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The formation of a distribution of various size droplets is a characteristic feature of many systems
from thin films and breath figures to fog and clouds. In this paper we present the results of our in-

vestigations of the kinetics of droplet growth and coalescence. In general, droplet formation occurs
either by spontaneous nucleation or by growth from heterogeneously distributed nucleation centers,
such as impurities. We have introduced two models to describe these two types of processes. In the
homogeneous nucleation model droplets can form and grow anywhere in the system. The results of
the simulations of the model are presented and it is shown that the droplet size distribution has a bi-

modal structure consisting of a monodispersed distribution of large droplets superimposed on a po-
lydispersed distribution of smaller droplets. A scaling description for the evolution of the time-

dependent droplet size distribution and its moments is presented and it is found that the scaling pre-
dictions are in excellent agreement with the simulations. A rate-equation similar to the Smolu-
chowski equation is also introduced for describing the kinetics of homogeneous droplet growth.
The results of the simulations of the homogeneous nucleation model are also compared with the ex-

periments on droplet growth in thin films obtained by vapor deposition of tin on sapphire substrate.
It appears that this model captures the essential features of the distribution of droplets in the vapor
deposition experiments. We also introduce a heterogeneous nucleation model for studying process-
es in which droplets only form and grow at certain nucleation centers which are initially chosen at
random. Simulations, scaling theory, and a kinetic equation approach for describing the hetero-
geneously nucleated droplet growth model are also presented. The theoretical predictions are found
to be in excellent agreement with the simulations.

I. INTRODUCTION

There is a surprisingly large number of processes where
a distribution of droplets is formed by condensation of
atoms and molecules from the vapor phase. An example
that we have studied recently, ' which will be the sub-
ject of discussion in this paper, is the formation and
growth of droplets in vapor deposited thin films. In
everyday experience, this type of phase transition is com-
monly observed in the condensation of water droplets on
cold surfaces, ' such as window panes, or the formation
of dew on leaves and cobwebs. The condensation of
liquid droplets has important technological implications
for the heat-transfer industry and has been discussed ex-
tensively from the engineering point of view. The for-
mation of a distribution of various size droplets is a
characteristic feature of many other systems, including
breath figures, soap bubbles, Ay ash particles, ' mi-
croemulsion, " and fog, rain, and clouds. ' In addition,
understanding the growth and coalescence of droplets is
of considerable interest in the study of the kinetics of
nonequilibrium phase transitions' and spinodal decom-
position.

In this paper we present an account of our investiga-
tions of the kinetics of droplet growth in models of vapor
deposited thin films' and droplet growth from hetero-

geneously nucleated centers. However, our theoretical
approach and the simulations are quite general and are
applicable to a wide range of droplet growth processes.
Our interest in this problem was initiated by experiments
on vapor deposited thin films' and by the fact that thin
films are used in an ever increasing number of scientific
and industrial applications. Understanding the kinetics
of their formation is a challenging problem of consider-
able theoretical and practical interest. ' Frequently in
thin-film deposition the initial layer condenses as discrete
droplets, which grow and coalesce to form larger drop-
lets, eventually forming a complete layer. This occurs
when the binding energy of the condensate atoms to each
other is greater than their binding energy to the sub-
strate. ' The most characteristic feature of this process is
the formation of a distribution of droplet sizes that
evolves with time. Figure 1(a) is an electron micrograph
of vapor-deposited tin on the surface of a sapphire sample
held at 230'C. It clearly shows the distribution of tin
droplets that have been formed. For comparison, in Fig.
1(b) we show the distribution of droplets obtained from a
computer simulation model which we discuss in Sec. II.

Cluster growth in vapor deposition experiments is
governed by two distinct mechanisms. ' The first process
is direct absorption from the vapor and the second is
droplet-droplet coalescence. But in contrast to cluster-
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cluster aggregation' processes in which clusters contact
each other and combine as a result of transport processes
such as diffusion, droplets join together when they touch
as a result of growth. As deposition and growth contin-
ues, the separation of various droplets decreases and
upon contact they coalesce to form larger droplets. The
geometry of the droplets depends on the state of the
coalescing particles. ' When the substrate temperature is
near or above the bulk melting point of the condensing
material, droplets are liquid and spherical as in Fig. 1(a).
In situ electron microscope observations' in thin-film
growth have confirmed that the fusion of two liquid drop-
lets leads to the formation of a new spherical droplet with
no loss in volume. It is this type of growth that we study
here.

A. Droplet growth

The most characteristic feature of any droplet growth
process is shape preservation, i.e., the fact that coales-
cence of two droplets always leads to another droplet.
The reason behind this fact is that the growth process is
driven by the surface tension, which tends to minimize
the surface area of the liquid droplets. Thus, when two
(or more) droplets overlap [Fig. 2(a)] or touch [Fig. 2(b)],
they coalesce to form a new droplet with mass conserva-
tion.

