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Statistical equilibrium data from a time-ensemble data bank, generated for an anharmonic
(15+2)-particle chain [Henry and Grindlay, Phys. Rev. A 38, 2594 (1988)],have been used to calcu-
late coarse-grained distributions for odd-mode velocities, particle velocities, and nearest-neighbor
spring extensions. Each distribution proves to be Maxwellian in form. The mode-velocity tempera-
tures agree with the mode-energy temperatures reported previously (Henry and Grindlay, ibid. ).
The time-ensemble data were also used to calculate averages and correlation functions for odd-mode
energies, odd-mode velocities, particle velocities, spring energies, and their products. The dynami-
cal response of the chain in the statistical equilibrium regime is found to be largely described by the
behavior of modes 11, 13, and 15. These modes prove to be strongly correlated. The corresponding
averages and correlation functions are calculated for a microcanonical ensemble of eight harmonic
oscillators and compared with the time-ensemble results for the chain.

I. INTRODUCTION

In three earlier papers ' we applied the idea of en-
sembles to the analysis of the dynamical behavior of a
(15+2)-particle chain. The two end particles are held
fixed and each particle interacts with its nearest neigh-
bors via linear plus cubic conservative forces. Previous
authors had suggested that, when this chain is excited in
the 11th mode, it relaxes to equilibrium in some 200 mod-
el time units (or "seconds"). The presence of large mode
energy fluctuations in the putative equilibrium state made
this suggestion at best plausible. To investigate further
the question of equilibrium in this chain we generated a
numerical, constant-energy statistical ensemble. We in-
tegrated the 15 equations of motion numerically for 101
different starting conditions but a common total energy
(see Sec. II below), and stored the particle position and
velocity data at 1 "second" intervals over a period of 300
"seconds. " From this data bank we calculated a coarse-
grained energy distribution for each mode as a function
of time (because of the effects of round-off error, we re-
stricted the time interval to 250 s). For each mode, the
corresponding Boltzmann H function dropped oA' to a
minimum value at about 200 s, and maintained this value,
with minor fluctuations, to the end of the 250-s interval.
This type of behavior is generally accepted as indicating
an approach to statistical equilibrium. ' The much
smaller fluctuations of the mode H functions, compared
with the mode energies, provided us with the evidence of
relaxation we were looking for. This was further
confirmed by the fact that in the statistical equilibrium
regime (200 s, 250 s) the odd-mode-energy coarse-grained
distributions exhibited Maxwell-Boltzmann forms, in

agreement with an algebraic analysis of the three condi-
tions: (i) the H function is a minimum for each mode, (ii)
the number of ensemble copies for each mode is a con-
stant, in our case 101, and (iii) the total energy of the
chain is a constant. The mode temperatures determined
from these distributions ranged over two orders of magni-
tude. The solutions to the equations of motion of the
particles are reversible, since the interparticle forces are
conservative. Thus from our statistical-ensemble
analysis, we have evidence for a reversible approach to a
statistical equilibrium state, characterized by mode-
energy Maxwell-Boltzmann distributions and no thermal
equilibrium —an interesting collection of thermodynamic
and nonthermodynamic properties in a 17-particle chain.

By using higher-precision FORTRAN, we extended the
integration of one of these histories to 600 s before
round-off error became significant. The particle posi-
tions and velocities were stored at 0.1-s intervals over this
period. From the statistical-ensemble evidence, we as-
sumed that the (200 s, 600 s) data described a statistical
equilibrium regime. Treating these data as a time ensem-
ble, we calculated equilibrium mode-energy coarse-
grained distributions. These also proved to have
Maxwell-Boltzmann forms with a set of mode-temper-
ature values in agreement with the set obtained from the
statistical ensemble. Thus a time sampling and a history
sampling yield the same mode-energy distributions, i.e.,
the constant-energy surface in the 16-dimensional I
space for the odd modes is ergodic in the segment ac-
cessed by these histories. The histories are also very sen-
sitive to initial conditions, i.e., are chaotic, a fact that
we believe is not unrelated to the ergodicity.

