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The five-moment method in gaseous electronics is based on a model velocity distribution function
with position-dependent parameters, such as density (one moment), average velocity (three mo-
ments), and average energy (one moment). Temporal and spatial dependence of these parameters is
determined by solution of velocity moments of the Boltzmann equation, which are coupled, partial
differential equations in time and space. In this paper velocity moments of the Boltzmann equation,
including moments of the collision integral for elastic and inelastic collisions, are given for two
model distribution functions —shifted Maxwellian and shifted shell —and solved for the case of a
planar Townsend discharge in helium, including nonequilibrium regions near electrodes. Based on
a comparison between calculated and measured values of a/N versus E/N, it is concluded that
five-moment theory based on a shifted Maxwellian distribution is superior to either the five-moment
theory based on a shifted she11 distribution, or the two-moment theory based on a monoenergetic
beam distribution.

I. INTRODUCTION

In physical situations where average velocity and aver-
age energy of electrons do not change in time or space,
electrons are said to be in equilibrium with the electric
field. In these situations, the energy imparted to elec-
trons by a steady, uniform electric field is exactly bal-
anced by energy lost in elastic and inelastic collisions
with heavy particles. The steady, uniform motion of elec-
trons under these conditions is accurately described by
transport and rate coefficients which by custom are
parametrized by E/N, the ratio of electric field to gas
density.

Theoretical analysis of nonequilibrium situations in
gaseous electronics is considerably more complicated
than that of equilibrium situations, because time and
space derivatives in the Boltzmann equation for the
electron-energy distribution function (EEDF) must be
taken into account ~ Near those points where the electric
field varies abruptly in time or space, or near electrodes
and insulating walls, electrons generally are not in equi-
librium with the electric field. Consequently, parametri-
zation of transport and rate coefficients by E/N is not
possible.

There are several analytical techniques available to the
theoretician wishing to investigate nonequilibrium situa-
tions, including numerical simulation by Monte Carlo
calculation, numerical solution of the Boltzmann equa-
tion, either directly or by the spherical-harmonic expan-
sion technique, and solution of the Boltzmann equation
by the moment method. For example, the Monte Carlo
technique has been used to investigate electron swarm be-
havior in steady, nonuniform fields in nitrogen. ' The au-
thors conclude that the numerical task is a formidable
one, and suggest that a hydrodynamic approach, i.e., a
moment method, is more desirable. Examples of numeri-

cal solution of the Boltzmann equation include investiga-
tion of the effect of sudden changes in unsteady, uniform
fields in the positive column, and the effect of steady,
nonuniform fields in the cathode fall. The moment
method has been used to investigate nonequilibrium
effects in the cathode fall and in the modulated positive
column, and the effect of ionization on transport
coefficients.

Of these three techniques, numerical solution of the
moment equations is the least time consuming. However,
the moment method is also the least accurate, because the
EEDF is assumed, not calculated. Consequently, the
rates of those processes which depend on detailed
knowledge of the EEDF, such as inelastic collision rates,
are inaccurately calculated. Nevertheless, mass, momen-
tum, and energy are conserved, so that qualitative esti-
mates are easily obtained with moment methods.

In this paper, velocity moments of the Boltzmann
equation, including moments of the collision integral, are
given for two model distribution functions: shifted
Maxwellian and shifted shell ~ For illustrative purposes,
calculated results for a/N versus E/N in a steady, uni-
form electric field in helium with infinite electrode sepa-
ration are compared with measurement, where a is
Townsend's first ionization coefficient. It is shown that
calculated results for the shifted Maxwellian distribution
agree more closely with measurement over a wider range
of E/N than those for the shifted shell distribution. In
addition, calculated results for o. and average energy
versus position in a steady, uniform field with finite elec-
trode separation are compared with published Monte
Carlo calculations. It is shown that calculated results for
the shifted Maxwellian distribution agree more closely
with Monte Carlo calculations, and that calculated re-
sults for both distributions agree more closely with
Monte Carlo calculations than those based on the single
beam model.
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II. BACKGROUND THEORY

n(g(c)):—fg(c)fd c, (2)

