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Noncritical liquid mixtures far from equilibrium: The Rayleigh line
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In this paper we determine the contributions to the Rayleigh line for a noncritical binary liquid
mixture in a temperature gradient using the technique of fluctuating hydrodynamics in a uniform-
pressure approximation. The steady-state temperature gradient induces a steady-state concentra-
tion gradient in the liquid mixture. We predict a large enhancement to the Rayleigh line from con-
centration fluctuations that depends upon the square of the concentration gradient. The occurrence
of two gradients within the liquid also gives rise to additional cross-coupling gradient contributions.

I. INTRODUCTION

In recent years the study of fluctuations in nonequili-
brium steady-state systems has uncovered a rich variety
of new phenomena. Reference 1 provides a good review
of this field up to 1984. Recently, one of us (B.M.L.) ob-
served the modifications to the Rayleigh line for a pure
liquid subjected to a large stabilizing temperature gra-
dient V T, where one finds an enhancement to the heat
mode and the appearance of a new viscous mode; both
contributions to the time correlation function are found
to depend upon (V T) jk, where k is the scattering vec-
tor, as first predicted by Kirkpatrick, Cohen, and Dorf-
man-' using mode coupling and kinetic theory and subse-
quently confirmed by Ronis and Procaccia using fluc-
tuating hydrodynamics. A very complete analysis of the
correlation of fluctuations for a pure liquid in a tempera-
ture gradient, and which includes boundary effects, has
recently been presented by Schmitz and Cohen. In a fu-
ture set of experiments Segre, Gammon, and Sengers plan
to study binary liquid mixtures removed far from equilib-
rium by a temperature gradient. As an aid in choosing
appropriate liquid mixtures and in analyzing the experi-
mental results we calculate the modifications to the Ray-
leigh line for a noncritical binary liquid mixture in a tem-
perature gradient using the technique of fluctuating hy-
drodynamics. For such a system the temperature gra-
dient will induce a concentration gradient in the liquid
mixture the size and direction of which will be determined
by the thermal diffusion ratio. The Rayleigh line is
enhanced by both temperature and concentration fluctua-
tions while the presence of two gradients leads to cross-
coupling terms between the gradients. There has been
one previous theoretical study of a system subjected to
two dissipative fields —they considered the Brillouin lines
for a pure liquid with imposed temperature and shear
gradients; however, the cross-coupling effects here are ex-
pected to be small and perhaps unobservable.

The analysis in Sec. II, which most closely follows the
work of Ronis and Procaccia, is arranged as follows.

First, we present the general equations of hydrodynamics
with the addition of random force terms. These equa-
tions are simplified by only retaining terms that are first
order in the fluctuations; that is, we assume the system is
far from any critical point or point of instability. Finally,
the Rayleigh line is calculated explicitly for scattering
vectors perpendicular to the gradients by adopting the
simplifying approximations that pressure fluctuations are
zero and that the Rayleigh line is determined to leading
order by the temperature, concentration, and transverse
velocity fluctations; the pressure and the longitudinal ve-
locity fluctuations only contribute to the sound modes
(Brillouin lines). This theory is applied to a 0.5-mole-
fraction liquid mixture of benzene plus carbon tetra-
chloride. Enhancements of the order of 60 are observed
for a scattering vector of 2000 cm ' and temperature
gradient of 100 K/cm.

II. THEORY

A consensus has been reached concerning the correct
method for calculating the correlation of fluctuations for
nonequilibrium steady-state systems; see, for example,
Ref. 1. In the fluctuating hydrodynamics approach this
involves the following steps: (a) One first writes down the
nonlinear hydrodynamic equations that hold for the time
evolution of the average hydrodynamic variables with ap-
propriate boundary conditions; (b) random force terms
are added to these hydrodynamic equations; the resulting
equations describe the time evolution of the instantaneous
hydrodynamic variables; (c) the dynamics of the fiuctua-
tions, for systems far from any instability or critical
point, are described by determining the linearized equa-
tions in the fiuctuations; and finally (d) the correlations in
the fluctuations are calculated from these linearized equa-
tions by assuming that the random force correlations re-
tain their local equilibrium value; this is because the ran-
dom forces account for the very rapid localized molecular
processes and on a molecular level the molecules are not
influenced by the gradient.
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In the following we will use the random forces as
defined by Cohen, Sutherland, and Deutch who calculat-
ed the correlations between the random forces for a
binary liquid mixture in equilibrium. One can readily
demonstrate that the nonlinear hydrodynamic equations
as given by Landau and Lifshitz, ' when supplemented by
these random forces, are given by the following equa-
tions:

mean value, az- is the thermal expansion coefficient, and
C is the heat capacity at constant pressure and concen-
tration. The quantities p, c, v, s, T, p, p, j, and q describe
instantaneous hydrodynamic variables which can be
separated into an average part plus a fluctuating part, for
example, the instantaneous mass density is given by

p =p, +5p, where p, = (p ) is the average density and 5p
is the density fluctuation with mean (5p) =0; ( )
denotes an ensemble average. We will assume that there
is no convection in the system so that v, =0.