The work described above dealt with the probability
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distribution functions for single modes; that is, the proba-
bility of, for example, the jth mode (in equilibrium) hav-
ing energy in the range [s., s +de ]. Two other ques-
tions come to mind. First of all, do other properties of
the chain (mode velocity, particle velocity, etc. ) exhibit
exponential distributions in the statistical equilibrium re-
girne? The fact that the mode velocities and particle ve-
locities approximately satisfy the equipartition theorem '

suggests that these two quantities do. Second, there is
the more general question of, what is the form of the
probability distribution function or density of states in
the I space of the chain? We can make two comments
about this latter function: (i) from the mode-energy re-
sults described above, the probability distribution is
clearly not a constant, as is the case for the constant ener-
gy or microcanonical ensemble of statistical mechanics; '

and (ii) the large fiuctuations in the mode energies are
evidence of strong interactions between the modes, and
hence we cannot expect the system probability density to
be a simple product of single probability densities; in oth-
er words, we should expect significant correlations be-
tween the dynamical properties of different modes. In
this paper we show that the mode velocities, the particle
velocities, and the spring extensions each exhibit
Maxwellian distributions in the statistical equilibrium re-
gime; we also show that, indeed, the off-diagonal correla-
tions for these quantities are significant. Because of the
ergodic nature of this region of I space, we are free to
use either the statistical or the time ensemble for this type
of analysis. We have chosen the latter option.

The material in the remainder of this paper is present-
ed as follows. In Sec. II we give a brief description of the
(15+2)-particle chain model and the numerical analysis
leading to the time-ensemble data bank. Section III con-
tains a discussion of the correlation functions for the
mode energies and a comparison of these results with the
case of an isolated system with eight harmonic oscilla-
tors. In Secs. IV —VI we describe the distributions and
correlations of the mode velocities, the particle velocities,
and the spring extensions, respectively. The last section,
Sec. VII, contains a brief discussion of our results.

II. MODEL

Consider a (15+2)-particle chain with particle labels
n =0, 1, . . . 15, 16. We assume clamped ends and nearest-
neighbor linear and cubic forces. The displacement of
the nth particle is denoted by x„; the boundary condi-
tions and equations of motion are written as

xo =x]6=0

xn =(xn+& 2xn+xn —I)

+p[(x„+,—x„) —(x„—x„,)'],
for n =1,2, . . . , 14, 15; p represents the nonlinear force
constant in these dimensionless units. The normal-mode
coordinates q are defined as

15

q =(1/2&2) g x„sin(jnvr/16), (3)
n =1

and corresponding frequencies

co~ =i sin( jn/32) .

We introduce mode energies

15

s =(q +co. q ) /2+(p /4) g A qi . q qkqiq
k, l, m =1

(4)

(5)

III. MODE ENERGIES

The time dependence of the mode Boltzmann H func-
tions and the numbers in both the statistical- and time-
ensemble data banks show that in statistical equilibrium
the mode-energy distributions possess a Maxwell-
Boltzrnann form. ' The large Aows of energy between
the modes indicate that the time dependence of the ener-
gies in different modes is likely to be strongly correlated.
We note that the constraint of constant total system ener-

gy imposes correlations even in the absence of mode-
mode coupling (see Appendix A and additional com-
ments below).

Define the correlation function for mode energies e~(t)
and sk(t) as

C(sj&ek)—:ejsk —sj ek & (6)

where the bar indicates a time average. We calculated
the correlation functions for the energies of the eight odd
modes (the even modes are forbidden with the initial con-
dition imposed here ) using data from the time ensemble
in the equilibrium period (200 s, 600 s). The results are
shown in Fig. 1. The largest correlation element is
C(e, ~, s»)=0.0421E0; E0 is the total energy of the sys-
tem. The C(cj, sk) elements are all normalized to this
value in Fig. 1. The diagonal elements decrease mono-
tonically with decreasing mode index to the value
C( e „s,) =0.748 X 10 ED. The off-diagonal elements
display both positive and negative values, and tend to
drop in magnitude away from the C(c,&&, e») position—
they range in value from

C(e, 3, s, ~)= —0.0276ED to C(e5, s,5)=0.000 561E02 .

(7)

It is clear that there are strong correlations between
mode energies and that modes 11, 13, and 15 dominate
the dynamic response of the system in the statistical equi-

The coeKcients A k &
are defined in Refs. 2 and 3.

The time-ensemble data bank was constructed as fol-
lows. Using quadruple-precision FORTRAN, we carried
out a numerical integration of the equations of motion (2)
for the case p=0. 8, total energy Eo=10, and initial
condition —the 11th mode displaced and released from
rest. The integration algorithm was a predictor-corrector
rnultistep method' '" with a time step of 0.01. The dy-
namic history between 200 and 600 s is free of round-off
error to better than 0.02%, and describes a set of statisti-
cal equilibrium states of the system. The chain particle
positions and velocities at O. 1-s intervals in the range (200
s, 600 s) made up our equilibrium time ensemble.
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c(c,c„) = Ic(c,,g)l ggg C(~,&k) = -lC(c.,q)l ~ c(Q,,j „)= Ic(j.,q „)I ~ c(q q„) =-lc(q q )1

FIG. 1. Three-dimensional histogram of the correlation func-
tion C(c, ck) for the energies c, of the eight odd modes. The
cross hatching indicates negative values. The columns have
been normalized to the maximum value C(c.», c.15)=0.0421EO.