where g(c) is any function of c. For example, average ve-

locity c0 is defined by the equation

The Boltzmann equation for electrons in an electric
field E is

df e+c.V„f— E—.V,f= Cf,
Bt m

where f=f ( t, r, c) is the EEDF, e and m are the electron
charge and mass, and C is the collision operator. In what
follows, it is useful to make the definition

in which Q (c) is the cross section for momentum
transfer by electrons with an energy of —,'mc . Because
Eq. (7) is a vector equation, there are three momentum
equations in the most general case. However, in one-
dimensional problems such as those discussed below, only
one momentum equation is needed. Nevertheless, to be
consistent with published literature, the moment method
discussed in this paper is referred to as the five-moment
method.

The third moment equation is obtained by multiplying
the Boltzmann equation by —,mc and integrating, giving
the following energy balance equation to first order in the
ratio m /M:

n (c)—:fcf d'c —=nc, . (3) n( —'—mc ) + V n ( 'me —c ) + en c E
at 2 2 0

By convention, the distribution function is normalized
so that Jf dc= n, where n is the electron density and the

integration extends over all values of velocity c. Moment
equations are derived by multiplying both sides of Eq. (1)
by various powers of electron velocity c and integrating
over velocity space.

The first moment equation is obtained by multiplying
the Boltzmann equation by unity and integrating, giving
the continuity equation. For the case where one positive
ion and s new electron are created by the impact of an
energetic electron on an atom, the continuity equation is

Bn +V'n c0—v;n
at

(4)

v; =N(Q;(c)c ),

where v, is the average ionization frequency defined by
the relation

= —2 v,n ( —,'mc ) —v, neV, —v neV (9)

where V, is the ionization, excitation potential of the
gas, v, is the average energy transfer collision frequency
defined by the relation

v, ( —,'mc ) =N(g (c)c(—,'mc )), (10)

and v„ is the average excitation frequency defined by the
relation

v„=N( Q„(c)c),
in which Q (c) is the cross section for excitation by elec-
trons with energy of —,'mc .

The average values of the quantities defined above are
evaluated below for two model distribution functions:
shifted Maxwellian and shifted shell.

gcC dc= g'c —gc N yacc d c, (6)

in which Q, (c) is the cross section for ionization by elec-
trons with energy of —,'mc . The term on the right-hand
side of Eq. (4) is derived as follows. The form of the col-
lision operator C is such that

III. SHIFTED MAXWELLIAN

f(t, r, c)=n
2~kT

3!2
m (c—co)

2kT

The shifted Maxwellian distribution (SMD) is

(12)

where Q is the cross section for collisions of type j, and
the quantity g'(c) —g(c) is the change in g(c) due to col-
lisions. In the simplified form expressed by Eq. (6), it has
been assumed that m/M &&1, where M is the atomic
mass of the gas. For example, in an ionization event,
g'=2 and g = 1, so that the right-hand side of Eq. (4) fol-
lows directly from Eqs. (5) and (6).

The second moment equation, in reality three equa-
tions for the three components of the average velocity, is
obtained by multiplying the Boltzmann equation by c and
integrating, giving the following momentum balance
equation to first order in the ratio m /M:

dnc0 e+V.n ( cc ) + nE =- —v n co-
c}t m

where v is the average momentum-transfer collision fre-
quency defined by the relation

v co=N(g (c)cc),

—,
' k T=—( —,

' m ( c—co ) ) . (13)

A. Evaluation of average quantities

For simplicity, it is assumed that the electric field is lo-
cated along the z axis, and that all quantities have azimu-
thal symmetry about the z axis. Then density, average

where k is Boltzmann's constant, and where density n,
average velocity c0, and temperature T are functions of t
and r. This distribution has a Maxwellian form in the
center-of-mass frame moving with average velocity c0.
This distribution is normalized so that If dc = n

Furthermore, it can be shown that Jcf dc=co, and that

I—,'mc f dc= 3kT+ —,'mco. The—temperature T is a mea-
sure of the width at half maximum of this distribution.
The quantity —kT is a measure of the average energy of
random motion defined by the relation
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velocity, and average energy are functions of t, z only,
and integrals of the form

(g(c))= f f f g(u, v, w)f(t, x,y, z, u, u, w)

Xdu dU dw,

where x,y, z and u, U, w are Cartesian components of the
vectors r and c, can be simplified to the following:

(g(c)) —=2~f f g(c,p)f(t, z, c,p)c dc dp, (14)

(w) =wo,

(ww ) = +w,',kT

(15)

(16)

( —c w) —w — + —w
5kT 1

2 m 2
(17)

When the distribution has the form given by Eq. (12),
then the z components of the various average quantities
defined in Sec. II are calculated to be the following:

where p is the cosine of the angle between the z axis and
the vector c.

