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Hamiltonian or variational formulations of the Maxwell-Vlasov equation naturally yield expres-
sions for the free energy available upon perturbation of an equilibrium. The noncanonical Hamil-
tonian, Hamilton-Jacobi, and Lagrangian formulations are used to obtain such expressions. It is

concluded that all interesting equilibria are either linearly unstable or possess negative-energy
modes.

I. INTRODUCTION

The main result of this paper is that all interesting
equilibria of the Maxwell-Vlasov system are either linear-
ly unstable or possess negative-energy modes. By the
latter we mean that the free-energy surfaces in the vicini-
ty of an equilibrium are not closed and bounded (in any
reference frame) in spite of the existence of linear stabili-
ty. It has previously been conjectured' that equilibria
with negative-energy modes are generically susceptible to
nonlinear instability; that is, instability due to nonlineari-
ty which occurs for arbitrarily small perturbations about
an equilibrium. Moreover, it is believed generally that
systems with negative-energy modes are structurally un-
stable to dissipative perturbations of the governing
dynamical equations. If a negative-energy mode is dissi-
pated, then it loses its spectral stability.

The conclusion we come to is that equilibria for which
the "monotonicity-isotropy" condition of inequality (18)
is true have negative-energy modes. Here f ' ' is the equi-
librium distribution function of species v, and k is an ar-
bitrary vector. This result depends only on the velocity
dependence of the equilibrium distribution function; it is
independent of the structure of the equilibrium fields.

It is obvious that in order for us to arrive at the cri-
terion of inequality (18) we must have an expression for
the free energy. An important result of this paper is such
a free-energy expression. This is given by Eq. (68). The
word free is used here because the perturbations away
from the equilibrium state are required to obey the Ham-
iltonian constraints.

Our results are obtained within the context of three
Hamiltonian and Lagrangian formulations of the
Maxwell-Vlasov system. In Sec. II we present results us-
ing the noncanonical Hamiltonian formalism. This
can be viewed as a purely Eulerian variable
description —one where particle-orbit information does
not explicitly appear. Here, after reviewing the formal-
ism, we physically describe the meaning of negative-
energy perturbations for nonmonotonic equilibria. This
is done by using a Gardner-type restacking argument.
We also obtain the monotonicity-isotropy condition in
the purely electrostatic context. The slight generalization
to equilibria with current free magnetic fields is present-
ed.

Section III utilizes a variational formalism based on
Hamilton-Jacobi theory. ' ' " This formulation can be
viewed as a combined Eulerian and Lagrangian variable
description. It appears presently to be limited for practi-
cal reasons to equilibria of one spatial dimension. How-
ever, it might turn out to be useful for obtaining the free
energy within the context of kinetic guiding-center
theories. ' '" Section III is designed to be read indepen-
dently of Secs. II and IV.

In Sec. IV we begin with the Lagrangian variable
description of Low' and then use Noether's theorem (or
equivalently the Legendre transform) in order to obtain
the energy. The expression obtained is expressed in terms
of the Lagrangian displacement and its time derivative.
Requiring that these perturbations arise from a generat-
ing function leads to the desired free-energy expression,
Eq. (68). Formally this expression is valid for all equili-
bria.

In Sec. V we use the results of Sec. IV to treat exam-
ples. These include electrostatic equilibria with electro-
static perturbations, homogeneous equilibria with elec-
trostatic and then with electromagnetic perturbations,
followed by the case of general equilibria. It is here that
we draw our conclusions detailed above.

II. EULERIAN DESCRIPTION

Consider now a strictly Eulerian description, i.e. , one
where particle motions are not monitored. The state of
the system is given by the phase-space density of species
v, f (x, v, t), and the fields E(x, t) and B(x, t). We will

state the results obtainable by free-energy arguments that
are accessible by this description and show how these re-
sults arise naturally from the noncanonical Hamiltonian
formalism. In essence the results presented are a review
of material contained in Ref. 3, although a more com-
plete interpretation of the results is given. Also given are
a variational principle for magnetized current free equi-
librium and subsequent stability analysis, which is new.
This section is included for completeness and for later
comparison with the methods of Secs. III and IV.

The Eulerian description can be thought of as arising
from an underlying particle description by the elimina-
tion of particle labeling information. On the particle lev-
el the equations of motion have the Hamiltonian form
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Here y' denotes the field components (e.g., f„,E, and 8)
defined on some "spatial" domain z [e.g. , the phase space
(x,v)] and temporal domain t. The expression 5H/5yj is
the functional derivative of the Hamiltonian functional
H[g] and the quantity J'Jlg) is the cosymplectic opera-
tor, which possesses the necessary properties to make the
bilinear operator [, ] a Poisson bracket. Unlike conven-
tional Hamiltonian field theories, brackets for media
fields possess a special class of constants called Casimir
invariants that commute with any functional F, i.e.,

[F,C]= . J'~ . =0 .
$yJ Qy1

This implies that 5C/6g~ must lie in the null space of J'~,
thus one can find Casimir invariants by analyzing J'J.
These invariants are special in that they are constant for
any Hamiltonian, whereas constants such as angular
momentum, etc. , depend upon the specific form of H.
For now we will restrict ourselves to the use of Casimir
invariants and H to obtain Lyapunov functionals for sta-
bility, but note that addition of momenta correspond to
frame changes. Evidently equilibria are critical points of
F=H + C. This is apparent from Eq. (1) since

5F=[y', H+C]=Ju . =0 . (3)

Usually in Hamiltonian systems equilibria are critical
points of H, but in the Eulerian description such points
correspond to the vacuum state and are thus uninterest-
ing. One requires the C's to constrain the equilibrium
away from such minimum-energy states. It was shown in
Ref. 2 that F is the free energy, which serves as a
Lyapunov functional for stability if 6F/6g'=0 is the
equilibrium of interest and

5 F= I— . . 5y'5y'dz1 6F
2 &X'&X'

is definite. The quadratic functional 6 F corresponds
physically to the free-energy accessible to the system
upon perturbation away from equilibrium. This function-
al is important because it determines the existence of
negative-energy modes. Such modes exist when 5 F is
indefinite in all frames and there is linear stability.