FIG. 2. Three-dimensional histogram of the correlation func-
tion C(q, , q&) of the velocities q, of the eight odd modes. The
cross hatching indicates negative values. The columns have
been normalized to the maximum value C(q», q» ) =0.0352Eo.

librium regime.
It is interesting to compare this behavior with that of

the microcanonical ensemble of eight harmonic oscilla-
tors. This latter system is free of any mode coupling but
is subjected to the constraint of constant total energy.
%'e discuss this case in Appendix A and find that

C(e, e ) =0.0122EO, C(e, , e„)= —0.001 74EO, jWk .

(8)

This pattern of behavior is quite different from the
interacting-modes case —the diagonal elements are equal
and the ofF'-diagonal elements are both equal and nega-
tive.

diagonal mode-correlation elements C(q, qk ), jWk,

should be zero. Thus we interpret the nonvanishing q, in
Table I, and the nonvanishing o8'-diagonal elements, in
Fig. 2, as errors arising from the smallness of our 4001-
element data bank. The largest off-diagonal element
C(q&5, q&3) is 7%%uo of C(q&5, q&5). The corresponding har-
monic results (Appendix A) are

q~=0, C(q~, qj )=0.125EO, C(q, , qk)=0, j Ak . (10)

'.o

IV. MODE VELOCITIES

The average mode velocity q, and the average mode
velocity squared q'- calculated from the time-ensemble
data in the statistical equilibrium regime are shown in
Table I. The correlation functions C(qj, qk ) and
C(qj, qk) determined from the same data are shown in
Figs. 2 and 3, respectively. As before, these figures are
normalized to the largest value, namely,
C(q, 5,q» ) =0.352EO and C(q», q» ) =0.131EO. The di-
agonal elements decrease monotonically with decreasing
mode index to the values 0.00426EO and 0.000018 6EO,
respectively. In the case of C(q~, qk ) the off-diagonal ele-
ments range from

c(q, q„) =lc(q, q„)l NN8 C(q, q „)= -lC(q,. q „)l

C(q„,q»)= —0.0214EO to C(q, ,q»)=0. 0286EO . (9)

In a bounded system with conservative forces, such as
the (15+2)-particle chain, one might expect that, over
the long term, the average mode velocities j and the off-

FIG. 3. Three-dimensional histogram of the correlation func-
. 2 . 2

tion C(q, , q& ) for the square of the velocities of the eight odd
modes. The cross hatching indicates negative values. The
columns have been normalized to the maximum value

2 . 2 = 2C(q lq, q iq ) =0.131EO.
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TABLE I. Average odd-mode velocities and odd-mode veloc-
ities squared, calculated from the equilibrium time-ensemble
data. Distribution temperatures are 8, for the odd-mode ener-
gies, and Oj& for odd-mode velocities determined from the time
ensemble (Ref. 3) and (8, ) for the odd-mode energies deter-
mined from the statistical ensemble (Ref. 2).

Qwg
J

The correlation function for the square of the mode ve-
locities, Fig. 3, shows a similar pattern to that for the
mode energies, Fig. 1. The modes 11, 13, and 15 dom-
inate. The ofF-'diagonal elements lie in the range

C(q», q, 5)= —0.0392Eo to C(q9, q, 3)=0.001 15Eo .

1

3

5

7
9

11
13
15

—0.0026
0.0005
0.0024
0.0008

—0.0031
—0.0033
—0.0038

0.0012

0.04
0.13
0.25
0.43
1 ~ 38
2.45
3.05
3.52

0.04
0.15
0.22
0.36
1.00
2.83
3.03
4.90

0.01
0.08
0.21
0.36
1.26
2.21
3.22
3.54

0.04
0.15
0.24
0.38
1.07
2.59
3.04
3.73

C(q, , q ) =0.0260Eo, C(q, qk ) = —0.001 74Eo (12)

with jWk.
The average mode velocity squared is approximately

This indicates strong correlations between the modes and
contrasts with the harmonic behavior, Appendix A,
where

!~ODE 1 MRX - 6 92 -'- NODE i )FIX - o. OO

Oe2 O. S

-'~ MODE 5 MRX - 6.29 -'- NODE 7 i IRX - E). RR

1.0
I

2.0 3.0

-'q
i lQGE 9 MRX - 7. QG -'q NODE 11 i lRX - 6.79

5.0 10.0 O. O 5.0
I

:0.0

-'- MOUE 13 , lRX = 659 -- MGDL i5 ilRX = 6 52

5.0

K

I

10.0 O. O

I

5.0
Ki, j

I

!0.0

FI~. 4. Histograms of ]n(p, . ,Q~,. , ) vs the partition kinetic energy K... for the eight odd modes. n;, is the coarse-grained kinetic
energy distribution for the jth mode. The columns are normalized to the value shown in the top right corner of each graph. The
crosses indicate points with n;, 20. The dashed line is a best-fit straight line through the crosses.
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equal to the corregsonding mode temperature (see Table I
columns headed q, 8~, and ( 8~ ) ); this suggests that the
mode-velocity distribution is Maxwellian, Appendix B.
Assuming this conclusion to be true, we write the number
of j-mode copies with mode velocity in the range

