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Dynamical scaling during interfacial growth following a morphological instability
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The dynamical evolution away from an unstable steady state is studied for the two-sided sym-
metric model in two dimensions by means of numerically solving the interface equations of motion.
Evidence is presented for the appearance of a regime of self-similar growth in which the pattern is
characterized by a single length scale R (t). The asymptotic time dependence of such a length is
R (t)-t. The results also show that the local deviation of the interface from planarity, the local
normal growth velocity, and the power spectrum of the interface satisfy scaling relations. In addi-
tion, by assuming the existence of such a scaling regime, we are able to derive from dimensional and
heuristic arguments a power-law growth with exponents in accord with those found in the numeri-
cal solution.

I. INTRODUCTION

There has been a great deal of progress and activity in
studies of the formation of patterns in various growth
processes. Such problems are part of the general question
of the behavior of two-phase interfaces under a variety of
nonequilibrium conditions. On the theoretical side, they
are of interest because of the emergence of complex
spatio-temporal patterns. Their study involves dealing
with nonlinear and sometimes nonlocal behavior of mov-
ing boundaries. On the practical side, questions of crys-
tal growth, hydrodynamic instabilities, and kinetics have
important technological consequences. Specific systems
that have been under intense study include (i) directional
solidification in binary systems, ' (ii) viscous fingering in
rectangular ' and circular Hele-Shaw cells including an-
isotropic cells, " and (iii) dendritic growth of a solid
from a melt. ' Additional references and background can
be found in Refs. 13—15.

Much of the attention on these and related problems
has focused on the existence of steady states, their stabili-
ty, and the circumstances under which the steady states
form a continuous or a discrete set. The aim has been
and remains, for example, to understand how the tip ve-
locity and curvature of an advancing front during the
solidification of a simple fluid are singled out in a steady-
state regime. ' ' It is currently argued in the case of
dendritic growth in monocomponent fluids and in the
case of finger growth in experiments using Hele-Shaw
cells that steady states form a discrete set, out of which a
small number (perhaps a single one) is linearly stable.
There have been some detailed checked on this scenario,
for example in the case of viscous fingering' and, quite
recently, in directional solidification. '

Less attention has been paid to date on the nature and
dynamics of the growth process itself. Brush and Seker-
ka have studied the growth of a slightly perturbed cir-

cular seed in a supercooled liquid. They were able to fol-
low the growth of the crystal well inside the nonlinear re-
gime and to analyze the evolution of the Fourier spec-
trum of the interface.

Most other dynamical analyses to date, however, have
considered one or another variation of diffusion-limited
aggregation, first studied in detail by Wit ten and
Sander. A great deal of information as been obtained
about such kinetic processes. These latter studies were,
however, not really designed to include the assumption of
local thermodynamic equilibrium, which is implicit in the
Mullins-Sekerka instability lying at the heart of many in-
terfacial growth instabilities.

To deal somewhat more realistically with local thermo-
dynamics and the concomitant relaxation processes at the
interface, Guo and Jasnow ' modeled the case of
diffusion of matter by using a lattice gas model and
Ising-type interactions among the particles. Monte Carlo
simulations were performed to study the dynamical evo-
lution away from an unstable flat interface, when the in-
terface was driven from equilibrium by a steady flux of
particles. Conserved (Kawasaki ) dynamics was used to
model diffusion, and the local Ising interaction allowed
one to incorporate relaxation of the interfacial structures
so that the additional ad hoc introduction of interfacial
boundary conditions was not required. Hence the conser-
vation of particles and the so-called Gibbs-Thomson
effect were automatically included. The latter follows
from the microscopic evaporation-condensation mecha-
nism at the interface.

