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A new class of exact scalar Green's functions is presented. These functions solve Auid dynamics
problems analogous to lens design problems in optics. In particular, given a point signal at a
specified location, the Green's functions discussed here describe waves that propagate asymptotical-
ly to specified image points. The geometry of the target determines the structure of the background
medium, which may be interpreted to be an acoustic or optical Auid, or a curved space-time. There
is no restriction to spherical or axial symmetry. Included in the class are the known propagators for
massless fields in Rindler space and in a space of constant negative curvature. In the latter case, the
Green's function derived here is the analog of the Green's function that describes free-particle non-
relativistic quantum mechanics in a space of constant negative curvature. In general, the
waveforms of this class are multiple bubbles that separate from a spherical initial pulse and con-
verge monotonically on point singularities or zero-equipotential surfaces of a pair of underlying
electrostatic potentials.

I. INTRODUCTION II. GENERAL FORM OF GREEN'S FUNCTIONS

The fundamental problem of fluid acoustics is to find
the pressure field due to a localized sound source in an in-
homogeneous medium. There are exact solutions for a
variety of patterns of inhomogeneity that vary in one di-
mension. However, absent radial or certain cylindrical
symmetries, problems with multidimensional variations
are generally treated with standard approximations.
Here, as an addition to the library of exact solutions, I
present an infinite class of Green*s functions in which all
spatial dimensions can enter. As I shall explain, this class
enables exact solution of the wave propagation analogs of
certain boundary-value problems in electrostatics to
which the traditional method of images applies. They
also provide an implicit way to sum, albeit in a limited
context, Hadamard series for an infinite class of massless
fields propagating in curved spaces. These functions also
provide possible end points for "transmutations" of sys-
tems with inhomogeneous media into systems with
known solutions.

The solutions of interest arise from the following prob-
lem: Design a fluid medium such that a point acoustic
signal at a specified location asymptotically "illuminates"
images at a specified set of points, and asymptotically
leaves all other points "dark. " I address this problem us-
ing the scalar wave equation

2n (r) —V Q= —4sr5 (r —r, )5(t) .
t)t

In (1.1), g may be interpreted as the acoustic pressure due
to a unit velocity pulse at r, in an inhomogeneous medi-
um characterized by the refractive index n (r). Units are
chosen such that the reference value n(r&)=1. As we
shall see, the signa1ing problem is a convenient construct
that allows one to find solutions of an infinite class of
wave equations of the form (1.1) using methods of elec-
trostatics.

A simple one-dimensional analog of the three-
dimensional medium in the problem above is a string
stressed and weighted in such a way that the propagation
velocity c (x) = 1 In (x) vanishes at a pair of prespecified
points. Depending on the relative position of the source,
either or both of these points may then be interpreted as
the "target" of the initial pulse. The general solution for
the (1+1)-dimensional homogeneous wave equation in
the singular case with a double zero, and therefore only
one target point in the velocity profile, c(x)=1/n(x)
=(ax+&), has been derived for other purposes by
Synge. Synge's wave in one spatial dimension has prop-
erties that suggest the existence of similar solutions under
more general conditions and in higher-dimensional
spaces. The structure of his solution is preserved in the
presence of derivative and mass terms in the wave equa-
tion. The double-zero profile for c(x) allows an exact
WKBJ solution in Schrodinger theory and admits an
infinite invariance group of point transformations. For
completeness, the (1+1)-dimensional Green's function
for the more general two-target profile c (x) = (ax
+b)(cx +d) is derived in the Appendix. As shown there,
the derivation follows easily from a combined rescaling of
the wave function, conformal transformation of the
metric, and imposition of translational invariance. The
two-target wave function has an underlying Hamiltonian
structure which determines the form of the refractive in-
dex and again hints at generalization.