Elastic collision frequencies are given by the following
expressions:

kT
2 ITmwp

6 exp
2mwp mc

2kT p 2kT
mwpc l?l WpC

cosh
kT

—sinh
mWpC

kT Q (c)c dc, (18)

4 m

3&7rw,

' 3/2 2
—1

mwp

3kT
1+ exp

2mwp

2kT p

mc . mWpC

2kT
sinh Q (c)c dc .

kT
(19)

2
mwp

P
mWpC

kT
vt, x 1 m

w p 27TkT

mc
sinhexp

Equations similar to Eqs. (18) and (19) were derived by Morse.
Inelastic collision frequencies are given by the following expression:

1/2

Q;, (c)c dc . (20)

B. Moment equations

Bn ~(nwo)

Bt Bz
(21)

B(nwo)

Bt Bz

kT
+Wp

e nE = —v~ nwp,

(22)

The moment equations for SMD are found by substi-
tuting expressions derived above into the general moment
equations derived in Sec. II. In order, the equations for
particle balance, momentum balance, and energy balance
for SMD are the following:

—', kT= ( —,'m(c —co) ) =
—,'ms (25)

speed s are functions of t and r. This distribution has the
form of a spherical shell in the center-of-mass frame mov-

ing with average velocity cp. The random speed s
represents the radius of the .shell, and the drift speed cp
represents the displacement of the center of the shell
from the origin in velocity space. It is normalized so that

If d c= n Furt.hermore, it can be shown that

jcfdc=co, and that f ,'mc f dc=——,'m(s +co). There-

fore, by analogy with SMD, the random speed s is a mea-
sure of the "temperature" of the distribution. In other
words,

[n( ', kT+ ,'mwo)]+— —[nwo(,'kT+ ,'mwo)] ——e—nwoE

= —2 v, n( ,'kT+ —,'mwo) v—,neV, vneV—„, —

(23)

where the collisions frequencies v are given by Eqs. (18)
to (20), and where it has been assumed that E= Ek so-
that E is a positive quantity.

IV. SHIFTED SHELL

The shifted shell distribution (SSD) is'

f(t, r, c)= 36((c—co) —s ),
2&$

(24)

where electron density n, average velocity cp, and random

A. Evaluation of average quantities

As before, it is assumed that the electric field is located
along the z axis, and that all quantities have azimuthal
symmetry about the z axis. Then density, average veloci-
ty, and average energy are functions of t and z only, and
integrals of the form

(g(c)):—f f f g(u, u, w)

Xf(t, x,y, z, u, U, w)du du dw,

where x,y, z and u, v, w are Cartesian components of the
vectors r and c, and can be simplified to the following:

(g(c)) =2m. f f g(p, w)f(t, z,p, w)p dp dw, (26)

where p =u +U . It is helpful to express the velocity
components p and w in the dimensionless form p =p/s
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and w =w/s. Then Eq. (26) becomes

&g(c) &
=f "f"g(p, w)&(p '+(w —w )' —l)p dp dw,

w0+1=
—,
' f g(+1—(w —wo), w)dw .

w —10

ment equations derived in Sec. II. In order, the equations
for particle balance, momentum balance, and energy bal-
ance for SSD are the following:

(32)

For example, suppose g = w; then (g ) is calculated to be

S w0+1
(w ) = — w dw =wo .

w —10

Likewise, for g =ww,

B(nwo) g, e+ [n( —,'s +wo)] — nE=——v nwo,

[—n ( —,
' ms + —,

' m w o ) ]

(33)

wp+ 1

( ww ) =— w 'dw = —'s'+ w',
0

and for g =
—,
' c w,

wO+'
( —,'c w ) = f (1 —w o+2wow )w dw

0

=wo( —,'s + —,'wo) .