The simulations of Guo and Jasnow were designed
after the symmetric model introduced by Langer and
Turski. It is known that such a model in an infinite
geometry does not have linearly stable steady states, and
thus it allows a detailed study of the transient evolution
away from an unstable flat interface. Hence it is impor-
tant to consider an infinite system (or, in practical simula-

3864 1989 The American Physical Society



DYNAMICAL SCALING DURING INTERFACIAI. GROWTH. . . 3865

tions, a very large, though finite, system) to avoid the
effects of the boundaries. What emerged from these pre-
liminary studies was a scaling regime of self-similar
growth. Guo and Jasnow calculated the power spec-
trum of the interfacial displacement h (x, t) at time t,
namely,

2

P(k, t)=~h(k, t)i'=N ' g e 'h(x, , t)

where the summation runs over the N sites along the
direction parallel to the interface. The power spectrum
was shown to have a scaling form

P(k, t)= Atsf (Bkt'~') .

The amplitudes A and B are nonuniversal, but available
evidence indicated that the scaling function f (x) is
universal, that is, independent of the driving flux and
temperature, over the small range of parameters that was
accessible. (In the lattice gas model the temperature con-
trols the surface tension. ) The implication of Eq. (2) is
that the dominant mode in the pattern grows as a power
law, i.e.,

P(k,„(t),t) t' . —

Furthermore, scaling indicates the existence of coarsen-
ing, i.e., a characteristic length scale for the structures
which grows in time, R —t ' '.. These forms of scaling ap-
pear quite naturally in related studies of spinodal decom-
position. ' There, however, one has an ensemble of
random interfaces, and the system is not driven external-
ly but, rather, is approaching thermodynamic equilibri-
Um.

The Monte Carlo simulations, while extremely en-
couraging, have their weaknesses, largely due to the small
systems used and the inherent statistical fluctuations.
Improved Monte Carlo calculations can be carried out as,
for example, in the work by Harris and Grant ' or by re-
ducing the noise along the lines of work on the Saffman-
Taylor problem. Use of the macroscopic interface
equations, however, holds out the possibility for more ac-
curacy and the ability to investigate more deeply the na-
ture of the scaling and structures, and to vary, in a more
controlled fashion, parameters such as the anisotropy.

In this paper, results of a numerical solution of the
macroscopic interface equation for the two-sided sym-
metric model in two dimensions are presented. The evi-
dence for an asymptotic scaling regime appears to be very
good in the nonlinear growth domain. Furthermore, the
macroscopic interface equation allows a scaling analysis
which is based on the numerical evidence of dynamical
scaling. Such an analysis predicts an exponent z=1 and
6=2z for the model studied, in good agreement with the
numerical results.

The layout of the remainder of this paper is as follows.
In Sec. II the symmetric model and the accompanying in-
terface equation are introduced. Section III is devoted to
a presentation of the results of the numerical solution of
the interface equation. The final section is reserved for a
dimensional analysis of the interface equation and for
concluding remarks.

II. SYMMETRIC MODEL

Following Langer and Turski one imagines a system
with two ordered equilibrium phases, denoted by a and P,
coexisting at a temperature T & T, . The diffusion
coe%cient and order parameter susceptibility are as-
sumed to be the same in both phases. The system is
infinite in extent, and the equilibrium interface is taken to
be the plane z=0, with the a (respectively P) phase occu-
pying the half space z& 0 (respectively z (0). 3 In each
of the two ordered phases, macroscopic order parameter
inhomogeneities relax diffusively according to

B,Q~=D V P, y=a, P .

This equation has to be supplemented with appropriate
boundary conditions at the interface. Conservation of or-
der parameter leads to

D( VP +—Vga). n=(bg)U„,
where the unit normal n is directed into the e phase, U„is
the local normal velocity, and b,P is the equilibrium mis-
cibility gap. The appropriate Gibbs-Thomson relation is
of the form

where the interface shape is given by z =h (x, t), and x. is
the mean curvature of the interface, taken as positive if
the nearest center of curvature lies in the a phase. The
subscript S indicates that the quantity is to be evaluated
as the limit approaching the interface from one or the
other bulk phases. The coe%cient I contains thermo-
dynamic information and is of the form I =op/b, P,
where o. is the surface tension and g is the order parame-
ter susceptibility in the equilibrium phases (equal in both
phases in this symmetric system).