The random forces f, g, and S have zero average value
while their correlations retain their local equilibrium
values. The correlations in the random forces are given
explicitly in Eqs. (19)—(23) below.

For a steady-state system Bp, /Bt =Bc, /Bt =Bs, /Bt
=0 and j,=0, that is, from Eq. (5),
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The mass diffusion flux j is
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where we have assumed that there are no significant pres-
sure gradients and Vc, and V T, denote the steady-state
concentration and temperature gradients, respectively.
The size and direction of the induced concentration gra-
dient is determined by the steady-state condition, Eq. (7).

The next step towards calculating the correlations in
the fluctuations, for a system far from any instability or
critical point, is to determine the hydrodynamic equa-
tions that have been linearized in the fluctuations. For
the continuity equation (1), using the thermodynamic re-
lation

q= k, a
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where

Here p is the mass density, c the mass concentration
defined as the ratio of the mass of one component to the
total mass of the fluid in a given volume element, v the
velocity, s the entropy, T the temperature, p the pressure,
p the chemical potential, o,'k the viscosity stress tensor, g
the shear viscosity, g the bulk viscosity, D the mass
diffusion coefficient, kz the thermal diffusion ratio, k the
barodiffusion ratio, and ~ the thermal conductivity. In
the following, we neglect the temperature dependence
and hence, correspondingly, the spatial dependence of the
transport coefficients —this will be justified in a forthcom-
ing publication. (Kirkpatrick, Cohen, and Dorfman
demonstrated that such an assumption was justified, at
least for a pure liquid in a temperature gradient, for ex-
perimentally accessible scattering vectors and gradients. )

The random forces f, S, and g, as defined in Ref. 9, are,
respectively, the random concentration flux, the random
stress tensor, and the random flux for the variable
P=T —T,asap/C p„where the subscript o denotes
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Similarly, the concentration equation (2), the momentum
equation (3), and the heat transfer equation (4) become,
respectively,

p, +5v Vc = —V 5j+pV f,85c
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in the heat equation (11), and where
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In deriving Eq. (12) for —V.5j, we have assumed (i) all gradients are linear, that is, V T, = V c, =0, (ii) all gradients are
small, that is, we have only retained terms linear in the gradient, and (iii) we have used the steady-state equation (7).

The heat transfer equation (11) can be transformed into a more convenient form by eliminating V.5j using Eq. (9),
then

85T
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The complete solution for this system of equations, Eqs. (8)—(10) and (13), is very algebraic and not particularly infor-
mative especially if one is principally interested in the Rayleigh line. We therefore specialize our treatment to the Ray-
leigh line using a uniform pressure approximation"' (that is, 5p =0) where only the concentration, temperature, and
transverse velocity fluctuate. We recently demonstrated that for a pure liquid in a temperature gradient only the trans-
verse velocity fluctuations contribute to the Rayleigh line to leading order; the longitudinal velocity fluctuations con-
tribute to the Brillouin lines. This situation is not expected to be altered by the presence of a second liquid in a binary
liquid mixture. If we also take the Fourier time and space transform and drop the subscript o, denoting mean value, we
obtain the following equation for the concentration equation (9):
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where 5vI, is the transverse velocity fluctuation. Similarly, the heat transfer equation (13) becomes
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where the thermal diffusivity Dr=7'/pC . Velocity fluctuations are determined from the momentum equation (10),
which in k —cu space has the form

i cg5v„„=—v, k '5v„—( v, —v, )k(k.5v„„)—
ik Sk„

(16)

where the longitudinal kinematic viscosity v& =((+471/3)/p and the transverse kinematic viscosity v, =7)/p. To calcu-
late the transverse velocity fluctuation 5vz „one applies the projection operator (1—k k) to (16)

ik.Sq „.(1—k k)
5vI, =(1—k k).5vq

p(ico+k v, )