First we consider one-dimensional Vlasov-Poisson
equilibria. In this case the energy functional and Casimir
invariants are given by

P7l U
2

H[f ]=+f f„(x,u)dxdv
2

+g f e f (x, u)N(x;f„)dx du,
V

C'"'[f ]= f 2"(f„)dx du,

where the dynamical variables are f, v indicating

one would expect of Newton's second law, while on the
Eulerian level the equations have the noncanonical form
(for a review see Ref. 8), which is given by

ag (z t)
[

'

]
'j 5H

Bt

species, and 4 is a shorthand notation for the Green's
function solution of Poisson's equation. The constants
C' '[f ] physically correspond to the conservation of
phase-sIiace volume (cf. Ref. 3). Variation of F =H
+g C ' yields

5F=Q f 5f [6',+9' '(f„)]dx du=0,

where 8 =
—,
' m, u +e 4. Solution of Eq. (6) for all 5f

requires 6' +7 '(f )=0, an equation that is solvable
for an equilibrium distribution f' ', provided 9' ' is
monotonic. If we assume so, then we obtain monotonic
equilibria f' '(6 ). In a strictly Eulerian model these are
the only equilibria for this system that are obtainable
from a variational principle, although nonmonotonic
f' '(6 ) are also equilibria. In Ref. 3 nonmonotonic
equilibria were obtained by adding a passively advected
Eulerian tracer field, which was assumed not to "slip"
relative to the dynamics of f, . This artifice amounts to
the inclusion of Lagrangian variable information.

Now we consider the second variation, but for conveni-
ence we restrict to a single species of charge e. One ob-
tains the same expression for the perturbed free energy in
both the monotonic and nonmonotonic cases. Varying
Eq. (4) once more (and dividing by 2) yields

5 F =
—,
' I V"(f ')(5f) dx dv+ J(5E) dx, (7)

1

where (5E) is shorthand for the second variation of the
second term of Eq. (4). We will neglect this term since its
apparent stabilizing effect is mitigated by the fact that we
can choose 5f so as not to produce a charge perturbation
(cf. Ref. 3). This is general enough for our purposes.
Differentiating the equilibrium relation we obtain

g p(0) = —1,aa
which upon substitution into (7) yields

(8)

5F= —
—,
' I dxdv.(5 )'

(af "'ya@ )
(9)

Thus we have stability if af ' '/ah (0 and indefiniteness
if f ' I is nonmonotonic. In the later case the Penrose cri-
terion may predict spectra1 stability, in which case we
have negative-energy modes.

What physically is the meaning of the expression of
Eq. (9)? To answer this consider a distribution function
with a single maximum at 6, . Suppose the phase space is
divided up into cells labeled by various energies
Bo, D, , . . . , 6, , etc. Recall that the Liouville constraint
can be succinctly stated as follows: Particles can be
moved around in phase space such that the number of
cells with a given number of particles remains fixed. We
are free to position any cell at any phase-space point, i.e.,
at any energy. Let us investigate the energy change that
results from the interchange of particles between a cell
6, , where 8, ) A'„, and its neighbors. If we take f; f;+&-
particles from cell 6; and add them to cell 8;+,, we
maintain the Liouville constraint and obtain an energy
change of b, N(f, f, +, ), which is a po—sitive quantity. A
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but

hE = —b 6'[f ' '( 8+b 6') —f ' '( 6 )],

g p(O)
6f=f '

( 6 + A6 ) —f ' '( 6' ) = b, 6'
aa

(10)

similar exchange between 6; and 6; &
yields another

positive-energy change A6'(f,
& f,—). This occurs for all

exchanges where af' 'la@'(0. Alternatively, exchanges
in the vicinity of an energy 6, , where 6, &6, yield a de-
crease in energy, e.g. , taking f2 f, —particles from 62
and placing them in 6', yields h6'(—f2 f,—), a negative-
energy perturbation. Physically the sign of this energy
perturbation arises because particles have been slowed
down. We can only do this and observe the Liouville
constraint if af' '/aA )0. In fact it is simple to see the
origin of 5 F as given by Eq. (9). Estimating the change
in energy b,E, assuming small b, 6, yields

The perturbation can be written out as

aGa '"
5f =[f'" G]=

m Bv Bx
aG af"'
Bx Bv

e a&5 aG aG af' '

vmax av ax aa

where we obtain

g p(0)5'F= —
—,
' I[6', G]' ' dx du .

maintained to first order. This follows since

5C= f 2'(f' ')5f dx du

= I V'(f' ')[f' ', G]dx du

, G dx dv=0 .

so finally we obtain

AE= —(b, 6)
(0) (5 )2

af I"yae
(12)

In the case of homogeneous equilibria this becomes

2 1 'aG a (oi
5 F=- v dxdv

2m ax au

Summing over many such exchanges we obtain Eq. (9).
It is evident that something peculiar happens at the

maximum 6, . To begin with, since this is an absolute
maximum one cannot add particles to this cell without
violating the Liouville constraint, since there is only one
cell with f (@,) particles and none with more. But this
cannot be the entire reason for the singularity, since we
still have divergence if 5f ( 8, ) is negative, corresponding
to a subtraction of particles from this cell. Also if f (6, )

were only a relative maximum we would still get diver-
gence even though the Liou ville constraint can be
satisfied. The problem arises because of nonanalytic be-
havior of the energy upon 5f at this point, if 5f(6, )%0.
This is evident since we must expand Eq. (11) to higher
order to get a nonzero contribution. We obtain

a'f'"'(&*) (a@)'5f(6„)=
B6

(13)

which yields the following expression for the energy
change:

I
fl'"

& ' la'f'"zan'l
(14)

unless 5f(8, )=0. It remains to address the question of
accessibility, i.e., is it possible for 5f(6„)%0 to occur
during the course of the dynamics. From Eq. (41) of Ref.
3 we see that 5f (6' )%0 implies that the tracer field slips
with respect to f. The situation is much like that in ideal
magnetohydrodynamics where kink or ideal perturbation
are required to vanish on rational surfaces. Such trial
functions are inserted into 58'. In the same spirit we will
consider only "ideal" perturbations, i.e., such that
5f(D, )=0. In fact, if we choose 5f =[f' ', G], where

[, ] is the usual Poisson bracket and G is an arbitrary
function, then the Casimir constraints of Eq. (5) are

g p(0) g p(0)
J ti J
Bv Bx Bx

which implies

[G &]
[G f"']

(16)

Now assuming, as in the one-dimensional case,
5f =[f' ', G] we obtain upon substitution

g p(0)
52F= —,' I [G, b—] ' -d x d u+ j(5E) d x .