We have used in the present study a constant flux
boundary condition far from the interface: j(z
=+~ ) =jok, where k is the unit vector in the z direc-
tion. This system of equations and boundary conditions
admits a steady-state solution in which a flat interface at,
say, z= 0, separates both phases. The order parameter in-
side either phase is given by

y(0) —ye ( /D)

The values P' correspond to the bulk equilibrium order
parameter; for specificity we take P' = —

Ptiq & 0.
We now define a field u (x,z) such that

P(x, z) —P'q= —(j /D)z +(AP)u (x,z) .

In the symmetric model, u is continuous across the inter-
face. The steady-state solution corresponding to a flat in-
terface at z=O is given by u=O. This solution, however,
is known to be linearly unstable for perturbations of
su%ciently long wavelength. ' In the remainder of this
paper we will study the dynamical evolution of the inter-
face from an initially unstable flat interface.

We furthermore introduce the quasistationary approxi-
mation in which one neglects retardation effects and re-
places the full diffusion equation by Laplace's equation in
both phases. This is clearly not a consistent approxima-
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I «(s) + h (s) =I G (s,s') u„(s')ds',Jo
D s D

(10)

where the interface has been parametrized by a contour
variable s. s and s' denote two arbitrary points on the in-
terface and the integration extends over the entire inter-
face.

We have described the interface on a discrete set of
points and numerically solved for its motion in the fol-
lowing way. At time t the interface configuration and
hence the left-hand side of Eq. (10) are known. Equation
(10) is then an integral equation for the normal velocities
v„.Once the normal velocities are found the interface
position is determined at a new time t +6t by forward in-
tegration in time.

The equation of motion determines the normal veloci-
ties only; it is useful to add a tangential component to
keep the points equally spaced in arc length. We deter-
mine this tangential component as follows (the discussion
specialized to a two-dimensional system). IfS„,is the to-
tal length of the interface (imagining, for the moment, a
finite or periodic system), we require that the relative po-
sition of a point on the contour remains unchanged, i.e.,
(s/S„,), =(s'/S„,), +s„where s' is the image of the in-
terface point s under the prescribed iteration scheme that
determines the interface at t+6t. In practice the inter-
face is known at a fixed number of nodes so that the con-
dition described implies that equally spaced nodes remain
equally spaced under the motion of the interface. Under
this condition, the discrete interface equation can be
rewritten as a system of ordinary differential equations
(ODE) for 8, the angle between the local normal and the z
direction, and the total arc length St

gg Bv„=VfK+

and

dS tot Ksvsd$7
dt o

(12)

tion for all times in an infinite system. However, in any
realistic situation, the consistency can be addressed. In
any event including retardation effects is certainly beyond
the scope of the work reported here.

The system of partial differential equations and bound-
ary conditions described above can be recast into an
equation of motion for the interface alone. As has been
discussed above, we consider a finite domain of width W,
with periodic boundary conditions. We define a
"Coulomb" Green function by V G (r

~

r' ) = —5( r —r' ).
Since the numerical solution will be obtained in a cell of
finite width with periodic boundary conditions, it is con-
venient to impose periodic boundary conditions on G as
well. ' The explicit form of the Green function reads

G (r~r') = — ~bz~ — in[1 —2p cos(kabx)+p ],1 1

2W 4~
(9)

where r=(x, z), bz =z —z', bx =x —x', k0=2m/W, and

p =exp( —kalb. z~). With this choice of Green function,
the equation for the interface reads

where v, is the tangential velocity determined by
u, (s) —u, (0) =sg (S„,) —S„,g (s) with

sg(s)= f u„(s')[—«(s')]ds' .
Stot

(13)

If the interface is represented by a set of N equally spaced
nodes in arc length, Eqs. (11) and (12) constitute a system
of N+1 independent ODE's. There is one additional
equation for the motion of a reference point on the inter-
face. We have integrated the equations of motion with an
implicit ODE solver such as HsoDEN in the Cray BcsLIB
library. We have typically used N=242 nodes in our cal-
culations and occasionally increased N to N= 362.