[q, , q +dq ] in the form

dn,~=c exp —(K, /8J~)dq, , (13)

K, =(i —
—,
' )Eo/N) . (15)

If the kinetic energy distribution is given by (14). then the
coarse-grained distribution is

where K =q /2 is the kinetic energy and 8't the velocity
distribution temperature of the jth mode. From this re-
sult, the number of j-mode copies with kinetic energy in
the range [KJ, K/+dKJ] is

dn =
( 2c exp[ —(K, /8~) ]/QK. ]dK

To check the validity of this form for the distribution
function (13), we followed the approach used for the
mode-energy distributions. ' For the jth mode, the ki-
netic interval (O, Eo) was divided into N elementary cells
with individual extensions Eo/N . At each of the 4001-
data points in the equilibrium regime of the time ensem-
ble, the jth mode has a certain kinetic energy. The
coarse-grained kinetic energy distribution is described by
n;, the number of j-mode samples with kinetic energy in
the range [(i—1)ED/N, t'EOIN. ], i =1,2, . . . ,N . To the
ith partition we describe the kinetic energy

n; J.
= 3 exp —(K,. /8~~)/QK, (16)

A is a normalization constant. It follows from (15) and
(16) that ln(n; &K, ) is a linear function of the cell in-
dex i .Histograms of ln(n, VK, . ) versus K; J calculated
from the time-ensemble equilibrium data, are shown in
Fig. 4 for each of the odd modes; the N values chosen

1000, N3=200, N&=67, and N~ =20, j=9, 11,
13, and 15. As before, we neglect statistically small
values (less than 20) of n, ~

and find the least-squares
straight-line best fit (the dashed line) through the remain-
ing points (marked with a cross). From the slopes of
these lines we calculated the associated mode-velocity
distribution temperatures O~; see Table I. For compar-
ison we have also listed the mode-energy distribution
temperatures determined from the statistical and the
time ensembles. From Fig. 4 and Table I we conclude
that (a) the mode velocities in the equilibrium regime are
distributed in a Maxwellian fortn (13), and (b) the mode-
velocity temperature is equal to the mode-energy temper-
ature for each mode.

As an additional check on the exponential form, we
note that q' is an implicit function of the temperature 0
and the system energy Eo, Eqs. (B4) and (BS). In Fig. 5

we have drawn, on a log-log scale, this function q versus
8 for EO=10; we have also added the points (8&~, q ),
where e. are the mode-temperature values determined
from the slopes in Fig. 4, and q- are the averages deter-
mined from the time ensemble (see Table I for both quan-
tities). The satisfactory fit also confirms the Maxwellian
form.

V. PARTICLE VELOCITIES

0—

The average particle velocities x„and the average
squares of particle velocities x'„, determined from the
equilibrium regime of the t;ime ensemble, are listed in
Table EI. We recall that in the absence of the even modes
the displacements satisfy the identity x„=—x]6 „ for
n =1,2. . .7, and hence we need only list the eight in-

dependent quantities x'„, n =1,2, . . . , 8. The pattern of
x'„values in Table II is consistent with the local environ-
ment similarities and differences of the particles —similar
interactions for particles 2, 3, . . . , 7, different "interaction"
for the end particle 1, and different effective mass for

TABLE II. Time-averaged particle velocities and particle ve-

locities squared, n = 1,2, , 8. Distribution temperature 0"„ for
the particle velocities from equilibrium time-ensemble data.

—1 0

)n 8~

FICx. 5. Log-log scale graph of the average mode velocity
squared vs mode-velocity temperature, Eqs. (84) and (B5), with
system energy Eo = 10. The squares indicate the points

(O~&, q2), Of is the mode-velocity temperature, Table I, and q2

the time average of the square of the mode velocity, Table I.

—0.0018
0.0033

—0.0008
—0.0023
—0.0008
—0.0013

0.0004
—0.0022

0.52
0.78
0.61
0.77
0.79
0.68
0.73
1.48

px
n

0.49
0.82
0.62
0.82
0.74
0.64
0.64
1.47
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Our speculation in Sec. IV that q =0 and C(q~, qk)=0,
j&k, implies that (a) x„=0, in agreement with the very
small values displayed under the x„column, and (b)

15

x„x =
—, g q sin( jn m /16)sin( jm ir/16) .
j=1

(21)

7.g

n =8 (this is the only particle not forced to vibrate in un-
ison with another —the odd-mode condition mentioned
above).