To create a three-dimensional analog of the weight-
ed elastically supported string, I proceed as follows.
Given a unit impulse at the end point, a semi-infinite, uni-
formly weighted and tensioned string, embedded in
a uniform elastic medium, takes the shape
B(t —x) {Jpo(t —x )' }, where e(x) is the unit step
function, Jo the Bessel function of order zero, and p the
ratio of the elasticity of the background to the string ten-
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sion. To describe a three-dimensional excitation, it is
natural to make three changes in the (1+1)-dimensional
Green s function. First, to impose an initial condition
appropriate to three spatial dimensions, I introduce an
initial unit velocity pulse via a spatial derivative. Second,
I introduce a mapping that smoothly associates each spa-
tial string point with a three-dimensional wave surface
f (r). In light of Fermat's principle, the magnitude of f
plays the role of a geodesic coordinate measured along
the rays of geometrical optics. This interpretation will be
used below to make a connection with analogous prob-
lems in quantum mechanics. Third, to maintain energy
flux conservation I introduce an overall spatially depen-
dent multiplicative factor A (r).

On implementing these changes, the general trial form
for a class of solutions of (1.1) is the d'Alembert wave
function

[e(t —f)J (p(&' —f')' ')] .
2 af

The parameter p in (2.1) can be interpreted as a scale of
the granularity of the background medium or as a mea-
sure of its curvature when it is interpreted as a Riemanni-
an manifold. To maintain the connection with optics and
acoustics, discussion here is confined to cases in which p
is real. To ensure that there is an initial outgoing spheri-
cal wave, I shall further assume that the background is
locally flat, homogeneous, and isotropic, so that the am-
plitude A and wave front f obey

lim f =
l
r —r, l, lim A ( r )f ( r ) = 1 . (2.2)

r~r[ P~PI

On substituting (2.1) into (1.1), one observes that (2.1)
will be an exact solution of (1.1) if the wave surface
satisfies the eikonal equation

(2.3)

energy transport is governed by

(2.1)

V ( A Vf ) =4n6( r r, ), . — (2.4)

and diffraction in the medium is described by the reduced
wave equation

V A +p, lVfl A = —4mB (r —r, ) . (2.5}

Source term aside, Eqs. (2.3) and (2.4) are standard in the
ray approximation. The Helmholtz relation (2.5) is spe-
cial to this approach. It allows dispensing with third-
and higher-order terms in the infinite wave-front series'
that would otherwise describe the Green's function g.
Given (2.5), the geometrical optics approximation is ex-
act, in that the ray interpretation holds independent of
frequency, and there is no constraint on the spatial inter-
val over which n (r) can vary significantly. "

III. SOLUTION OF THE SIGNALING PROBLEM

Equations (2.3)—(2.5) are analogous to the second step
in a geometrical optics analysis in which one introduces a
complex wave function A exp(if) and looks for a series
solution to (1.1). Here, however, there are invariance
properties that permit a closed-form solution of the sig-
naling problem. To make this invariance explicit, rewrite
(2.1) in the form

g=cr(r)G+(f, t), (3.1a)

where the amplitude cr = Af, local homogeneity (2.2) re-
quires o'(r&)=1, and G+(r, t) is the forward propagator
of a Klein-Gordon particle with mass p.

In the form (3.1a), we may interpret g as a special form
of progressive wave' in a curved space in which the wave
surface function f (r) plays the role of radial coordinate.
To make the curved-space interpretation clear, it is in-
structive to write (1.1) in the covariant form

g" P.„(x)=—5 (x), (3.lb)

where x is now the four-vector position, the
d'Alembertian is taken with respect to the metric

ds =n dt —ndr (3.1c)

and a multiplicative factor n '(r) has been applied to
(1.1).' Equation (3.1b) is equivalent to the claim that
there exists a family of massless fields propagating in a
curved space with "conformastat" metric' (3.1c). Equa-
tion (3.1a) amounts to the further claim that this field can
be transformed, by rescaling with a spatially dependent
factor, into a massive Klein-Gordon field propagating
freely in Minkowski ray space. The requirement of con-
formal equivalence constrains the amplitude and wave
surface. In particular, in terms of o and f, Eqs. (2.4) and
(2.5) can be written in the form

pV [oio(pf)]=0,
pV [crko(pf )]=—4m5 (r —r)),

(3.2a)

(3.2b)

where io(z) =sinh(z)/z and ko(z) =cosh(z)/z are
modified spherical Bessel functions of order zero. The
proposition that follows shows that the appearance of the
potentials

0 =i ~io(i f » 0 =i ~ko(i f ) (3.3)

in (3.2) allows the nonlinear equations (2.3)—(2.5}, and
therefore also the signaling problem, to be solved in
closed form by a transformation into the language of elec-
trostatics.