III. RESULTS

One would like to study the evolution of the interface
free from the influence of outer boundaries. The ap-
proach taken here is that space is infinite, but that in the
direction perpendicular to the direction of the imposed
flux, the structures are periodic. In order to minimize
further the perturbing influence of the imposed periodici-
ty, we have made special choices of the physical parame-
ters, as described below. This choice of parameters al-
lows us to consider several relevant Fourier modes of the
interface while keeping the width of the system, W,
reasonably small.

We rescale lengths by the capillary length, da = I /b P,
and times by do/D. Then the only control parameter is
j0/D I =(d01) . The dimensionless length l is inversely
proportional to the slope of the order parameter in the
steady state [Eq. (7)]. It is known from linear stability
theory that the flat interface is unstable against
infinitesimal perturbations of wave number k (k,
=(dal) ', i.e., the geometric mean of the capillary
length and the length l is involved in a characteristic
way. ' In real systems the difference between the two
lengths may be 5 or 6 orders of magnitude. This fact
poses a diFicult problem for numerical computations.
One hopes, however, that the essential features of the
growth behavior can be identified with a much narrower
range of lengths. We believe that the essential point is
that the structures that evolve must be sufficiently larger
in scale than the capillary (or microscopic) length. In
this paper results are presented for 1=40 and W=800.
The range of operation is fairly narrow, as it was in the
original Monte Carlo simulations. ' Increasing l slows
down the growth thus increasing the required length of
the runs, but decreasing I causes too many modes to be
linearly unstable thus requiring a finer interface discreti-
zation than is practical. Given our choice of parameters,
modes n =1—20 are linearly unstable, where, as usual,
the wave numbers are specified by k =2~n /W, with n a
non-negative integer. The fastest growing modes in the
linear regime are n=11 and 12.

In our calculations we have used two types of initial
conditions. The first one consists of a linear combination
in k space of most of the modes that are linearly unstable,
including the dominant modes of the linear theory. [The
shortest wavelength (n ) 17) unstable modes can cause
numerical difficulties but grow slowly. These are re-
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moved from the initial conditions. ] The complex
coefficients in the linear combination are chosen at ran-
dom according to a Gaussian distribution with zero mean
and width equal to one. With this choice the maximum
initial amplitude of any mode is about 2% of its wave-
length. The results are then averaged over an ensemble
of initial conditions. With this type of initial condition
we have observed dynamical scaling of the type which
will be described below. Nevertheless, the power spec-
trurn of the interface is peaked, even at reasonably long
times, around n=11 or 12. This is due to the fast growth
of these modes during the linear regime. Of course, this
part of the power spectrum is not expected to satisfy
dynamical scaling, and its large amplitude masks some-
what the behavior of other modes of longer wavelength.
As a consequence we have also used a different type of in-
itial condition designed to minimize the effect of the
linear regime and thus to make the nonlinear regime
more readily accessible to the numerical calculation.
This second type of initial condition is identical to the
first one except in that initial amplitudes for modes
n ~11 are strongly filtered, for example, with a sharp
cutoff. The results for the power spectrum and different
measures of a characteristic length of structure have been
obtained with the second type of initial condition and in-
clude averages over ten independent runs. Available evi-
dence seems to indicate that the long-time behavior of the
system is the same regardless of what type of initial con-
dition has been used. This point, however, will have to
be addressed more precisely in future work.

In order to test the accuracy of the numerical scheme,
we have analyzed the linear growth regime immediately
after the instability. The different interface modes grow
independently, with rates in very good agreement with
those predicted by linear stability analysis.