(17)
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Here k is the unit vector in the direction of the scattering vector k.
The equations for the temperature and concentration fluctuations, Eqs. (14) and (15), simplify considerably if we only

consider the case where the scattering vector k is perpendicular to the temperature and concentration gradients —this
scattering geometry still retains the essential features of the calculation. From Eqs. (14), (15), and (17) we obtain the fol-
lowing 2 X 2 matrix equation for 5Tk „and 5ck
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In order to solve this equation for correlations between
temperature and concentration fluctuations, one needs re-
lations for the correlations in the random forces. From
Ref. 9

From the matrix equation (18), the steady-state condi-
tion (7), and the correlation properties of the random
forces, Eqs. (23)—(25}, it is a tedious but nevertheless
straightforward process to calculate the correlations in
the temperature and concentration, which contribute to
the Rayleigh line. For the correlations in the tempera-
ture one finds
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Here b, is the determinant of the 2 X 2 matrix appearing
in Eq. (18). Therefore we find that
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where the roots z+ and z are given by
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The random fluxes f and g are uncorrelated with the ran-
dom stress tensor S, that is, k~
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p
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Using Eqs. (19)—(21), one can readily show that

((k Xg „)(k Yq ) ) = (XI, YI,
* ), (24)

Similarly, the correlation in the concentration fluctua-
tions is given by

where X,Y= f or g, while using Eq. (22) one can show
that
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where V U, V V =V T or Vc. X[co +k (Dr+2)) ], (30)
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In Fig. 1 we plot the structure factor, Eq. (32), for a
0.5-mole-fraction liquid mixture of benzene and carbon
tetrachloride at a scattering vector k =2000 cm '. The
equilibrium dynamic structure factor (curve a) has been
normalized to 1 at co=0. For this liquid mixture the
scattering is dominated by concentration fluctuations.
Curves b and c in Fig. 1 show the enhancement to the
structure factor for temperature gradients of 50 and 100
K/cm, respectively, where we have used the thermal
diffusion ratio from Tyrrell' in order to calculate the
corresponding concentration gradient. We have plotted
the structure factor on a log-log graph to demonstrate
that the temperature-temperature correlations at large
frequencies (co —10 s ') are also enhanced in a tempera-
ture gradient as expected, although for this liquid mix-
ture not to the same extent as the concentration-
concentration correlations.FIG. 1. Normalized dynamic structure factor for the binary

liquid mixture benzene plus carbon tetrachloride for a mole
fraction of 0.5 and scattering vector k =2000 cm ' in the
configuration where the scattering vector is perpendicular to the
temperature gradient. (a) Equilibrium structure factor normal-
ized to 1 at co=0. Nonequilibrium structure factor with (b)
V T =50 K/cm and (c) V T = 100 K/cm.

Finally, the dynamic structure factor for the Rayleigh
line, which determines the light scattering properties of
the medium, is obtained from the usual formula
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while the correlation between temperature and concen-
tration fluctuations is given by
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III. CONCLUSION

In this paper we have solved for the Rayleigh line of a
noncritical binary liquid mixture in the presence of a
temperature gradient using fluctuating hydrodynamics.
The temperature gradient induces a concentration gra-
dient in the liquid mixture —the magnitude and direction
of this concentration gradient is determined by the
thermal diffusion ratio. The temperature-temperature,
concentration-concentration, and temperature-concentra-
tion correlations, which contribute to the Rayleigh line,
are calculated for scattering vectors perpendicular to the
gradient using a uniform pressure approximation. The
theory is applied to the specific liquid mixture benzene
and carbon tetrachloride for a mole fraction of 0.5, where
an enormous enhancement to the Rayleigh line was ob-
served from concentration fluctuations —this is the sim-
plest case to study experimentally, that is, where the con-
centration fluctuations dominate the temperature fluctua-
tions. A slightly more interesting, but necessarily more
complex, situation is where the temperature and concen-
tration contributions to the Rayleigh line are of similar
magnitudes; here the cross-coupling gradient terms will
become important. The experimental system we are en-
visaging is either a pair of index matched liquids or a
suitably chosen dilute solution. The whole spectrum with
its various contributions to the dynamic structure factor
should be separable using photon correlation spectrosco-
py because the decay times between T-T and c-c fluctua-
tions differ, in general, by two orders of magnitude.
Quantitative comparison with theory will require an ac-
curate determination of the thermal diffusion ratio.

where the temperature and concentration correlation
functions are given in Eqs. (26), (30), and (31). In the ab-
sence of any gradients, the dynamic structure factor
S(k, cu) reduces to the equilibrium form for a binary
liquid mixture; ' while for a one-component system in a
temperature gradient we retrieve the structure factor
determined previously for a pure liquid in a temperature
gradient. '
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