(17)

Again, as in the one-dimensional case the crucial quantity
is the first integrand. In the case of homogeneous equili-
bria Eq. (17) reduces to

6F=— 1 BG

I (5E)
Sm

aG afI"
Bx 9U

If we assume 6 —e '" "+c.c., then we have positive
definiteness if and only if

g p(0)
(k.v) k.

Bv
(0,

Our conclusion with respect to one-dimensional Vlasov-
Poisson equilibria is that all nonmonotonic distribution
functions possess either linear instability or negative-
energy modes.

Now consider three-dimensional Vlasov-Poisson equili-
bria, putting aside the question of existence. The pro-
cedure carried out above can be formally mimicked in
this case yielding Eq. (6), which means that here f'o' has
to be isotropic. Taking the velocity and space gradients
of the equilibrium relation yields
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for all k, K, and v. This monotonicity-isotropy condition
is quite general and not only valid for homogeneous and
isotropic f' '; it will emerge again in both Secs. III and
IV and will be proven there for general f ' '(x, v).

If f ( ' is a nonmonotonic function, then inequality (18)
can be violated. This is clear since we can pick k in the
direction in velocity space where there is nonmonotonici-
ty, then defining vk =k-v we obtain

(0) g (0)
(k v)k. =k uk

av
"" aa„

where 6k ———,'ut, . Thus condition (18) essentially contains
the condition of Eq. (15), and one can relocate the parti-
cles to obtain a lower-energy state when it is violated.

If we assume f' ' is monotonic decreasing, then in-
equality (18) is violated if and only if f' ' is anisotropic.
To see this suppose there is a point v in velocity space
where there is anisotropy; without loss of generality we
assume

1 ()f( ' 1 Bf' ')
vx 8v~ vy Bvy

where the expressions on both sides are negative. Let

gf (0)

v Bv
R :—

Uy 0Uy

then evidently I )R )0. Choosing k=(1/v„, 5/v, 0) we
obtain

(o)
(k v) k.

Bv

(0)
(R +5)(1+5)

Vy BUy

which is positive for —1 (5 & —R. Physically these
negative-energy anisotropic perturbations can be ex-
plained in a manner similar to that given above for non-
monotonic f' '(( ). Given any anisotropic distribution
one can relocate particles so as to approach isotropy, in a
manner consistent with the constraints where the result-
ing energy change is negative.

There is one other class of equilibria that is accessible
to the strict Eulerian description. In addition to the
"Liouville" Casimir invariant the Maxwell-Vlasov equa-
tions possess the following:

Cz=f U VE 4' f efd u —dx, (19)

C~=f QVBd x, (20)

where U and P are arbitrary functions of x. It is, of
course, well known that if these quantities are initially
zero, then they remain zero, but adding them to the free
energy allows us to obtain slightly more general equili-
bria. In the perturbed free energy these quantities should
be satisfied to first order. Including Eqs. (19) and (20) we
have the following free-energy functional:

where the first two terms correspond to the (0,0) com-
ponent of the Maxwell-Vlasov energy-momentum tensor
(cf. Ref. 11). Again for simplicity we have assumed a sin-
gle species. Varying F yields

5F= f 5f +eU+V'(f) d x d u
2

+ f [5E.(E+VU)+5B.(B—Vg)]d x,4~
(22)

which implies the equilibrium relations

f (0) —f (0)( @) E(0)— V U — V(P(0) B(0) yy(o)

(23)
The equilibrium electric fields are electrostatic and the
magnetic field is derivable from a potential, which means
there is no plasma current since V X B' '= V X Vg' '=0.
Taking the second variation of (22) and assuming 5f is
ideal, we obtain

g r(0)5F= ——' [G(] d xd u
B6

+ f [(5E) +(5B) ]d x .
8~

(24)

Equation (24), with the appropriate choice of G, results in
the same necessary and sufhcient condition for positive
definites as before, i.e. , that of Eq. (18). Let us now turn
to the Hamiltonian-Jacobi description.

III. THE HAMILTON- JACOBI DESCRIPTION —A
COMBINED EULERIAN-LAGRANGIAN FORMULATION

as.+
2m BK

e
A

'2

+ f d'x(E' B'), —1

8n
(25)

where the functions S,(x,a, t) are Hamilton-Jacobi func-
tions for the particles of species v. The quantities u and
P=BS /Ba are constants of motion. The densities (t. „can
be expressed in terms of the distribution function f, by

In Refs. 10 and 11 it was shown how to derive the
Maxwell-Vlasov theory from a variational principle by
employing the Hamilton-Jacobi theory. For complete-
ness we will brieAy review this here, before proceeding to
the question of negative-energy perturbations in this con-
text.

The Lagrangian is given by

I. = —g fd xd aP„+e,@
BS

V

F= f f(x, v)d xd v+ f(E +B )d'x
2 8n

+ f Vd'xd'v

J U VE 4vrfefdu dx—
4~

+ J yV. Bd'x,1

4~
(21)

(26)

where

(27)

is the so-called Van Vleck determinant. Variation of the
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action f L dt with respect to P, S, and the potentials N

and A yield equations equivalent to the Maxwell-Vlasov
system.

We expand the Lagrangian by assuming

lowing holds:

5 L' 'dt=0 . (29)

y.=y(."+5y., S.=S',"+5S. ,

W=N( i+54, A= A' '+5 A,
(2g)

where the superscript (0) denotes unperturbed quantities
and the 5 indicates perturbation. Equations for the per-
turbed quantities are obtained by expanding Eq. (25) to
second order as

L =L"'+5L+5'I. .