The correlation functions, also calculated from the
time ensemble, C(x„,x ) and C(x„,x ), are shown in
Figs. 6 and 7. The normalization values used in these
figures are C(xs, x {))=0.148EO and C(x s,x s)
=0.0351Eo, respectively. The minimum diagonal com-
ponents and the range of off-diagonal components are for
C(x„,x ), C(x „x,) =0.0518EO, and

C(x7,x8)= —0.0861EO to C(x4, x6)=0.0186EO, (17)

and for C(x„,x ), C(x, ,x, ) =0.004 37EO and

C(x 6,x 8 ) = —0.0035Eo to C(x 7,x 8 ) =0.00721E0 .

(18)

This contrasts with the harmonic results in Eqs. (10) and
(12).

The mode coordinates q and the particle coordinates
x, are related by the normal-mode transformation (3).
Hence

15

x„=(1/2&2) g q sin(jnm. /16),
j=l

15 15

x„x =
—, g g q qi, sin(jnm. /16)sin(km'/16) . (20)
j= 1 k =1

'.o

C{x.,xI) =JC{x.,x„)J ITIN C(x, x„)=-lC(x;wk)l

FIG. 7. Three-dimensional histograms of the correlation
~ 2 . 2

function C(x„,x ) of the square of the velocities of the first
eight particles. The cross hatching indicates negative values.
The columns have been normalized to the maximum value
C(x g x 8 ) =0.035 1EO.

When the q~ values from Table II are substituted in (21)
and the sum carried out, we obtain agreement with the
diagonal and immediately off-diagonal elements of
C(x„,x ) in Fig. 6 to better than 80%. The remaining
elements are small, Fig. 6. This suggests that C(x„,x )

is a tridiagonal array simply related to a diagonal array
C (q~, qk) through the mode transformation (3). When we
substitute the harmonic result q'. independent of j, Eq.
(A24), in (21). We find that x„ is a constant independent
of n and that the off-diagonal elements x„x vanish.
Thus the strong nearest-neighbor negative correlations
seen in Fig. 6 are a direct result of anharmonic nearest-
neighbor forces in the chain.

The analysis to date' gives us no clue as to the form
of the particle-velocity distribution in either the statisti-
cal or the time ensemble. We assume a Maxwellian dis-
tribution arid check its validity using the time ensemble.
For a Maxwellian distribution the number of copies with
particle velocity in the range [x„,x„+dx„]is

dn„"=c„exp—( T„/8"„)dx„, (22)

where c„ is a normalization constant, T„=x„/2 is the ki-
netic energy, and 0„ the velocity-distribution tempera-
ture of the nth particle. From this expression we calcu-
late the number of ensemble copies with particle kinetic
energy T„ in the range [T„,T„+dT„],namely,

[ ) G(x.,x„)= IC(x.,x „)I see C(x.,x ) =-IC(x. x ))j' k j' dn„= [2c„exp—( T„/0„) /+ T„]dT„. (23)

FIG. 6. Three-dimensional histogram of the correlation func-
tion C{x„,x ) of the velocities x„of the first eight particles.
The cross hatching indicates negative values. The columns have
been normalized to the maximum value C(x&,xz ) =0.0148Eo.

Replacing the mode index j with the particle index n,
we follow the procedure described in Sec. IV for checking
the mode-velocity distribution. We generate a coarse-
grained particle kinetic energy distribution with N„ele-



B. I. HENRY AND J. GRINDLAY

mentary cells in the interval (O, EO), where N„=SO for
n =1,2, 2, . . . , 7 and N8 =27. %'e ascribe a kinetic energy
T; „, (11), to the ith cell and nth particle. If the kinetic
energy distribution is given by (22), then the correspond-
ing coarse-grained particle kinetic energy distribution is

n, „=A„exp[ —
( T, „/8' )]/&T, „. (24)

Again ln(n, „&T-;„)versus i is a straight line with slope
proportional to 1/8„. In Fig. 8 we have plotted
ln(n, „&T., „) versus T;J for the particle kinetic energy
coarse-grained distributions calculated from the equilibri-

um regime in the time ensemble. A best-fit straight line
through the crosses (with n; „~20) gave, for each parti-
cle, the temperatures shown in Table II. Again we note
that, based on a Maxwellian distribution, x'„ is an implicit
function of the temperature and the system energy, Ap-
pendix B. In Fig. 9 we have used (B4) to draw the curve
x„versus 0 for Ep=10' on this graph are added the
points (8"„,x„), where 8"„are the particle-velocity tem-
peratures determined from the slopes in Fig. 8, and x„
are the time-ensemble averages (see Table II). Figures g
and 9 are evidence that the particle velocity distribution
is Maxwellian.