Proposition. Let the asymptotic target in the signaling
problem defined above be a set of doubly differentiable
closed surfaces ISI. [S] may be a single surface enclos-
ing the source point or multiple closed surfaces to which
the source is exterior. Let I be the electrostatic Green's
function with respect to the set of surfaces [S) (now to be
thought of as grounded conductors) and a unit charge at
the source point r, . In terms of the P,. in (3.3),
I"=Pz

—P, . Let P*=P2
—1/r be an otherwise arbitrary

potential satisfying V P =0 within the domain of
influence. Define

=1—
4z

(3.4)

f =p 'tanh 'lP&/$2l =p 'tanh '(1 —P) . (3.5)

Then a family of solutions of the signaling problem is
given by f=o(r)G+(f, t), where G+(r, t) is the forward
propagator of a free Klein-Gordon particle, and the wave
surface is
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In (3.5), Vf(r, ) is equal to the radial unit vector e.
1

and f (r, ) =0. The amplitude is

1 —r/R
1+r/R' (4.3)

1I

ko(pf) —io(pf )

and the refractive index in (1.1) is
f =(2p) 'ln 1+r (1/R '+p)

1+r (1/R ' —p)

and the wave surface [cf. (3.5)] is
(3.6)

(4.4)

1 V

2p 13( 1 —f3/2 )
(3.7)

Proof. The proof follows from observing, first, that
(3.4) —(3.7) imply, via (3.2) and (3.3), that the conditions
(2.2) —(2.5) hold, and therefore that one has constructed a
solution of (1.1) in the form (2.1). Also, it follows from
(3.7) that the propagation velocity c =1/n is zero on the
points I =P=O, which define the target image, as re-
quired by the signaling problem.

One can also show the auxiliary potential P* only in-
duces smooth behavior in n, so that the singularity struc-
ture of the medium is entirely determined by the
geometry of the target. In particular, from (3.3) and
(2.4), the diff'erential equation

dr
p =piVQ2 $2Vpi (3.8)

IV. EXAMPLES

A. Spherical symmetry

Let the target be a spherical shell of radius R, with the
source at the center. Then the analog electrostatic
Green's function is

determines the ray paths. By Gauss's theorem and Eqs.
(3.2), (3.8) implies that, other than at the source, there are
no singular focal points within the domain of influence of
the solution (3.1). This is an important restriction from
the acoustical point of view. It precludes using the func-
tions (3.1a) specified by (3.5) and (3.6) to describe typical
waveguide solutions for P.

Given that the Green's functions (2.1) are fully
specified by the potentials (3.2) and the local homogeneity
condition (2.2), the full apparatus of electrostatics is
available to attack suitable boundary value problems. In
particular, the construction above allows one to associate
the signaling problem in cases in which the set of target
points [S ) form a zero-equipotential surface generated by
point charges, with electrostatics problems to which the
traditional method of images applies. ' In Sec. IV, I illus-
trate the method by application to simple cases with
spherical and planar symmetric targets, and to targets
consisting of arbitrary sets of disconnected points.

In (4.4), local homogeneity (2.2) has been used to set

1 1p= —+
R R'

From (3.7) and (4.3), the refractive index is

1

[1+r(1/R '+p)][1+ r (1/R ' —p)]
From (3.6), (4.1), and (4.4), the amplitude is

(4.5)

(4.6)

o=io '(pf) . (4.7)

There are two classes of solutions, distinguished by the
relative positions of the targets: (i) (pR )

' ~ 1 and (ii)
(pR ) & l. In case (i), the image lies at infinity, and the
wave front acquires infinite radius at the finite time

t =—coth
p

1

pR' (4.8)

In case (ii), the wave front asymptotically approaches the
image at the horizon r =R.