As a generalization of the growth and coalescence of
spherical droplets, we assume that the droplets in our
model are hyperspherical with a dimensionality D. When
a droplet of radius r, touches or overlaps a droplet of ra-
dius r2, a new droplet is formed, centered on the center of
mass of the two original droplets, with a radius r which is
given by

r —
( D+r D )1/D

(b)

If this droplet overlaps one or more other droplets, they
are also coalesced and this procedure continues until no
overlaps remain. Although only certain values of D are
physically realizable, varying the effective dimensionality
of the droplets D and the space dimension d allows us to
test the dimensional dependence of various theoretical
predictions.

B. Outline

The growth of a droplet occurs by condensation of
small droplets that grow by absorption and coalescence
with other droplets. If the condensation occurs on im-
purities or imperfections, the droplet is said to form by
heterogeneous nucleation. If other substances or mecha-
nisms do not play a role in the process, the droplets form
by molecules combining together to form a small droplet
which can grow spontaneously. In this case, the droplet
is said to form by homogeneous (or spontaneous) nu
cleation, .

In Sec. II we present details of the homogeneous nu-
cleation model which we recently introduced' in order to
describe processes where the droplets can form and grow
spontaneously at any position in the system. We first
present a scaling description of the model and compare
the results with the simulations. We also introduce a

FIG. 1. (a} Comparison of an electron micrograph of tin
droplets grown on a sapphire surface held at 230 C by vapor
deposition and (b) simulation carried out using the droplet
deposition and coalescence model. The simulation results were
obtained from a model in which three-dimensional droplets
with a radius of 0.75 were randomly deposited onto a two-
dimensional plane of area 512 X 512. The system is shown at the
stage at which the mean droplet size S(t) has reached a value of
1029 (in units of the mass of the deposited droplets). A
200X200 area is shown here. The uniform size of the larger
droplets indicates that there exists an approximately mono-
dispersed distribution of droplets which is superimposed on a
wide distribution of smaller droplets. Depleted zones created
by coalescence of droplets around large droplets are evident in
both the experimental and the simulation data.
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and d =2, in this paper we will concentrate mainly on the
case D ~ d.

B. Droplet size distribution

The quantity that describes the kinetics of the system is
the time-dependent droplet size distribution N, (t), which
is the number of droplets of mass s at time t. Many quan-
tities of interest are defined through the moments of the
droplet size distribution. For example, the mean droplet
size S(t) is defined by

gs N, (t)
S(t)=

g sN, (t)
(2)

FIG. 2. Droplet coalescence and growth occurs when two or
more droplets (a) overlap or (b) touch. Both mechanisms lead to
the formation of a new droplet with mass conservation.

rate-equation similar to the Smoluchowski equation for
describing the kinetics of droplet growth. The hetero-
geneous nucleation model is discussed in Sec. III. We
developed this model to study processes in which drop-
lets form and grow only at certain nucleation centers
which are initially chosen at random. We develop both a
scaling theory and a rate-equation approach for describ-
ing the kinetics of droplet growth from heterogeneously
nucleated sites. We show that our theoretical predictions
are in excellent agreement with simulations of the hetero-
geneous nucleation model. In Sec.IV, we compare the
homogeneously and the heterogeneously nucleated drop-
let growth processes and present a brief summary of our
main results.

II. HOMOGENEOUS NUCLEATION

A. Model

In the model for homogeneous nucleation, we assume
that droplets can form and grow anywhere in the system.
In the simulations we consider a system of size L" to
which we randomly add small droplets of fixed radius ro.
Whenever two droplets touch or overlap they are
coalesced with mass conservation. The new droplet is
centered on the center of mass of the two original drop-
lets with a radius given by Eq. (1). If this droplet over-
laps one or more other droplets, they are also coalesced
and this procedure continues until no overlaps remain.
Note that when the droplet dimension D is less than or
equal to the dimension of the space d, r ~ (r t + r2 )', so
that after a finite time a single droplet forms which
extends across the entire system. This phenomenon is
similar to gelation and percolation. ' For D )d, r
((r& +r2 )'~ and there is no gelation in a finite time

and the growth proceeds much in the same manner as in
low-density colloidal aggregation. This implies that by
using D as a variable parameter we can investigate a
variety of interesting growth conditions, including per-
colation and aggregation of droplets. - Since the experi-
mental results in thin-film growth correspond to D =3