I'iFIx - E. o= '- PRRTICLE 2 yRX - 6. &B

2. 0 %. 0 0.0 &.0

t PRR, IDLE 3 f'RX - 6.5B -'- PFIRTiCLE VFIX - 6.50

O
O

0.0 2. 0 0.0 2.0

I I

1

9.0

NP, X -'- PRRT. I CLE E)

C3

C3

-') PFIR. i(:LE 7 NFIX = 6.Qg -'- PRRTjCLE 8 NRX = 6.76

0 ~ 00 3.75
Ti, g

7 w0

FIG. 8. Histograms of ln(n, „T;„)vs the partition kinetic energy T; „,for the first eight particles. n; „ is the coarse-grained ki-
netic energy distribution for the nth particle. The columns are normalized to the value shown in the top right corner of each graph.
The crosses indicate points with n; „~20. The dashed line is a best-fit straight line through the crosses.
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1.8—

1.6—
g.O

1.4—

1.2—

1.0—

0.8—

I I C(Uj, Uk) = lC(Uj, Uk)l I8888 C(U, Uk) — lC(U. Uk)l

I I I I I I I

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
8„"

FIG. 9. Graph of the average particle velocity squared vs
particle-velocity temperature, Eqs. (84) and (85), with system

energy Eo =10. The squares indicate the points (O„,x„),0"„ is

the particle-velocity temperature, Table I, and x~~ the time aver-
age of the square of the particle velocity, Table I.

VI. SPRING EXTENSIONS

We shall refer to the spring between the n and n —1

particles as the nth spring. The potential energy stored
in this spring is

FIG. 10. Three-dimensional histogram of the correlation
function C( U„, U ) of the spring potential energies of the first
eight springs. The cross hatching indicates negative values.
The columns have been normalized to the maximum value
C( U8q U8 ) =0.003 33EO.

ment is C(U, , U~ )=0.00001EO. The off-diagonal ele-
ments range in value from

C ( U6, U8 ) = —0.000 44E o to C ( U4, Uq ) =0.000 63E0 .

(26)
C( U„, U ) shows a qualitatively similar behavior to
C(x„,x ), see Fig. 7.

We assume that the distribution of the spring extension
1s

U„=—,
' g„+ (25)

dn ~ =c„exp[ —
( U„ /O& ) ]dg„, (27)

where g„=x„—x„& is the spring extension. The aver-
age spring energies U„, n =1,2, .. . , 8, were calculated
from the equilibrium data in the time ensemble —these
are given in Table III.

The time-ensemble correlation function C(U„, U ) is
shown in Fig. 10. The data are normalized to the largest
value C( U&, Us ) =0.003 33EO. The smallest diagonal ele-

dn„=c„[exp—(U„/O~ )/(g'„+pg„)]dU„,

where

(28)

where c„ is a normalization constant, U„ the spring po-
tential energy (25), and O~ the spring temperature.
Hence the number of copies for which the nth spring has
energy in the range [ U„, U„+dU„] is

g„=[—1+Q(1+4@U„)]/p . (29)
TABLE III. Time-averaged spring energies, n =1,2, . . . , 8.

Distribution temperature for the spring extensions from equilib-
rium time-ensemble data.

To check the correctness of the assumption in (27), we
followed the same procedure as before. The coarse-
grained distribution from (28) is

n; „=A„ Iexp[ —( U; „/O~ )]/(g; „+pg,'„)[, (30)
0.08
0.30
0.26
0.27
0.31
0.30
0.24
0.44

0.17
0.80
0.54
0.69
0.76
0.77
0.57
0.17

with g; „given by (29) and spring energy set equal to the
partition value, namely,

U, „=(i—1/2)EO!N„, (31)

where N, =200 and N„=50, for n =2, 3, . . ., 8. From (30)
and (31), we see that ln[n, „(g,„+pg, „)] versus i is a
straight line with slope proportional to the inverse of the
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spring temperature 0-„. We calculated the coarse-grained
distributions n, „ from the equilibrium data in the time
ensemble. In Fig. 11 we have plotted the resulting
ln[n; „(g, „+pg, „)] values against the integers i .The
spring temperatures determined from the best-fit straight
lines are shown in Table III.