In the absence of the auxiliary potential P*, the refrac-
tive index profile (4.6) becomes

p2 2
(4.9)

Taking the metric form ds =dt —n dr, (4.9) yields the
constant negative curvature space defined by

d =dt— 1 dI'
(1 2 2)2

(4.10)

Constant curvature spaces have been used as background
in studying massless quantized fields' and in exploring
the transition from quantum to classical mechanics. To
make contact with the literature, I will show that the
Green's function associated with the metric (4.9) has a
quantum-mechanical analog with essentially the same
Fourier structure, on a constant negative curvature
space. It is well known that in the geometrical optics in-
terpretation the rays for a solution of (1.1) follow geo-
desics in the space defined by the underlying metric. '

Given spherical symmetry, we can therefore interpret f
as the radial geodesic coordinate p in ray space, and write
the Fourier representation of the Green's function

(4. 1)

Given spherical symmetry, the auxiliary potential is a
constant, and we may write

'(pf )G (f, r),
following from (4.4) with 1/R '=0, as

1
G(p, co)= exp[i p(co —p )'~ ] .

2npio(pp)

(4. 1 1)

(4.12)

/*=1/R',

where R' is an arbitrary length. From (3.4),

(4.2)
If we replace the quadratic energy dependence co in
(4.12) by the linear form 2mE appropriate to a first-order
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B. Planar image: Green's function in Rindler space

Place a point source on the z axis at a distance zo from
the plane z =0, which we take to represent the receiver
and bound the domain of influence. The appropriate
electrostatic analog is a point charge located at the
source point and an infinite grounded conducting plate at
z =0. We wish to obtain the exact field for which any
wave surface enclosing the source is projected onto the
z =0 plane.

Following the discussion above, make the boundary of
the domain of influence the z =0 plane by placing a unit
charge at (0,0,zo) and an image of opposite sign at
(0,0, —zo). Then the electrostatic Green's function is

I = 1/r] —1/r2,

where the distances from sources to field point are

r; =[(z —z;) +R ]'

1~2~ z]zo~z2zo ~

(4.14)

(4.15)

Set the auxiliary potential P*=0. Given (4.14), the
domain of infiuence is the half-space z ~0. From (3.5)
and (4.14), the wave surface is given by

r2+r~
ln

2p r2 r 1

and the amplitude is

2(zz )'

(4.16)

diffusion process, we have the Schrodinger Green s func-
tion

Gs(p, E)= . exp[ip(2mE —p )'~ ] . (4.13)
1

2irpi o (pp )

Allowing for a difference in normalization, (4.13) is iden-
tical to the Green's function used by Gutzwiller' in com-
paring the quantum energy spectrum in a space of con-
stant negative curvature to the length spectrum of classi-
cal periodic orbits in a chaotic dynamical system. Using
the same procedure, one may write down an explicit
Schrodinger Green's function in ray space in every case
in which (3.5) can be inverted to give r in terms of f.

The Green's function (4.13) differs from its free-particle
counterpart in two respects: The signal strength factor
io (pp), which maintains the local conservation of ener-

gy flow and the term —p in the phase, which corre-
sponds to a phase factor exp( —it@ /2m ) in the quantum
propagator Gs(p, t), and here scales the inhomogeneity of
the fluid medium. That there is a relation between wave
propagation in an optically inhomogeneous medium and
the quantum mechanics of constant negative curvature
spaces has been pointed out by Balasz and Voros' in a
(2+ 1)-dimensional context.

c =1/n =2pz=z/zo, (4.18)

with a simple zero which insures the image is projected
onto the z =0 plane. From (4.18), we may write the un-
derlying metric as ds =2pz dt (2p—z) 'dr . On mak-
ing a conformal transformation by an overall factor 2pz,
one obtains the metric ds = (2ijz) dt dr—, which
characterizes a Rindler reference frame moving with con-
stant acceleration 2p. The Rindler Green's function
differs from the itj defined in the forward l~iht cone by
(4.16) and (4.17) by a multiplicative factor &n .

The geometry of the wave surface (4.16) is as follows.
The wave fronts are defined at time t by

r2

2pt

—2pt
(4.19)

In terms of cylindrical coordinates (R,z), (4.19) yields

R +[z —zocosh(2pt)] =zosinh (2pt)=(ro) (4.20)

C. OA'-center spherical image

The solution defined by (4.16)—(4.18) is a special case of
a more general class of Green's functions which are axial-
ly symmetric and associated with wave fronts that gen-
erate conformal maps from ordinary space to ray space.
In particular, the inverse relation to (4.16),

tanh(pf ) =
r2

(4.22)

conformally maps the surfaces f =constant into the
spheres (4.20). In the from (4.16), f itself is the electro-
static point-to-plane Green's function in a two-
dimensional Cartesian space with coordinates (R,z).