A 200X 200 section of a typical simulation result in
which three-dimensional droplets with a radius r0=0. 75
were added at random to a surface of size 512 X 512, is
shown in Fig. 1(b), at time t when the mean droplet size
S(t) has reached a mass of 1029 particles. Comparison of
Figs. 1(a) and 1(b) shows that there are many similarities
between the experimental data and our simulation. For
example, the existence of depleted zones around large
droplets is evident in both figures. These depleted regions
are left behind by coalescence of two (or more) large
droplets, before new particles have had a chance to accu-
rnulate there. In Fig. 3 we show 200X200 sections of the
distribution of droplets at four different stages during the
formation of droplets where three-dimensional drops of
radii 0.75 were added randomly to a 512 X 512 substrate.
Figures 3(a) —3(d) show the distribution of droplets at the
instant at which the mean droplet size S has reached
values of 10.4, 105, 1029, and 10177, respectively. As
time increases the average droplet size increases. The
depleted zones left behind by coalescence of droplets is
evident in these figures as well ~

The distribution of droplets shown in Figs. 1 and 3
have two novel features. One of the characteristics of all
these figures is the existence of a distribution of large
droplets of nearly equal size, which can be distinguished
from the smaller droplets forming the background. The
second feature is the distribution of the smaller droplets,
which in contrast to the monodispersed distribution of
large droplets, consists of an inhomogeneous and po-
lydispersed distribution of all sizes. We have observed
similar types of bimodal distributions in one-, two- and
three-dimensional simulations for droplets with D & d.

The existence of the two parts in the droplet size distri-
bution implies that there are two distinct mechanisms
controlling the formation of small and large droplets.
The small droplets are formed by spontaneous nu-
cleation, in a manner similar to aggregation processes
with a source. As it was also found in the case of aggre-
gation, the presence of a source leads to a polydispersed
distribution that is quite broad, having a power-law decay
with droplet mass. In fact, in the presence of a sink for
large droplets the size distribution goes to a steady state.
The sink in this case is the large droplets. Once the drop-
lets reach a certain characteristic size, they coalesce and
form large droplets that continue to grow and coalesce
and form a monodispersed size distribution. The charac-
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teristic size of the droplets depends on d and D. The
bell-shaped distribution for large droplets is similar to
diffusion-limited aggregation, where the process is dom-
inated by aggregation of similar size clusters leading to a
monodispersed distribution.

Figure 4 shows three stages in a simulation in which

two-dimensional droplets were deposited onto a two-
dimensional substrate (d =D = 2 ). Figures 4(a) —4(c)
show the distribution of droplets at three different stages
characterized by a mean droplet size S of 61.2, 423.9, and
1888, respectively. It is interesting to compare the distri-
bution of the droplets in Fig. 4 with those shown in Figs.

(b) D=3 S=105

l33 do 133 cIo

(c) D=3 S=1029 D=3 S=10177

133 do 133 do

FIG. 3. Four stages in a simulation in which three-dimensional droplets were randomly deposited onto a two-dimensional surface.
(a) —(d) show 200X200 areas taken from simulations carried out on a 512 X 512 substrate (with periodic boundary conditions) at the
instant at which the mean droplet size S(t) reached values of 10.4, 105, 1029, and 10177, respectively. The droplet size distribution
consists of a monodispersed distribution of larger droplets superimposed on a highly polydispersed distribution of smaller droplets in
the background. We find bimodal distribution of droplets in d = 1, 2, and 3 for the cases where D & d.
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1 and 3. Note that in contrast to the bimodal distribu-
tions observed in Figs. 1 and 3, here the droplets form a
highly polydispersed distribution of droplets of all sizes.
This transition from a bimodal distribution to a single po-
lydispersed distribution occurs in all dimensions as the
droplet dimension D becomes equal to the space dimen-

sion d. We will provide quantitative analysis of these ob-
servations in Secs. II C—II E.

C. Scaling theory

In order to develop a description of the droplet size
distribution, in analogy with the scaling approach for ag-

(a)

267 do

(c)
267 do

267 do

FIG. 4. Three stages in a simulation in which two-dimensional droplets were deposited onto a two-dimensional substrate. (a) —(c)
show the distribution of droplets at three different stages characterized by mean droplet size S(t) of 61.2, 423.9, and 1888, respective-
ly. Note that in contrast to the distributions shown in Figs. 1 and 3, the droplet size distribution here is highly polydispersed. We
find similar results in d = 1, 2, and 3 for the case D =d.
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gregation processes, we assume that the mean cluster
size S(t) is the only characteristic cluster size in the sys-
tem. Since the mean droplet size increases with time, we
assume that S ( t) and the mean droplet radius
R (t) =S(t)' diverge as

(3)

where the dynamic exponent z must depend on both d
and D. The total number of droplets in the system N(t)
is expected to decrease with an exponent z' as

(4) 8S"~ d,

We generalize the scaling description of the cluster size
distribution in aggregation processes and write'

N;(r)-s f(slS(t)) . (5)

The bimodal form of N, (t) is refiected in the form of
f(x), which consists of two parts:

f(x)=x 'g(x)+h (x) . (6)

The function g (x) goes to a constant for small x and de-
cays faster than any power of x for large x. The second
part of the distribution is refiected in the function h (x),
which is a bell-shaped function with a peak centered
about x = 1. Therefore the exponent ~ describes the de-
cay of the distribution for small droplet masses and L9 de-
scribes the scaling of the full distribution.