The term L' ' describes the unperturbed system. When
varying with respect to unperturbed quantities, the fol-

One can view Eqs. (28) to be a trial function ansatz where
the (0) variables are assumed to be equilibrium quantities.
If they are assumed to be known Eq. (29) is manifestly
satisfied; if not, Eq. (29) yields equilibrium equations. In
the following we assume the equilibrium is at hand and
then search for neighboring solutions by varying with
respect to the perturbed quantities.

Now at first order we obtain no new information.
Since 5L is just the first variation of L' ', 5 f 5L dt =0 is

automatic because of Eq. (29). Proceeding, we are then
left with the second-order Lagrangian,

5L= —gf dxda 5$„
a5s. as(."

+e 54+
Bt m Bx

e
A(o)

C

05S e
5A,

a5s.
y(0)

2m Bx

e
5A

C

.+ f d x(5E —5B )
1

8n
(30)

Variation of (30) with respect to 5$„5S„,5@, and 5 A, i.e.,

5 f 52L dt=0

yields the correct first-order equations for these perturbed quantities.
From 5 L one can in the usual way find the expression for the energy from the canonical energy density 5 coo. This

is equivalent to Legendre transformation. We obtain

m
5 ( = f d x 5 600=+ f d x d a e 5(I)5$,+ (5v„(t' '+25v v' 5$„)2

—f d x 5E5A+ (5E —5B )
4mc 8~ (3 I)

os(."
m Bx

A(o)
C

5v = 1

m

a5S.
Bx

e~
5A

C

Furthermore, it holds that

1—5 A= —5E—V5e,
C

g f d ae 5tt, =5p,

Here we have used the abbreviations

(32)

(33)

(34)

(35)

I

Recall that connection with the distribution function is
made by Eq. (26), which relates (t, S, and f, . There is
some subtlety in expanding this equation to relate the
perturbed quantities. We assume the perturbations are
turned on at time t = —~ and rise adiabatically. Since
the distribution functions f„(a,p) are only functions of
the constants of motion, the functional form remains
unaltered for such an adiabatic turn on. Since at t = —~
one has f (a,p)=f' '(a, p) and since the f„are con-
stant along the particle orbits this must hold for all times.
It is the meaning of a and P that changes as the perturba-
tions rise. This observation simplifies the perturbation of
Eq. (26). We obtain

where 5p is the perturbed charge density. Upon making
use of Eqs. (34) and (35), the energy becomes

5( =g fd xd a (5v P('+25v. v(, '5(t )

y(0) f(0)(~ p)D(0)

a "' ()5S
5$ =f' )(a,P)5D + D' ',

Ba

(37)

(3&)

+ fdx(5E+5B ).1

Sm
(36)

where the D, given by Eq. (27), can be written as
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as, as. as„'
D.=V V xV

Thus to zero and first order

as'." as'." as'."D{~V . V xV
Bcx i Bcxp Bcx3

a5S. as'." aS{."
5D, = g V V XV

Ba; Bcxl ()CX I
cyclic

(39)

(40}

5E
2

5U(x)(V 5—E 4~5p) =0—. (41)

(Note that this procedure is in essence equivalent to that
of Sec. II.) Equation (41) yields

5E= —V5U . (42)

In terms of initial conditions Eq. (42) means

5 A=O, M&=5U(x)

There is some freedom in choosing S' ', but in order for
5 6' to be a conserved quantity it is required that
BS' '/Bx be time independent. This will be the case if
one assumes a variable separated form

S' '(x, a, t)= E' 't +—S ', '(x, a),
where E' '=E' '(a). Note also that f' '(a, P) must be
time independent.

In expression (31) 5S, 5 A, and 5A can be chosen in-

dependently, whereas 5+ is bound by the constraint
V 5E=4n5p. The field quantities 5A and 5A are in-
dependent of the particle quantity 5S, because
Maxwell's equations allow for the production of a dis-
placement current that makes a given particle-field
configuration consistent. Fortunately, 5+ and 5 A do not
enter the phase space ( I d x d a) contribution to 5 8. It
is thus convenient to replace the 5N and 5 A variations
by a 5E variation that is subject to the Poisson equation
constraint. The equivalence of these variations follows
because 5p is linearly related to the particle perturbations
(but not identical to, since phase-space information has
been integrated out) and because 5 6 is bilinear in the
perturbations.

In light of the above, the positive semidefinite electric
field energy contribution can be considered independent-
ly. We incorporate the Poisson constraint by using a
Lagrange multiplier 5U(x) as

with

V 5U(x)= —4m.5p .

The minimum electric field energy is therefore achieved
for 5p=0.

Subsequently, we also wish to write our energy expres-
sions in terms of physically recognizable quantities. This
requires transformation from the variable a to the veloci-
ty variable v, related to the unperturbed state. The fol-
lowing replacements must be made:

as"'
{Q) 1 V V ~ {Q)v=vv

Bx c
(43)

m

D', 'd a=mg u . (44)

dx =dx;

where we have used 5p =a5S /ax
~

. To first order

a5s.
Bx

=(D' '+5D )d x d a

dxd P= 1+
Bp

5D

V

x d p

(45)

and therefore

5D.= —a{„"a
Bp

a5S(x, a(x, p },t )

Bx
(46)

Finally we transform from the variable p to v using
p =m, v+ (e„/c) A' '.

We are now in a position to rewrite the expression of
Eq. (36) for 5 8. Assuming for the moment that our
equilibrium configuration is determined by the constants
a alone, i.e., f' '(a, P)=f' '(a)=f'„'(x, v), which is
often the case, we obtain upon making use of Eqs.
(37)—(40), (43), (44), and (46),

Also, it is desired to write 5v as a function of x and v.
To accomplish this we write 5S as a function of x and v
and use Eq. (33). To complete this transformation re-
quires 5D . If we define P=p+5p, then the following
expressions are exact:

dxd P=dxd aD =d xd a(D', '+5D ),
85S

dP, =dp;+d5p, =dp, +d
I

5'@=y fd'x d u f".
2m

a5s„jx, a[x, m „v+(e, /c) A' '], t )

Bx

e
5Ai +2v. a5S.