(27)

(28)

+ [nwo( 'ms—+ ~ mwo)] en—woE
c}z

= —2 v,n( —,'ms + —,'mwo) —v, neV, —v„neV, ,

(34)

where the collision frequencies v are given by Eqs. (29)
to (31).

X g
— (s —wo) dg,

2e

2
s 2e

4wo(s +wo) ms

(m /2e )(s + w0 )

X f Q, (g)&2eg/m gdg,
(m /2e )(s —

w0 )

(29)

(30)

where the integration variable g is expressed in units of
eV.

Likewise, inelastic collision frequencies have the form

(m /2e )(s+ w0 )

f Q; (g)&2eg/m dg,
4wo ms ~min

Equations (27) and (28) are the same as Eqs. (16) and (17)
when —', k T is identified with —,

' ms . '

Following the same procedure, it can be shown that
elastic collision frequencies are given by the following ex-
pressions:

2
+m s 2e

8w0 ms

(m /2e)(s+ w0 )

X f Q;(g)&2eg/m
( m /2e )(s —

w0 )

V. DISCUSSION

U,1—
3Ud

dUd 2 dU„+
dz 3 dz

1/2

In this section the following comparisons are discussed.
(1) Calculated results for a, /N versus E/N in a steady,

uniform electric field of finite extent in helium are com-
pared with measurement.

(2) Calculated results for a and average energy versus
position in a steady, uniform electric field of finite extent
in helium are compared with published Monte Carlo cal-
culations and Boltzmann calculations.

(3) Calculated results for average velocity and average
energy versus E/N in a steady, uniform electric field of
infinite extent in a model gas are compared with previous
moment calculations.

The steady-state comparisons are based on simplified
momentum and energy balance equations obtained by ex-
panding the spatial derivatives on the left side of Eqs. (22)
and (23) or Eqs. (33) and (34), and eliminating density n

by means of Eq. (21) or Eq. (32), leaving two equations to
be solved simultaneously for equilibrium values of drift
energy eUd= —,'mwo and random energy eU„= —,'kT, or
e U„=—,

' ms,

(31)
m

2e Ud
[2v Ud+v, (2Ud+ —,

' U„)], (35)

where the lower limit of integration is given by the rela-
tion

(s —wo), V; „( (s —wo)
2e

' ' 2e

dUd 5 dU„+— =E—
dz 3 dz

m

2e Ud

1/2

2 v, (Ud+ U„)M

+v, ( V, + Ud+ —,'U, )

=V, , V, ) (s —wo)
2e +v V (36)

B. Moment equations

The moment equations for SSD are found by substitut-
ing the expressions derived above into the general mo-

For comparisons in helium, the co11ision frequencies v

appearing in Eqs. (35) and (36) are based on published
theoretical values of momentum-transfer cross section"
and of inelastic cross sections. ' The momentum-transfer
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shown as curve SBD (ENERGY) in Fig. 3, and that from
Eq. (37) and (39) as curve SBD (MOMENTUM). The
SBD (ENERGY) result in Fig. 3 is identical to that ob-
tained by Sommer et al. Clearly, the single beam model
based on the energy balance equation is more accurate
than that based on the momentum balance equation, as
found by others. '

Corresponding values of random energy U, and direct-
ed energy Ud are shown in Fig. 4 for SMD, and in Fig. 5

for SSD. Note that the ratio of directed energy to ran-
dom energy is on the order of 10 for values of E/N
near 10 ' V cm where elastic collisions dominate ener-

gy balance, but increases to a value on the order of unity
near E /N = 10 ' V cm where inelastic collisions dom-
inate energy balance. Note also from Fig. S that U, levels
off near the excitation energy e V =21 eV for SSD, where
it stays until E/N gets very large. This behavior is con-
sistent with the large error in a/N for values of E/N
below about 5x 10 ' shown in Fig. 2 for SSD.