From Eq. (28), the average potential energy in the nth
spring is

U„=c„j U„ I exp[ —( U„/8~ )]/[g( U„)
0

+pg (U„)]IdU„,
(32)

where g(U„) is a solution to (29). Thus U„ is a function
of O~ and Eo. We have drawn the curve U„versus O~

for EO=10 in Fig. 12; we have also added the points
(8~, U„), where 8~ is the spring temperature calculated
from the slopes in Fig. 11 and listed in fable III, and U„
are the time-ensemble averages of the spring potential en-
ergies. Figures 11 and 12 provide evidence that the
spring extensions g„have a Maxwellian distribution de-
scribed by Eq. (27). The range of U„values is also con-
sistent (see remarks above on the x'„) with local environ-
ment similarities and differences —the U„are qualitative-

ly similar to the average of the x„ofadjacent particles.
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FICx. 11. Histograms of I ([n; n„(g; „+pg; „)]vs the partition spring energy U; „ for the first eight springs. n, „ is the coarse-
grained spring potential energy distribution for the nth spring. The columns are normalized to the value shown in the top right
corner of each graph. The crosses indicate points with n; „20.The dashed line is a best-fit straight line through the crosses.
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tion of the 16-dimensional odd-mode I -space probability
function is still open. The dominant character of the
three modes, 11, 13, and 15, suggests that as a first ap-
proximation one should tackle the problem of the six-
dimensional 1 -space (q», q» q», q», q» q») probability
density.
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APPENDIX A
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y&+y2+. . . +y2, =R

We introduce the notation

(Al)

We discuss the problem of calculating averages over a
(2n —1)-dimensional sphere in a 2n-dimensional space.
Consider a 2n-dimensional space spanned by the coordi-
nates (y„yl, . . . ,yl„), and in this space the (2n —1)-
dimensional sphere, radius R, determined by the quadra-
tic form

FIG. 12. Graph of the average spring potential energy vs
spring-energy temperature, Eqs. (30) and (32), with system ener-

gy EO=10. The squares indicate the points (O~, U„), O~ is the
spring temperature, Table III, and U„ the time average of the
spring energy, Table III.

R ) =R —y2„—y2
2 2 2 2

R2=R —
y2

—y2
2 2 2 2

R,'=—R' —y

~ ~ ~ 2

y2

(A2)

(A3)

(A4)

VII. DISCUSSION

The data described in the preceding sections indicate
that in the statistical equilibrium regime of the (15+2)-
particle chain the mode velocities q, the particle veloci-
ties x„, and the spring extensions g„each exhibit a
Maxwellian distribution. Furthermore, the associated
temperatures in each case are consistent with the general-
ized equipartition theorem (Appendix B). The agreement
between the mode-velocity temperatures and the mode-
energy temperatures suggests that these two quantities
share the same distribution temperature. Because each
mode energy contains a significant contribution from the
dynamical behavior of other modes (see definition of the

in Ref. 2), this result cannot be regarded as self-
evident, particularly given the two-orders-of-magnitude
range in the mode temperatures. As far as the particle-
velocity temperatures and the spring-extension tempera-
tures are concerned, the variation in each group is con-
sistent with the physical arrangement. At this stage we
are unable to say to what extent data-bank-size errors
play a role in the variation between the temperature
columns in Tables I and II.

The velocity and energy averages and correlation func-
tions data show that (a) the mode description is the sim-
plest, inasmuch as three modes, 11, 13, and 15, play a
dominant role in determining the statistical equilibrium
dynamical behavior of the chain; and (b) the behavior of
these three modes is strongly correlated and quite
different from the analogous harmonic case. The ques-

This is a (2n —1)-fold integral. The first integration on
the right is trivial and yields the value 2vrR. We now
choose to carry out the remaining integrations in pairs to
get, after s —1 integrations,

R 2n R2$
S2 = dy2 dy2, . dy2, I2ll 71 R ll —R~,

(A6)

where

2
ps —PI~, = R~, +)R(s —1! (A7)

After 2n —3 integrations we find

R 2n
S2 = dy2 dy2 & I2

R
—R

(A8)

Hence area of the sphere (Al) is

The outward normal to the sphere at the point
(y„yl, . . . ,yl„) is parallel to the unit vector
(y& R/, y lR/, . . . , y„l/R). We obtain an expression for
the area of this sphere by noting that the infinitesimal
surface element dS projects onto the subspace
(yl, y&, . . . , yl„) through the component y, /R of the unit
vector. Since the point lies on the sphere, y, =R 2.
Hence the surface area is

R 2ll R3
s,„=f ck,„f ck,„, f 2R cy, /R, .