Bx

e. q a5S."5A + f d'x(5E'+5B'),
c Bv Bx 8m'

(47)
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where we have absorbed a factor of m into the definition
off (0)

If one drops the assumption f', )(a,P) = f' '(a) in Eq.
(36) the term D' 'df' '/dP. dS„/r)a must be taken into
account. To write this term in terms of x and v we must
know the dependence of a and P on these variables.

Now consider a simple example, that of a one-
dimensional electrostatic equilibrium. In this case one
has

as"'
p = =+2m(a —e4&( '(x) .

x
(48)

Setting A' '=6A=O and restricting to one-dimension
and single species, Eq. (47) becomes

5( =f dxdu f1

2m
+2v

+ f dx5E
8~

We wish to compare this expression with that obtained in
Secs. II and IV. Thus we map from the function 5S(x,a)
to a generating function G (x,p). To this end we expand

p =()S(x, a)/Bx about x =x' '+5x and obtain

(49)

a5S(x"',a) a'S"'(x(",a)
6p

( p)
+6x

[oax ax

(x(0) p)

Define 0 by [05S(x,a)/Bx]= —[BC(x,p)/Bx]. Upon
dropping the superscript (0) and making use of the
derivative of Eq. (48), Eq. (50) becomes

BG BG eE' '(x) ()G

a a ap

Replacing 5S by 6, Eq. (49) can be written as

a "' mv'5(o= ——' f dxdu, G + f 5E dx,2

(50)

and we can replace G by G; noting that
[m u /2, G ]= [6,G], yields

(0)
5'( = —,' f dx d—u [(,G]'+ f 5E'dx .

This expression is in agreement with Eq. (15) of Sec. II
and the one-dimensional restriction of Eq. (73). Unfor-
tunately the generalization of this result to three dimen-
sions is harn ered by the fact that there does not in gen-
eral exist a such that

B5S(x,a)
ax

aG(x, p)
ax

where a(x, p). This apparent shortcoming is overcome
by the method of Sec. IV.

To conclude this section we note that 6 6 is gauge in-
variant. If we let A' ~ A' + VP' ' and
5 A~5 A+ V5$, then

e
G„(v,x)~G, (v, x ) — 5P .

C
(5l)

With these substitutions it is evident that Eqs. (47) and
(50) do not change.

x x ( xp& vp& t ) +5x( xp~ vp& t) (53)

with corresponding field perturbations

E=E("(x)+5E(x, t)

1 aA'" 1 a6A= —Ve"' —— —V6+ ——
c r)t c )3t (54)

B=B' '(x)+5B(x, t)=VX A' '+VX5A .

We assume that the reference orbit gives rise to macro-
scopic quantities that are stationary in time. Expanding
in the smallness of 6x, 68, and 6E one obtains the
second-order action

IV. LAGRANGIAN DESCRIPTION

It is well known that the Maxwell-Vlasov equations
possess an action principle when the media is represented
in terms of Lagrange variables. This is because the usual
concept of a field is replaced by a continuum of particles,
which of course are governed by Newton's second law
with the Lorentz force. We will not review this here, but
refer the reader to Refs. 12, 13, and 14. The main contri-
bution of this section is a procedure for obtaining the
general second-order perturbed free energy. To our
knowledge this quantity has not previously appeared in
print.

Recall that in order to -uniquely label a particle in
phase space two continuum labels are required. This is
because more than one particle can occupy a
configuration space point. Thus we suppose particle or-
bits are given by

x(xp, vp, t), (52)

where x(xp, v0, 0)=xp and x(xp, v0, 0)=vp. We expand
about an assumed known reference trajectory according
to

5'S= f 521. dt

= f dt f d xpd up fp( p&xp)v

m a6x
2 at

L

+e —6x —— 6x, 6x + — -6 A+ — 6x
ax 2ax, ax, ' & c at ~ at ax,

1 ax; a6A, 1 ax azA (0)

+ — ' '6x + ' ' 6x 6x,
c at ax ~ 2c at ax, ax,

+ f (5E' 5B')d'x . —
8a

(55)
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In general, the integrand of Eq. (55) contains explicit time dependence that arises because the field quantities are evalu-
ated on the reference trajectory x' '. This occurs if we are interested in nontrivial equilibrium, i.e., ones for which there
is particle motion. Because of this the action 5 S is a complicated object. In general one cannot obtain it explicitly
since explicit expressions for the reference trajectories do not exist. This complication is avoided by referencing the
perturbation with respect to the reference trajectory at time t, rather than its position at time t =0. Calling x ' ' —=v and
dropping the (0) superscript, x' '~x, we write the perturbation as

5x'(x, v, t):—5x(xo, vo, t) .

The map between (x, v) and (xo, vo) formally exists since the Jacobian B(x,v)/B(xo, vo) is unity. Also we have

a6x
at

where

D —= -- +v.V+a=a (0)
C}t clv

(56)

(0)
a(p) e E(0)+ V X8

m c

and finally fo(xo, vo)d'xo d vo= f I '(x, v)d x d u. Here f I '(x, v) is the equilibrium distribution function, which is as-
sumed to be time independent. With these substitutions the Lagrangian becomes (dropping the prime on 5x)

5L=f d xd uf' (x, v)

l a2e(0)
X (D5x) +e —5x V5@—— 5x,.5x + —5 A.D5x+ —5x, D5x,

2 2 BX,BX,
' ' c C BXJ.