B. Comparison with Monte Carlo —Boltzmann (MC-B)
calculation

Monte Carlo simulation of electron kinetics in a
steady, uniform electric field with finite electrode separa-
tion has been published, along with companion
Boltzmann calculations. ' The main result of these two
calculations is a definition of nonequilibrium regions near
the electrodes. In this section comparisons are made be-
tween these MC-B calculations and five-moment calcula-
tions for shifted Maxwellian and shifted shell distribu-
tions.

Near the electrodes, the assumption that the electrons
are in equilibrium with the field is invalid because direct-
ed energy and random energy both change with position.
Therefore, Eqs. (35) and (36) must be solved numerically
for Ud(z) and U„(z). In the present work, this is done by

10

10

10

10
LLJ

10

10
DIR
EN

10 I I I f I I I 1

10 10
I I I

10

E/N (V cm')
10

FIG. 4. Random energy U, and directed energy Ud vs E/N
for shifted Maxwellian distribution.

a Runge-Kutta technique. As in the MC-B calcula-
tions, ' the electric field is taken to be independent of dis-
tance from the cathode surface.

Two boundary conditions are required to get unique
solutions to Eqs. (35) and (36). Specification of Ud(0) and
U„(0) at the cathode surface seems reasonable, but what
are the proper values to assign to these quantities? It is
known that electrons ejected from metallic surfaces by
impinging ions come off in all directions and have energy
of a few eV. Consequently, it is reasonable to assume
that the EEDF is a monoenergetic swarm, i.e., the EEDF
is isotropic in the forward, +z direction, with initial to-
tal average energy of eU(0)= 5 eV. In mathematical
form, this distribution is

10
~ ~ 10

10 10

10

10 = ~

SBD (ENERGY)

MEASURED

BD (MOMENTUM)

10

+ 10

10

RA
EN

10 I I & t
J

I I I I I 1

10 10 10

E/N (V cm')

I

10

—3
10

10

DIR
EN

I i I I I I I I
I

I I I I [ I I II I I I I I I I

10 10 10 10
E/N (V cm')

FIG. 3. Comparison of calculated values of a/N with mea-
sured values: SBD (energy)-assuming energy balance; SBD
(momentum)-assuming momentum balance.

FIG. 5. Random energy U„and directed energy Ud vs E/N
for shifted shell distribution.



MOMENT METHOD APPLIED TO GASEOUS ELECTRONICS 3861

f(c)= 6(c —s), O~tu~ 1
27TS

f(c)=0, —I ~@~0 (40)

uo=& u &
= jwf d3c

n

where the random speed s is determined by the relation
U(0) = U„(0)+ Ud(0). By definition, e Ud(0) = ,' m—wo,
where wo=2ir f wfd c; likewise, eU„(0)=—,'ms . Accord-
ing to Eq. (40), the average velocity wo is

50—
&D

0-
C3
Ct
LJJ

20—
LiJ

LiJ

CL
LiJ

10-

/I
S

/I

r/

=s I j cp6(c —1)c dc dp=—
0 0 2

(41) SMD

SSD
Therefore, eUd(0)= —,'ms, and eU(0)=5 eV= —,'ms, so
that eUd(0) =1 eV and eU„(0)=4 eV. However, Runge-
Kutta integration of Eqs. (35) and (36) with these starting
values results in no physically meaningful solutions for
U„(z) and Ud(z) extending over the required distance be-
tween electrodes. Consequently, another scheme was
developed to get physical solutions.

A method which results in physically meaningful solu-
tions consists in starting the integration very near equilib-
rium and integrating in both +z and —z directions until
solutions extending the required distance between elec-
trodes are obtained. Specifically, Ud(0) is chosen to have
exactly the equilibrium value and U„(0) to have slightly
less than the equilibrium value, determined from Eqs.
(37) and (38) at the starting point. Solutions obtained in
this way for E/%=282 Td are compared with MC-B cal-
culation in Figs. 6—8.

Figure 6 shows the comparison of Townsend's first ion-
ization coefficient u(z), along with a straight line
representing the measured value. ' %'hile the MC-8
solutions are close together, both peak at values some-
what lower than the value obtained by measurement.