For a more general conformal map that extends the
planar and spherical symmetry examples, assume a spher-
ical target with the source off center. Place the source at
the origin, and let the target have radius Ro and center
(R =0, z =zo). The method of images suggests intro-
ducing the potentials

The wave front defined by (4.20) is a sphere of radius
ro(t), exponentially expanding and translating with time.
At time t, the center of the wave lies on the positive z axis
at z =e"'zo; it moves vertically in the positive-z direction
with exponential velocity in such a way that the wave
front approaches, but never contacts, the z =0 boundary.
Consistent with the presence of a background uniform
field, (4.20) shows that an observer co-moving with the
wave center experiences an acceleration of 2p along the
positive-z axis. The wave has a mirror image in the half-
space z (0. The rays in this model are surface arcs on
vertical sections of the one-parameter family of toroids

z +(R zotan—a) =zosec a, —m/2 a~a/2, (4.21)

whose centers of symmetry lie in the z =0 plane, to
which all rays are asymptotically normal. '

r]r2
(4.17)

Differentiating (4.16), one obtains the linear propagation
velocity

$2= 1/r,
q

[R +(z —z*) ]'

(4.23a)

(4.23b)
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with the image charge q at z *= (1 —
q )zo, and R o

=qzo.
For definiteness, set the image charge q & 1, so that the

source is external to the target sphere. Also, set the auxi-
liary potential /*=0. The geometry of the medium is
then entirely set by the electrostatic Green's function.
Since I =$2 —

P& from (4.23) has the same singularity
structure as the electrostatic Green's function (4.14), we
expect the index of refraction that emerges here to have
the spatial form of (4.9), which also has P* =0.

The wave surface is now given by inserting (4.23) into
(3.5), and the amplitude is

(4.24)

passing that there is a class of examples in which n is
nonsingular on a part of the boundary, which is then not
an asymptotic image. The simplest examples are those in
which one enforces a Neumann condition in which the
normal component of VP is zero on the boundary. For
one such case, set P&=const, and introduce an infinite
string of equally spaced, identical image charges, so that

„[R —(z —2zoj) ]'
1

2zoJ
(4.29)

and V/2 is transverse along the two planes z =+zo. The
wave fronts are then confined within the infinite slab—zo & z & zo, and the target surface lies at infinite range.

On inserting (4.23) into (3.4) and (3.7), we derive the re-
fractive index

1 zo Ro

p (P, P2 )
—R +(z —zo) Ro—(4.25)

Targets consisting of arbitrary disconnected points are
generated most easily by taking the p=O limit of (1.1), so
that a conformal transformation of the metric and a re-
scaling of P results in a massless field in Minkowski ray
space. Then (3.1) takes the form

i)j=o6[t —f (r)],
and Eqs. (3.2) become

V tr=0, V ((x/f)= —4~5'(r —r, ),

(4.26)

(4.27)

so that o and o /f play the roles of the potentials Pi and
Let Pz be generated by a single charge at the origin,

and let P& be generated by charges at arbitrary image
points (si, . . . , s„). Then the wave fronts are the zero-
equipotential surfaces generated by a positive charge of
magnitude t at the source point r, , and negative charges
at the s;, of magnitudes —

q; such that, by (2.2),

where p=gi(0)=q/z*. As anticipated, (4.25) has the
same structure as (4.9).

The wave surface geometry following from
(4.23)—(4.25) is as follows. For q (1 the wave front given
by (3.5) and (4.23) expands to infinite radius in finite time.
It then acquires negative curvature and converges asymp-
totically on the image point at R =O, z =zo. This is the
qualitative behavior of the wave fronts of the Maxwell
fish eye in geometrical optics.

D. Multiple point images

V. DISCUSSION

Presented here is a simple method for specifying a
Green's function that describes scalar wave propagation
in a bounded three-dimensional medium. The back-
ground medium may be interpreted as an acoustic or op-
tical fluid, or a Riemannian space. Two extensions sug-
gest themselves. First, the signaling problem on which
the discussion relies requires a smooth mapping from one
spatial dimension to three that does not allow singular fo-
cal points within the domain of influence. This precludes
using the present approach to describe in closed form the
waveguide structure of typical problems in fluid acous-
tics. A possible remedy is to allow multiple sources se-
quenced in time and distributed appropriately in space.
It can be shown that sources of this sort can be created
by allowing additional singularities in the scalar potential
P2, which carries the initial singularities of the Green s
functions discussed here.