+—5x + 5x 5xt + f(5E 5B )d x,—~ Bx 2C BX,BXI J ' 8~ (57)

which now has no explicit time dependence. Moreover, this expression is gauge invariant and produces the correct
linearized equations of motion upon variation. '

The transformation performed above is quite desirable since it allows one to obtain the conserved second-order ener-
gy. This can be achieved by either Legendre transforming or equivalently by calculating the (0,0) component of the
canonical energy-momentum tensor, both of which yield'

66'L, 65'L5H=f 5xd xd .u+f . .5Ad x —52L .
55x 55 A

The canonical momentum density conjugate to 5x is given by

(58)

5m. = =f' '(x, v) mD5x+ —5 A+ —5x V A
55 L (0) e e (p)

66x C C
(59)

but we will find it useful to use the perturbed particle momentum defined by

6p =mD5x+ —5 A+ —6x V A' ' .
c C

Performing the operations indicated in Eq. (58), making use of the linearized equations and Eqs. (54), and writing the
result in terms of 5x =05x/Bt yields

g2C (0)
5 H = f d x d v f"' —(l5xl' —ld5xl')+ —5x;5x

2 2 ' Bx Bxj

a5W,
5x;5x +(d5x;)5x +vk5x, +52;d5x;

c ' ' 2 BX,BX, Ox- ' ' ax

+ fdx(5E+5B ),1

8m

which is equivalent to

(60)
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5'H= f d id v f'"(x,v) ™(15xl'—ld5xl')
2

e vX6B 6xXB' ' (p)

d5x —5x.(5x V) E +(p) V XB
c

+ f d x(5E +5B ),8a
(61)

where we have used the shorthand

a
d =v V+a (o)

Bv

Since the equations of motion are second order in time,
the variable 6x is independent of 6x. This independence
would be manifest if we rewrote Eq. (61) in terms of the
particle momentum conjugate to 6x. As in Sec. III we
desire to restrict our choice of 6x and 6x in such a way
that these quantities are dynamically accessible; that is
they must arise from infinitesimal canonical transforma-
tion. Suppose the total dynamics x=x' '+6x arises from
a mixed variable generating function F(P,x), which we
suppose is near identity

6p =mD6x+ —6 A+ —6x.V A
e e (p) BG
C c Bx

P

or using 6x=D6x —d6x we get

(65)

1 BG6x=D6x —d6x= ——
m Bx mc

P

6A

.VA' ' —d . (66)
mc Bp Bp

I

external perturbation to the force law that adiabatically
generates 6x and 6p. To relate 6p and 6x, note that
p=mDx+(e/c) A, and thus

F(P,x)+P.x+G(P, x) .

The perturbations are then generated by

5x= (p, x), 5p= — (p, x),BG BG

Bp Bx

(62)

(63)

Writing

e A"'
G(p, x)=G mv+, x

this becomes

where as usual the infinitesimal transformations are not
of the mixed type, i.e., we can replace P by p to first or-
der. The perturbation of the distribution function in-
duced by Eq. (63) is given by

BG e (3G 6A
mc

g p(p) g p(p)
5f = ' 5x+ ' .5p=[f' ', G],

Bx Bp
(64)

BG 0 A(o —~ dBG
m~c Bv; Bx, m Bv

(67)

which is consistent with the perturbation for the electro-
static case of Sec. II.

Perturbations 6x and 6p that are obtained from a gen-
erating function, as in Eqs. (63) and (64), can be viewed as
arising out of the infinite past. In the case of instability
this happens for an infinitesimal perturbation at t = —~.
In the case of a linearly stable system, one can imagine an

I

This expression for 5x is gauge invariant [cf. Eq. (51)],
and the same can be said for 6x. Thus when we substi-
tute Eqs. (63) and (67) into Eq. (60) or (61), we obtain an
expression for the second-order gauge invariant energy,
where the particle degrees of freedom are contained en-
tirely in G. We choose to write our energy expression in
terms of the potentials as

d3 d3
5 H=g f f' '(x, v) .

2m~

aw")
l

Bx

BG e dG ()A( )

+
Bx m c Bv, Bx,

BG e BG g A(o)
+2 +

Bx m c Bv; Bx,
l

Bx

e
+ 6A

c

e BG+ 6A .d
c Bv

BG
vkc Bv; Bx Bxk

a6~, a6~,

e BG BG,
m c 0v, Bv

e aG. a ~,(P)

+
m c Bv, Bx

~2+(o)
+

Bx;Bxj c Bx;

aw")
J

(3x;

k j
Bxj Bxk

d
Bv

BG .+ f(5E +5B )d x .
8n

(68)
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5H= f 2m

2

+2d 06 BG
ax

+2"
gv gx

+ e BG BC'' BG+
m av axax av

Here we have generalized the result by adding the species
index v.

Equation (68) is a complicated expression that can be
written in many ways by integration by parts and neglect
of surface terms. In Sec. V we will examine it in greater
detail in special cases. For now we restrict to a single
species and neglect the equilibrium field A' ' and, as well,
the perturbation 5A. In Sec. V it is shown that spatial
localization of the perturbation from equilibrium renders
the positive-energy contribution, arising from the fields,
negligible. Without the magnetic field, the energy expres-
sion of Eq. (61) becomes

Integrating half of the second term of Eq. (72) by parts in

Uk and the other half by parts in x, yields

f d d BG[ df
2m Bx

'
BD

(„aG a aG ae")
au, ax„ au, ax,

e BG 8@ (()) 8 G
m ax, ax, au, au„

, a,~"', nz'5H= —
—,
' fdxd u

' [6'G]+f dx,8' (73)

where we have added back the electrostatic energy term.
This is consistent with the results of Secs. II and III.

Integrating the second term by parts in xI, and the third
by parts in Uk yields the desired result

+ f 5F. dx,
8~

where the operator d reduces to

(69)

B. Homogeneous equilibria —electrostatic perturbations

a e ae"' a
d =v. l.

Bx m Bx Bv
(70)

In the next section (Sec. V A) we see that positive
definiteness of Eq. (69) depends upon the monotonicity-
isotropy condition of Sec. II. Assuming f' '(( ), where
( =mu /2+e4( ' is the particle energy, a sequence of in-
tegrations by parts and neglect of surface terms (cf. Sec.
V A) results in

g p(0)
5'H= —

—,
' f ' [(,G]'d'x d'u+ f 5E'd'x .

aW
' 8~

G, = G, ( v, k )e '" "+c.c.