In Fig. 1 a typical interface profile is shown for

different times. To give immediate circumstantial evi-
dence for a scaling regime we consider three independent
lengths: (i) the change in the total arc length,
b,S =S„,(t) —S„,(t =0), (ii) the mixing zone b,Z defined
as the maximum peak-peak height in the pattern, and (iii)
zz = (z ) ' . the rms displacement of the interface about
the initial position, z=0. In Fig. 2 we show the propor-
tionality of these lengths at sufficiently long times, indi-
cating that there is statistically one characteristic length
for the spatial pattern. (The proportionality is equally
evident in the individual runs, a situation quite different
from simulations of spinodal decomposition which re-
quire an average before any systematic behavior
emerges. ) Furthermore, consider one particular run, like
the one shown in Fig. 1. In Fig. 3 we show that for times
longer than t=1500, all curves collapse onto a single
curve if the displacement z(s) is scaled by the charac-
teristic length bZ and the arc length is scaled by St
This is very impressive collapse, clearly not evident at
earlier times. Furthermore, the same behavior is ob-
served by plotting the normal velocity U„(s)versus s/S„,.
(The choice for the scaling of the normal velocity will be
discussed below. ) Finally, the growth of the total arc
length versus time is shown in Fig. 4. We conclude that
AS —t, at sufficiently long times.
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0 )00 200 500

80

60

40

t . I . I

400
X

800

FIG. 1. Typical sequence of interface profiles (in x-z coordi-
nates) following the instability of a planar interface. The width
of the system is 8'=800 and the times shown are t=0, 500,
1000, 1500, 2000, and 2500, in order of increasing maximum
amplitude.

0 100 200 300

FIG. 2. (a) Change in the total arc length, AS, as a function
of the maximum peak-to-peak amplitude, hZ, averaged over ten
runs. After an initial transient, these two independent lengths
become proportional to each other, signaling the existence of a
scaling regime. (b) Root-mean-square displacement of the inter-
face, z2, as a function of hZ, averaged over ten runs.
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FIG. 5. Power spectrum of the interface averaged over ten
independent runs. The initial condition used in each of these
runs assigns zero initial amplitude to the modes with n ~ 10.
The times shown are 0, t=1000; +, t=1500;, t=2000; and
o, t=2500.
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(lo In related studies of, for example, spinodal decomposi-
tion, a power-law behavior in a characteristic length scale
can be observed before an accurate scaling of the dynam-
ic structure factor has been established. A similar situa-
tion has been encountered in the present case. Because of
reentrant shapes, we have considered the power spectrum
of the displacement z =h (s) as a function of the arc
length. The Fourier modes then correspond to cycles in
the total arc length, so that
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FIG. 3. (a) Rescaled interface profile at several times after
the instability: z/AZ vs s/S„,. The times shown are
t=500; 0, t= 1000; +, t= 1500; , t=2000; and o, t=2500.
At late times, all curves superimpose indicating the existence of
a self-similar mode in the dynamical evolution of the interface.
(b) Rescaled normal velocities at several times after the instabili-
ty: v„vss/5„,. This scaling is consistent with f3=0, as de-

scribed in the text. The times shown are 6, t=500;, t=2000;
and O, t=2500.

where the sum is over the equally spaced nodes defining
the interfacial contour. The averaged power spectrum is
shown in Fig. 5; note the abscissa determines the number
of cycles in the total arc length. In Fig. 6 the power spec-
trum is scaled by the square of the characteristic length
AZ and the wave number is again scaled by 5„,. Note
that the last times seem to converge to a single curve.

The circumstantial evidence presented indicates that
the growth pattern following this form of a Mullins-
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FIG. 4. Time dependence of the change in the total arc
length, AS, as a function of time t averaged over ten indepen-
dent runs. Both are proportional at su%ciently long times.

FIG. 6. Power spectrum shown in Fig. 5 scaled with AZ.
The same times are shown. The curves corresponding to the
two latest times are seen to converge.
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Sekerka instability selects a self-similar mode in the
dynamical evolution. In the next section we discuss the
scaling from the point of view of the interface equations
of motion.

