@+I—2/v)u,
r)0

(A4)

where we introduced the Riemann-g function, Eq.
(23.2.1) of Abramovitz and Stegun. Comparison of Eqs.
(A3) and (A4) to Eq. (39) gives Eqs. (40) and (41) of the
main text.

For u =0 one has Eq. (42):

(k) = 1 —P(k, O) =2A
@+1 —1/v (A5)

We again must have pv) 1. For p —1 —1/v) 1, i.e.,

pv) 2v+1 we may even expand the cosine up to the k
term and we expect 1 —P(k, O) —C2k, as we subsequent-

ly show. Consider again first the case p —1 —1/v( 1, i.e.,
1 (pv (2v+ 1. Reverting (A5) to integral form one has

(k)=2A f dr p+1 —1/ (A6)

As before, we extend the integration to zero, a fact which
introduces corrections of the order k . Setting now

y =kr one has

g (k) 2 Aki" —t tvf
0 yA

(A7)

with n =p+ 1 —1/v and 1 & o. & 3.
The integral in Eq. (A7) can now be readily evaluated

by integration by parts. Depending on whether 1 & a & 2

or 2 & a & 3 holds, one integrates once or twice and makes
use of the relations (3.761.4) or (3.761.9) in Gradshteyn
and Ryzhik. Both cases lead to

where in the last line we made use of the Cauchy-
Saalschutz expression for negative arguments of the I

' function, remembering that —2 & —pv & —1. Equation
(A3) can also be obtained directly by integrating once by
parts.

For pv & 2 we expand the denominator of Eq. (Al) to
order u and have

I/v

f(u)=1 —P(O, u)=2A g p+ 1 —1/v (Al)
1 —cosy ~ sec(avr/2)

o y~ 2I (a)
(A8)

Evidently, the sum in (Al) converges for @+1—1/v) 1,
i.e., pv ) 1. For p+ 1 —2/v ) 1, i.e., pv ) 2 we may even
expand the exponent to first order in u, and we expect
1 —P(0, u) —

C& u, as we subsequently show. Consider,
however, first the case 1 & pv & 2. We approximate the
sum by an integral, which leads to

therefore

g(k)= A vr cosec[m(p, 1/v)/—2] k„
r(p, +1—1/v)

a result also obtained by Gillis and Weiss in their study
of Eq. (A5). For pv) 2v+ 1 the expansion of cos(kr) in

(A5) to lowest order in k gives
1/v

f(u)=2A f dr
)M+ 1 —1/v (A2) g(k)= Ak g r "+'+' '= Ag(p —1 —1/v)k

r)0
(A 10)

where 0= 1. Extending the integration from 0 to 0 intro-
duces only a term of the order u, which will turn out to
be less than the leading contribution. We thus set 0=0
in (A2) and make the variable transformation x =ur'~ .
Thus

where, again, we expressed the sum in terms of the j
function. Comparing Eqs. (A9) and (A10) to Eq. (43) of
the main text gives Eqs. (44) and (45).

In the discussion of the main text, for the integration
leading to Po(u), Eq. (46), we approximated 1 —g(k, u)
through Eq. (37):

f(u)= —2Au" 'vf dx x "(e —1)
0

= —2Au "~-'vr(1 —pv), (A3)

1 —1((k,u) =C, ur+C2k', (A 1 1)

i.e., of a sum of two terms each having the structure of
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FIG. 6. The function 1 —glk, u) vs k is plotted on log-log
scales. The parameters p, v are as indicated, u is given parame-
trically. The dashed line denotes the case u =0,
1 —P(k, 0) —C, k', Eq. (43).

FIG. 7. Same as Fig. 6 but for the parameter @=2.5.

Eqs, (A3) or (A4) and Eqs. (A9) or (A10), respectively. In
order to show that Eq. (All) leads to a numerically
correct behavior for 1 —g(k, u ) we display in Figs. 6 and
7 the situation for various parameters. Plotted are the
numerically calculated 1 —g(k, u) as a function of k on a
log-log scale for various values of u. Also shown are the
asymptotic u =0 forms, 1 —g(k, 0) —Czk' which are
given as broken lines. The exponents were chosen to be
v=1 in both figures, while p takes the values 1.5 and 2.5.
In both figures the shapes of the functions 1 —P(k, u)
show a marked crossover from a u-dependent constant at
k «u to a Czk' behavior at k )&u. This turns out to be
the important fact in the integration in Eq. (46), as dis-
cussed in the main text.

Furthermore, in applications one should be well aware
of the fact that Eq. (All) is only a handy approximation.
Thus it cannot be used in the calculation of (r (t)),
which requires the exact determination of the second
derivative of lt(k, u ) with respect to k, see Eq. (17). For
(r (t)) one has to proceed as exemplified in the main
text.

To close this appendix we consider the integration in
Eq. (46),

y —1

Po(u) = f dk

C1u ~+ C~k'
(A12)

where 0(e &2, see Eq. (44). This form also appears in
Ref. 37. For e & 1 the integral converges even for u =0.
The leading term of Po(u) is thus

C, u~-' C u~-'
Po(u) = f dk k

Cpm o C~m'( I —e)
(A13)

~1/e y/e —1C1 u
Po(u)=, cosec(vr/e)

Cz 'e (A14)

where we used Eq. (3.222.2) of Gradshteyn and Ryzhik,
1/e —1

cosec(~/e) = dx
o 1+x (A15)

Comparing Eqs. (A13) and (A14) to Eq. (47) gives Eq. (48)
of the main text.

For e) 1 the integral is dominated by the behavior of the
integrand at small k. We thus can shift the upper in-
tegration limit to infinity. The change of variables
x =Czk'/(C, u~) leads to
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