2n 3

(A5)
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n
R2n —]

(n —1)!
(A9)

distribution for the pair of coordinates y2n, y2, , name-
ly,

in agreement with the results of Pathria. ' We write the
right-hand side of (A8) in two other difterent forms.
First, change the variables from y2„,y2n, to e=y2„
+y~„, and 0=arctan(yz„/yz„, ), then integrate over 6
to get

[(n —1/tt]R "(R —y z„—y ';„& )"

the distribution for the sum of squares e,

[(n 1 )R 2 2tl](R 2 e)ll 2

(A12)

(A13)

2'"R
y

tt '(
(n —2)! o

Second, integrate over the y2n, coordinate, then

(A10)
and the probability distribution for the coordinate y2n,

R 2 —2n(R 2 2 I2n —31/2

(2n —3)!
R "R —yz„

S2, = 22n —2~n —
1

(n —2)!R
2n —3!

X J (R' — ' )"" " 'dyy2n —
& 2n—R

(A 1 1)

If we divide both sides of Eq. (A5) by the value of the
area Sz„ in Eq. (A9), we can regard the resulting equation
as a normalization condition for the probability distribu-
tion for "states" on the sphere; the probability distribu-
tion is clearly a constant equal to 1/S2„or
(n —I)!/[2'" 'R " ']. In a similar fashion we deduce
frotn (A8), (A10), and (Al 1), respectively, the probability

l

(A14)

It is clear from these expressions, (A12) —(A14), that the
probability distribution for some set of coordinates is not
a simple product of the corresponding single distributions
(A14). This is a direct result of the demand that points
lie on the sphere (Al).

Since the labeling of the coordinates is arbitrary, these
expressions hold for any pair of labels s, t. As an exam-
ple, consider the average of a function of y2n and y2„
over the spherical hypersurface; from (A12), this is of the
form

R R2n
&f(y~. y~. -|)&=,dy~. , f(y~. ,y~. -i)[(n —I)/~]R' '"(R' —y~. —y~. -i )" 'dy~. -i

2tl

(A15)

As remarked above, the averages (f(y„x, ) ) and
(f (y, y, ) ), sWt, are independent of the choice of s and t

We find the following particular results (s~t under-
stood):

(E, ) =EA/8,

&x,'& = &(~,x, )'& =E,'/24,
(A25)

&y, &=0,

&y,') =R'/2n,

(y,y, ) =0,
(y, ) =R /[4n(n+1)],

(y, y, ) =R /[12n(n+1)] .

(A16)

(A17)

(A18)

(A19)

(A20)

&.,') =E,'/36,

(e,e, ) =E,'/72,

=E /72, (A27)

(A28)

(A29)

where c, is the energy of the sth oscillator.
We define the correlation function of the two quantities

x, and x, as C(x„x, )
—= & x,x, &

—
& x, & & x, &. Then,

88=—,
' g (x, +co,x, ) .

s =1
(A21)

Consider now the microcanonical ensemble for a set of
eight uncoupled harmonic oscillators. We write the
Hamiltonian in the form

C(x„x, ) =C(co,x„co,x, ) =ED/8,

C(x„x,)=C(x„co,x, )=C(co,x„co,x, ) =0,
C(x, , x, )=C(co,x, , co,x, ) =5Eo/192,

(A30)

(A31)

The microcanonical ensemble consists of a uniform distri-
bution of states on the spherical shell H=EO in the 16-
dimensional I space for this system. Thus microcanoni-
cal averages are taken over the spherical shell of radius
R =&2EO. Applying the results presented above, we
deduce that

(A33)

C(E„e, ) =7E0/576,

C(E„e, ) = Eo/576 . —
(A34)

(A35)

C(x, , x, )=C(x2, co,x, )=C(co,x, , co,x, )= Eo/576, —

(x, ) =&co,x, ) =0,
& x,'& = (co2x,'& =E,/8,

(A22)

(A23)

(x,x, ) =
& x, co,x, &

= (x,co,x, ) =
& co,x, co,x, & =0, (A24)

APPENDIX 8

In this Appendix we derive an expression for the
mean-square velocity in a system with an upper-energy
bound. Consider a system described by a velocity U
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which satisfies a Maxwellian distribution in the interval
(O, uo). Thus the probability that the velocity has a value
in the range [u, u +du ] is

dn =c exp[ —(nu /2)]du,

in the form

where

1 B(lnI ) t)(lnI )

n an an
(84)

Vp1=cf exp —(nu /2)du,
0

(82)

and the average of U is
Vp

(v ) =cf u exp[ —(nv /2)]du .
0

Using (82) to eliminate the constant c, we can write ( v )

(83)

where c is a constant and n the inverse temperature 1/8.
The normalization condition is I—: — exp( —t )dt,

fp
(8&)

and to = ( v on/2) ' . Thus the mean-squared velocity
( u ) differs from the temperature 0 by an amount deter-
mined by I. As voodoo, I~ a constant and hence
(u ) —+8, the open system result, referred to as the
equipartition principle. Thus we may think of Eq. (84)
as a generalization of the equipartition principle.
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