IV. SCALING OF THE INTERFACE
EQUATIONS AND DISCUSSION

We present in this section an analysis of the scaling
properties of the interface equation. Our analysis is
based on the empirical observation of dynamical self-
similarity described in the previous section. We follow
the approach given by Mullins and Vinals for the study
of coarsening in spinodal decomposition.

Briefly, we assume that after a possible transient, the
system is statistically self-similar; i.e., consecutive
configurations of the structure are geometrically similar
in a statistical sense. As a consequence, any parameter of
the structure that is invariant under a uniform length re-
scaling is also independent of time. Consider the rate of
change of the total arc length,

dS tot ~tot
KV~ d$

dt 0
(15)

1
Kvn ds

Stot

(17)

is invariant under length rescaling and, according to our
hypothesis, is also independent of time in the self-similar
regime. Equation (16) can be integrated to give (P & 1)

S,', ,
~

( t ) S,', ,
~

( t, ) = ( 1——f3)A( t t, ), —(18)

where t0 is some initial time in the self-similar regime.
We proceed now to determine the value of P from the

interface equation (10). Imagine that at a given time the
interface shape is z = h (x, t). The local normal velocities
can be calculated from Eq. (10). Under a uniform rescal-
ing of the linear dimensions of the system by k, we can
write, for the scaled-up system,

I K + h = ' G (As As')u ds
D D

(19)

This equation determines the local normal velocities in
the scaled-up system v„. Since G ( s, s '

) scales as A.

where d is the space dimensionality of the system,
K ( 1 /A. )K and h =kh, we obtain

Now suppose that under a uniform length rescaling by
the local normal velocity of an element of interface in

the scaled system, v„,is related to the normal velocity of
the corresponding element of interface in the original sys-
tem by v„=A,~v„.Then we can write

dSto i =WS t.tdt

where

I —K+ Ah = f G(s, s')v„A,ds .
1 &0 b,

D D
(20)
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For sufficiently large k (or, equivalently, sufficiently long
times), the first term in the left-hand side will be negligi-
ble compared to the second. Comparing Eqs. (10) and
(20) we find u„=A, v„,or P=0.

We show in Fig. 3(b) u„versus s /S„,( t) for different
times after the instability. After some transient time, all
the curves superimpose indicating that P=0, as derived
above. We also shown in Fig. 5 AS versus time. After an
initial transient, hS is linear in time, also in agreement
with P=0. [See Eq. (18).]

Hence the assumption of a self-similar growth regime
allows one to extract some details from the equations of
motion which are seen to be consistent with the actual
simulations. The evidence is good that there is indeed a
scaling solution to which the system evolves. There is as
yet no theoretical structure within which to understand
the existence of scaling. The situation is quite analogous
to that of spinodal decomposition, and we believe, be-
cause of similarities at both the macroscopic and micro-
scopic levels, that progress in the understanding of coar-
sening in both bulk and interfacial problems will be relat-
ed.

There are several additional directions that work on
the interfacial scaling domain should take. It will be
necessary to examine the one-sided model in which the
diffusion coefficients for the two coexisting phases are
taken to be widely different. Preliminary indications
from Monte Carlo simulations ' suggest different
classes of behavior. Second, the entire question of the
effect of a force field biasing diffusion in the two phases
needs to be considered. Such a field played an important
role in the Monte Carlos simulations, and indications are
that there are interesting conceptual points involved both
at the Ginzburg-Landau level and at the level of macro-
scopic interface equations. Additionally we note the in-
herent inconsistency of treating an infinite system in the
quasistationary approximation, i.e., replacing the full
diffusion equation for the bulk with Laplace's equation.
As argued elsewhere the retardation implicit in the
diffusion equation may make the treatment of interface
equations with a cutoff Green function of interest. These
and other directions are currently being explored and will
be discussed separately.
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