Thus Eq. (68) for 5 H becomes

(74)

For this example we suppose E' '=0, A' '=0,
"r)f '/Ox=0, and set 5A=O. Equilibria of this type can
be written as f '„'(v). In this case the integrand of 5 H is
independent of x, so it is natural to suppose that the spa-
tial domain is a large periodic box of volume V. Per-
turbed quantities such as 6, which minimize 6 H, are
represented as

(71)

As shown in Sec. II, the expression on the RHS of Eq.
(71) is positive definite if and only if inequality (18) is
satisfied. This velocity-space criterion is the crucial thing
in the general case.

V. EXAMPLES

Now we consider several examples, beginning with Eq.
(68), the energy expression of Sec. IV.

(0)
5'H= Vyf d"

2 2m~

+ i5Ei
16~

Integrating by parts yields

aC.
k'IG. I'+G:k v k.

Bv

a
+G (k v) k.

Bv

A. Electrostatic equilibrium —electrostatic perturbations

For simplicity we consider a single species with an
equilibrium characterized by f ' '( 6 ). Equation (69), with
the neglect of the electrostatic energy term, (indicated by
prime) can be written out as

d3 d3f dxdu f(0)(g)
2m

5H= ——gfdu2. 2m
iG i

(k.v) k. gf (0)

Bv

If the frame of reference is chosen so that

y m„ f vf(."d'u=0,

(76)

(77)

2

+2 BG 0 BG

2e aG a'6 ae"'
m a~, ave. , ax,

6 H will not contain a contribution from the center-of-
mass kinetic energy. We assume this is the case.

Choosing a particle perturbation, that is, one for which
6E=O, the stabilizing effect of the electrostatic energy is
lost and 6 H can be made negative if

e OG aG a'C "'+-
m aU, aU, ax, a~,

(72)
(0)

(k v) k.
dv

(78)
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for some k and v. Note that again we have obtained the
monotonicity-isotropy condition. As already shown in
Sec. II any deviation of f', ' from being a monotonic
function of U results in the existence of negative-energy
perturbations. This includes al1 nonisotropic distribu-
tions.

C. Homogeneous equilibria —electromagnetic perturbations

D. General Maxwell-Vlasov equilibria

We conclude with a sufficient criterion for the ex-
istence of negative-energy modes in general Maxwell-
Vlasov equilibria. To this end we localize our perturba-
tions G„, for one species v, to intervals of size Ax, Ay,
and Az, each being small compared to the typical gyrora-
dius of this species. All other G 's we set equal to zero.
Furthermore, we take our perturbations, which are local-
ized inside these intervals, to be proportional to e'"" with

k rL, kyrL, k, rL, ))1 . (79)

Now consider the question of whether, for the same
unperturbed system as that treated in Sec. V B, a nonzero
choice of 5A could lead to lower energies. If so, the 6 H
threshold for the transition to negative energies would be
given by a condition that is less restrictive than Eq. (78).
A somewhat lengthy calculation is presented in the Ap-
pendix, which shows that this is not the case; the condi-
tion remains unchanged.

negative-energy perturbations to exist in any Maxwell-
Vlasov equilibrium it is sufficient that at least one particle
species has an unperturbed distribution function in the
vicinity of a single point that deviates from a monotonic
function of the energy. We require this to occur in a
frame where the energy of the unperturbed system is min-
imized.

It seems likely to us that this sufficient condition for
the existence of localized negative-energy perturbations is
also necessary, just as in the case of the field-free homo-
geneous plasma. Nevertheless, there does not exist an in-
homogeneous plasma fulfilling the sufficient condition.

The strongly localized modes considered above possi-
bly are not the most dangerous ones. It is, therefore, of
interest to investigate the degree of localization required
for negative modes to exist. Since the Vlasov equation is
only valid for wavelengths larger than the Debye length,
one must check to see if the localization hedges this va-
lidity. Preliminary calculations suggest that this is not
the case. We will report on these calculations in the fu-
ture.
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The right-hand side of Eq. (68) is then dominated by
terms that are bilinear in BG,, /Bx and i)/(3x BG /Bv.
These terms form the same expression as the exact one
for the homogeneous magnetic field-free case with
5 A=0. We obtain again condition (78), now as a
sufficient one, for the existence of negative-energy pertur-
bations. We draw, therefore, the conclusion that, for

APPENDIX

We con-sider an equilibrium with E' '=0, A' '=0, and
Bf(„)/()x=O, but allow variations, 5 A&0, in the vector
potential. By a sequence of extremizations we seek the
minimum value of 5 H. Assuming 5A=5A(k)e'""
+c.c. and G =G e'"'"+c.c., Eq. (68) becomes

(0)

5H= —gfd u
2 2' ikG„—

e 6A' ik. +c c.
c Bv

2

5A +v ikG *——

+ (15EI'+k'I5 AI' —Ik.5 Al') .
16~

(A I )

The question of interest is whether the presence of 5 A leads to a condition less restrictive than (78) for the existence
of negative-energy perturbations. Manipulations paralleling those of the electrostatic case of Sec. V B result in the fol-
lowing expression for 6 H:

5H= gfd u

V

gf (0)
—(k.v) k.

Bv

e, e (3G
IC.I'+f 2I5AI ~f (k'5A G )+(v 5A*) k.

C c v

+c.c. .+ (I5EI +k I5AI —Ik 5AI ) .
16~

(A2)

Minimizing 6 H with respect to 6 A* yields

——g f d'u ' f' ' ikC, +iv k. 5A + [k 5A —k(k.5A)]=0 .
C 16~

(A3)
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We define
2 (0) 2 II2

& f d" 2- =& 8'. = 8.
' (A4)

where co is the plasma frequency for species v.e„BC
g f d'u " f'„' kG, +v k.2, 2m c Bv

With Eq. (A4), Eq. (A3) becomes

+ +k 5A —k(k 5A)
16m. c 2

=0. (A5)

Combining the first two terms of (A5) and then integrating by parts yields

(o)

V

0
+k 5A —k(k 5A)

c 2
(A6)

(o)

V

and the minimizing 6 A is then given by

Multiplication by k yields an expression for k 6 A,
2

+ k.5 A=O,
7T

(A7)

(o)

gf du C„k.
V V

C
2

v+k k v
2Q

2

+ +k 5A=O.
16~

(A8)

We will use this expression subsequently.
Symbolically we can write Eq. (A2) for 5 H in the form

5 H =5 A* R ~ 5 A+5 A*.T+6 A.T*+S, (A9)

where we explicitly display the dependence on 6A and
5A*. Thus Eq. (A3) reads

R 6A+T=O.

where 6 A is shorthand for the expression resulting from
Eq. (A8). Note that we have neglected the electrostatic
term since its minimum is zero.