0.5 1 1.5
DISTANCE FROM SOURCE ELECTRODE (cm)

FIG. 7. Comparison of calculated average energy vs distance
for E/N=282 Td, gas density of 3.53 X 10' cm ', and electrode
spacing of 2 cm. Monte Carlo —Boltzmann results from Ref. 16.

The curve for SMD peaks at a value which is closer to
the measured value, in agreement with the equilibrium
result shown in Fig. 2. The curve for SSD peaks at a
value considerably lower than those of the other curves,
also in agreement with the corresponding equilibrium re-
sult shown in Fig. 2. It is interesting to note that the SSD
result for a(z) shows a region of about 0.25 cm in length
near the cathode where there is no ionization, as do the
MC-8 results. This region of no ionization is where the
EEDF is being accelerated to ionization threshold. Note
that the MC-8 curves rise much more sharply than does
the SSD curve, and quickly approach the SMD curve.

ME. ASURED

SMD

SSD

V

CO

I— 1—

O
LLJ

LJ
CD
c( 0.5—
Q
LJ

SAD

SSD

/

/

/

0.5 1 1.5
DISTANCE FROM SOURCE ELECTRODE (cm)

0.5 1 1.5
DISTANCE FROM SOURCE ELECTRODE (cm)

FIG. 6. Comparison of calculated Townsend a vs distance
for E/N=282 townsend (Td), gas density of 3.53X10' cm
and electrode spacing of 2 cm. Monte Carlo and Boltzmann re-
sults from Ref. 16.

FIG. 8. Comparison of calculated average velocity vs dis-
tance for E/N=282 Td, gas density of 3.53X10' cm, and
electrode spacing of 2 cm. Monte Carlo and Boltzmann results
from Ref. 16.
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The SMD curve can be made artificially to coincide ap-
proximately with the MC-B curve in this region by as-
suming that there are no electrons with energy greater
than eEz at each point z when calculating u(z). The ad-
vantage of doing so, however, is not clear. The reason
why the MC-B curves do not peak at a value closer to the
measured value is not known. Perhaps slightly different
values for the cross sections were used in the calculations.

Figure 7 shows the comparison of average energy
versus position. Note that the MC-B result rises more
sharply near the cathode than does the moment result.
The initial slope of the MC-B curve is given by the equa-
tion

dU
d

(42)

where U is the average (total) energy of the electrons. By
Eq. (36), the initial slope of the SMD (or SSD) curve is
given by the relation

dU„ 3E
dz dz

(43)

for large values of E, when random energy U„at the
cathode is much greater than directed energy Ud, and by
the relation

dUd =E,
dz dz

(44)

C. EA'ect of ionization on average velocity and energy

It has been pointed out that ionizing collisions tend to
reduce average energy below the value that would obtain
if there were no such inelastic collisions. This result is
intuitively obvious from the energy balance equation,
which describes in mathematical form the process by
which the electron gas gives up the ionization potential
energy eV, each time there is an ionization event. But
what is the effect of ionizing collisions on the average ve-
locity'? The answer lies in Eq. (37), which can be solved

when the opposite is true. The initial slope of the SMD
cure in Fig. 7 is given approximately by Eq. (43) because
U„(0)=0.5 V and U„(0)=4.5 V.

The MC-B curves in Figs. 7 and 8 give U„(0)=4.25 V
and Ud(0)=0. 25 V, i.e., Ud(0) « U„(0). However, the
initial slope is obviously given by Eq. (42), not by Eq.
(43). A basic assumption in the derivation of Eqs. (35)
and (36) is that off-diagonal elements of the pressure ten-
sor are negligible, and all diagonal elements have the
same value —namely, —,'neU„. Therefore, a possible ex-

planation for the difference in initial slope between MC-B
and SMD-SSD curves in Fig. 7 is that the assumption of
an isotropic partial pressure for the electrons in the near
cathode region is a weak assumption.