Second, considered as a boundary value problem, the
signaling problem used as a starting point here is not well
posed. The source-target geometry is uniquely deter-
mined by the associated electrostatic Green's function.
But the structure of the background medium also de-
pends on an auxiliary harmonic function constrained
only by the absence of singularities within the domain of
influence. It would be interesting to specify the model
further, for example, by formulating it in terms of two in-
teracting scalar fields, one of which carries signals while
the other encodes the geometry of the background. The
dynamics of nonlinear models of this sort, with interac-
tion Lagrangian P, Pz, have been analyzed in part, in the
time domain in Yang-Mills theory, and in the context of
a perturbation from a flat space-time vacuum in quantum
cosmology.

q;
(4.28)
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E. Image at infinity: Two parallel bounding surfaces

In the examples above the refractive index n is singular
on the boundary of the domain of influence. I note in
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APPENDIX: ONE-DIMENSIONAL SIGNALING

Consider, as in the (3+1)-dimensional problems in the
main text, the (1+1)-dimensional wave equation for an
inhomogeneous medium
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Q2p Q2g
n (x) — = —5(x)5(t)

Bt2 Bx 2
(Al)

There are two ways to derive the analog of the (3+1)-
dimensional results in the text. For illustrative purposes
I first follow (2.1), and assume the solution of the source-
target problem takes the form

it|(x, t ) =o(x )G+. (f ( x ), t ), (A2)

where G+ (x, t) is the Green's function with the appropri-
ate initial conditions satisfying

a2

at2

a2
+p G+ = —5(x)5(t),

Bx
(A3)

and local homogeneity requires cr(0) =
~f '(0)

~

= 1.
Substituting (A2) in (Al), one obtains the three condi-

tions

(f tt)2 —n2

f"+2cr'f'/cr =0,
cr" +p (f') cr =0,

(A4)

(A5)

(A6)

q =n ', p =dq/dx . (A7)

With only one spatial dimension, (A4) is eff'ectively linear,
and (A4) —(A6) may be solved exactly in terms of the vari-
ables (A7). For convenience, set the scale p = 1. From
(A4) and (A5) and the local homogeneity condition, the
amplitude cr =q. Then in p-q space (A4) and (A6) give
the equation of motion of a particle of unit mass moving
in an attractive inverse-cube field with total energy

which are the (1+1)-dimensional forms of (2.3)—(2.5).
The solution is immediate if one follows (3.2) and intro-

duces one-dimensional potentials P, = cr cosh(p f ) and
Pq=cr sinh(pf ) that satisfy d P, /dx =0 by virtue of
(A5) and (A6). However, it is instructive to interpret
(A4) —(A6) as a Hamiltonian system with generalized
coordinates

On integration, (A8) yields the refractive index

n (x) =q =
I [1—x/x (E)][1—x/x+(E)]) ', (A9)

where the target points are

x+(E)=+ +1 1 1 +1
2E 2E 2E

(A10)

and a solution symmetric to (A9), with x+~ —x+, has
been suppressed.

There are two cases: (i) x+(E) & 0, E & 0, when there is
a single target at x =x (E), and the wave moves right-
ward from x =0; and (ii) x (E)&0&x+(E),
—

—,
' ~ E & 0, in which case two pulses moving in opposite

directions emerge from x =0.
From (A4) and (A9), the waveform is

1 —x /x+f (x )
=

—,
' e(x )ln

1 —x/x
E)0 (A 1 la)

f (x) =
—,
' ln

1 —x /x+
1 —x/x

—
—,
' &E &0, (Al lb)

where e(x) is the unit step function.
A second way to proceed takes advantage of the con-

formal flatness of 2-space to introduce the eikonal rela-
tion (A4) via a coordinate transformation. As above let

q =n ' . Under the coordinate transformation
dx = q dy, the metric underlying (Al) can be written

ds =n '(dt —dy ) . (A12)

k = —
q (x)d q/dx (A14)

Under the further conformal transformation g —+qP', the
wave equation takes the form

a' a' t +k (x)1('= —(5y) (5t), (A13)
Qt2 Qy2

where

p21q2 —E (A8)
On imposing translational invariance, we set k = 1 and
recover the equation of motion leading to (A8).
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