Since the first term of Eq. (A14) is always negative, we
conclude that a sufhcient criterion for the existence of
negative energies 5 H is the same as the sufhcient and
necessary criterion for purely electrostatic perturbations,
namely,

Since R is real and symmetric, the complex conjugate of
(A10) is

(o)

(k v) k.
Bv

)0 (A15)
5A*.R+T*=O, (A 1 1)

which corresponds to the minimization of (A9) with
respect to 5 A. If we solved (A10) and (Al 1) for 5 A and
5A, respectively, and inserted the result into (A9) we
would obtain the "6A" minimum of 5 H. More con-
veniently, we multiply (A10) by 5A * and (All) by 5A,
and then eliminate the linear terms of (A9), to obtain

for some k and v.
If inequality (A15) is nowhere fulfilled we can further

seek the minimum of 5 6 by varying with respect to G .
Since 5 H is now a purely bilinear expression in the func-
tions C, we require a normalization condition. It is
most convenient to choose, as such,

6 HmiII A 6 A R 6 A +S e

Noting that

(A12) gf (0)
——g f d'u I~.l'(k. v) k.

2 2m Bv
(A16)

V
ik 16

20
+k 6 k

—k, kk
c

and S is given from Eq. (A2), Eq. (A12) becomes

(A13) This is by assumption a positive definite quantity reminis-
cent of the kinetic energy norm for the usual magnetohy-
drodynamic (MHD) energy principle. Our variational
principle can then be written as

V
min A 16~

' +k' I5AI' —Ik 5AI'
C

—g f d u G*a,.R g f d u'G„a„

——g f d'u IG„I22. 2mv +~y f IG.I'b. d'u, (A17)

gf (0)

X(k.v) k.
Bv

(A14) where A, is a Lagrange multiplier and the a and b follow
from Eqs. (A14), (A8), and (A16), respectively:
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1/2 e, k-—
C C)V

8m.

/c2+k2 2m

Since we are interested in the case where (A15) is not
satisfied we specialize to isotropic distribution functions
f I,,

=f, '(v l2). The matrix of Eq. (A24) becomes

c2
X v+ k(k. v)

to)

(k v) k.
2 2m Bv

(A18)

(A19)

4 2

02/c2+k2 mvc2

4 2
3 1 v (Oji U

g2 / 2+g2 2

Now, variation of (A17) with respect to G * yields

—a .R.g f d v'G a, +AC b, =0.

Defining

y=g d'v a,C, ,

Eq. (A20) can be compactly written as

(A20)

=MI,
and Eq. (A23) is then simply

c 2

M I+ kk y=Ay .

The eigenvalues of Eq. (A26) are easily obtained

kX=M, M, M 1+

(A25)

(A26)

(A27)

y f d'u '.R y=Xy .
V

(A21) and the existence of negative 6 H, „occurs for

This is an eigenvalue problem for the vector y with eigen-
value k. Knowing A. , we can write the minimum 6 H as

2f 2

M 1+'', (A28)

Q H,„=(1—A, ,„)g f d iuG, i b, . (A22) For general isotropic distribution functions

c 2

M- I+ kk -y=ky, (A23)

where the matrix M is given by

This follows from Eqs. (A14) and (A20).
From Eq. (A22) we observe that if A, ,„)1 there can be

negative-energy perturbations without inequality (A15)
being fulfilled, i.e., with b, , &0. Hence, it is important to
consider the eigenvalue problem in some detail. Using
Eqs. (A13) and (A18) the eigenvalue equation (A21) be-
comes

and therefore

Q2/ 2

M=
2/c 2+

f d3 f (0) — joI

and thus

2g 2

M 1+'',

2 2

f d'v f'„=—4~ f v dv f',

(A29)

(A30)

(A31)

M= —g du
4~e'. 1 af r.'I

g2/c2+k2 m C2 k v Bv
V V

(A24)

Hence Eq. (A15) is necessary and sufficient for the ex-
istence of negative 6 H, a result identical to the purely
electrostatic case.

Permanent address: Max Planck Institute, Garching, FRG.
'For a discussion regarding the possibility that the famous

Lagrange-Dirichlet stability theorem is both necessary and
su%cient, see the following article: J. K. Moser, Mem. Am.
Math. Soc. 81, 1 (1968).

2P. J. Morrison and M. Kotschenreuther, Institute for Fusion
Studies, Austin, Texas Report No. IFSR 280, 1988 (unpub-
lished); M. Kotschenreuther et al. , Plasma Phys. Controlled
Nucl. Fusion Res. 2, 149 (1987) (International Atomic Energy
Agency Publication).

3P. J. Morrison, Z. Naturforsch. 42a, 1115 (1987).
4J. M. Greene and B. Coppi, Phys. Fluids 8, 1745 (1965).
5Z. R. Iwinski and L. A. Turski, Lett. Appl. Eng. Sci. 4, 179

(1976).
P. J. Morrison, Phys. Lett. 80A, 383 (1980).

7J. E. Marsden and A. Weinstein, Physica 4D, 394 (1982).
~P. J. Morrison and S. Eliezer, Phys. Rev. A 33, 4205 (1986).
C. S. Gardner, Phys. Fluids 6, 839 (1963).

' D. Pfirsch, Z. Naturforsch. 39a, 1 (1984).
''D. Pfirsch and P. J. Morrison, Phys. Rev. A 32, 1714 (1985).
' F. E. Low, Proc. R. Soc. London Ser. A 248, 282 (1958}.
' J. J. Galloway and H. Kim, J. Plasma Phys. 6, 53 (1971).
' R. L. Dewar, J. Plasma Phys. 7, 267 (1972).
'~B. Cohen, S. Auerbach, J. Myers, and H. Weitzner, Phys.

Fluids 23, 2529 (1980).