Comparison of average velocity versus position is
shown in Fig. 8. The reason for the considerable
difference in equilibrium value of average velocity be-
tween MC-B calculation and SMD-SSD calculation is not
known. There are no measurements of average velocity
at high E/N with which to compare these calculations.

for average velocity wo to give
' 1/2

2e Ud

1+ 1 —4 1+—
2(1+v;/v ) v v mWz

1/2

10
—15

in
Q (e)

cm, Q;(e) = cm
500

where the expression assumed for the ionization cross
section Q, applies only when e is greater than eV, ; for e
less than V, , Q, =0. Solutions for average velocity uio

and average energy U„+ Ud obtained from Eqs. (37) and
(38) are shown plotted as solid curves in Fig. 9 for the
model cross sections given above, using the following ad-
ditional parameters: V, =10 V and m/M= 10 . The
dashed lines in Fig. 9 represent values average velocity
and average energy would have if Q; =0 for all energies.
The dashed curve labeled 8, defined as eE/m v, corre-
sponds to the curve for average velocity in Fig. 1 of Ref.
6. The quantity g is defined as (M/m )mW /2e. Note
that the difference between wo and 8'in Fig. 9 increases
with increasing E/X.

According to the present theory, the effect of ionizing
collisions on drift velocity 8'and average velocity wo, in

(45)

where U„has been replaced by —,'kT and drift velocity 8
has been written for the quantity eE/mv . According
to this equation, wo is less than 8'for two reasons. First,
the acceleration of newly created electrons to the average
velocity must be taken into account. The effect of this
process of acceleration is described mathematically by
the term 1+v, /v in the denominator of Eq. (45).
Second, when ionization takes place, electron density in-
creases in the direction of the electric field, causing a
diffusion current of electrons to oppose the mobility
current. The effect of this process of back diffusion is de-
scribed mathematically by the negative term within large
square brackets in Eq. (45). When v,. =0, then Eq. (45)
gives uio = W. Equation (45) predicts that wo is less than
8' even in cases where v; «v, provided that
kT)&m8'', a provision which generally obtains. Even
in the special case of energy-independent momentum
transfer collision frequency, therefore, the average veloci-
ty wo is significantly less than the drift velocity 8' for
high values of E/N, because electron density increases
with increasing distance away from the cathode, causing
back diffusion to reduce average velocity.

A different conclusion was reached in the paper by
Robson and Ness, possibly because the importance of
the density gradient term in the electron momentum bal-
ance equation was overlooked. In their paper it is argued
that average velocity is equal to quantity eE/m v when

v, «v, and that drift velocity deviates from average ve-

locity only in that range of E/n for which the ionization
rate v, varies with E/N. This point can be clarified by
considering the following model cross section (case III A
of Ref. 6):
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always less than drift velocity 8'when ionizing collisions
take place under equilibrium conditions in the steady
state, because of back diffusion of electrons. Because a is
inversely proportional to too, according to Eq. (39), it is
important to have the correct value of mo when calculat-
ing a based on the moment method.

VI. SUMMARY AND CONCLUSION

W--

I I I I 1 I I

10

E/N (Td)

1 1 I I 1 t

100

FIG. 9. Calculated average energy and average velocity vs
E/N for a model gas with constant momentum transfer col-
lision frequency, showing effect of ionization, for shifted
Maxwellian distribution. Dashed lines represent values without
ionization, i.e., Q; =0.

the steady state, can be summarized as follows. When
v (e) is independent of energy, then W, defined as
eEimv, is unaffected by ionizing collisions, provided
that v; «v . However, when the momentum transfer
collision frequency v (e) depends on energy e, then drift
velocity W is affected by ionizing collisions through their
cooling effect on the electron gas. Average velocity mo is

Velocity moments of the Boltzmann equation, includ-
ing moments of the collision integral for elastic and in-
elastic collisions, have been derived for two model distri-
bution functions —shifted Maxwellian and shifted shell.
Based on comparison of calculated results for a/N versus
E/X with measurement in a steady, uniform electric field
of infinite extent in helium, and on comparison of calcu-
lated results for effective ionization coeffiient tz(z) and
average energy U„(z)+ Ud (z) with Monte Carlo simula-
tions in a steady, uniform electric field of finite extent in
helium, it is concluded that five-moment theory based on
a shifted Maxwellian distribution is superior to either the
five-moment theory based on a shifted shell distribution,
or the two-moment theory based on a monenergetic beam
distribution.
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