A qualitative test of the scaling ideas is provided by
Figs. 5 and 6 in which the distribution of the clusters is
scaled according to Eq. (5) by plotting the droplet size
distribution at a scale proportional to S' . Figure 5
shows four stages in a simulation in which three-
dimensional droplets were deposited onto a two-
dimensional substrate. This figure shows portions of the
system at four different stages corresponding to mean
cluster sizes S(t) of 54, 428, 3237, and 26118. Each part
of the figure is shown at a scale proportional to S' to il-
lustrate the rapid approach to a scaling regime. Figure 6
shows three stages in a simulation in which two-
dimensional droplets were deposited onto a two-
dimensional substrate. The upper left, upper right, and
lower left parts of the figure show the system at stages
corresponding to mean droplet sizes S(t) to 124, 723, and
2632. In each case, a scale proportional to S' has been
used to illustrate the self-similarity of the distribution.
The lower-right part of the figure shows the system at the
S=2632 stage with small droplets removed. Note that
all the scaled distributions in Fig. 6 are polydispersed, in
agreement with our previous discussion of the droplet
size distribution for D & d (Fig. 3) and D =d (Fig. 4).

The time evolution of the droplet size distribution
N, (t) at 16 stages in the deposition of three-dimensional
droplets onto a two-dimensional substrate is shown in
Fig. '7. These results were obtained from 29 simulations.
In each simulation, 2. 3X 10 droplets with a radius of
0.75 were deposited onto a substrate of area 512X512
(with periodic boundary conditions). Note the bimodal
shape of the distribution in the later stages of the growth.
The scaling of the droplet size distributions for the case
D =3, d =2 is shown in Fig. 8. Figure 8(a) shows the

S=3237

do as'&do

FIG. 5. Four stages in a simulation in which three-
dimensional droplets were deposited onto a two-dimensional
substrate. This figure shows portions of the system at four
different stages corresponding to mean cluster sizes S(t) of 54,
428, 3237, and 26118. Each part of the figure is shown at a
scale proportional to S' to illustrate the rapid approach to a
scaling regime.

droplet size distribution at the last five stages in the simu-
lations used to obtain Fig. 7. Figure 8(b) shows how
these size distributions can be scaled onto a common scal-
ing function using the scaling form given in Eq. (5) with a
scaling exponent 0 of —,', which we obtain from theoretical
arguments in Sec. II D [Eq. (10)]. The scaling function
obtained in Fig. 8 agrees with the form proposed in (6)
and the nonzero slope for small values of the argument of
the scaling function indicates that 0—~) 0.

The condensation of liquid droplets on a thread, such
as the formation of dew on a cobweb, presents an in-
teresting physical system for the study of droplet growth.
Figure 9 shows the droplet size distributions obtained
from simulation of droplet deposition and coalescence on
a line (d = 1). Figure 9(a) shows results for two-
dimensional droplets and Fig. 9(b) shows the results for
three-dimensional droplets. The cluster size distributions
are shown at late stages in the simulation (close to the
scaling limit). In analogy with the two-dimensional re-
sults, the droplet size distribution has a bimodal shape
since D )d. Figure 10 shows the scaling of the droplet
size distributions shown in Fig. 9. The scaling form given
in Eq. (5) was used with a scaling exponent 0 of
(D —d)/D [Eq. (10)]. The figures show that the form of
the scaling function f (x) agrees with (6).
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5 3 St/2d 535' g

0=2, d*2

5 3 S~/2
0 5.3 S' g

(seal) Dr~lets Remov~)

FIG. 6. Three stages in a simulation in which two-dimensional droplets were deposited onto a two-dimensional substrate. The
upper-left, upper-right, and lower-left parts of the figure show the system at stages corresponding to mean droplet sizes S(t) of 124,
723, and 2632. In each case, a scale proportional to S' has been used to illustrate the self-similarity of the distribution. The lower-
right part of the figure shows the system at the S=2632 stage with small droplets removed.

D. Exponents 10

In this section we calculate the exponents 0 and z ex-
actly. Since the total mass in the system is not constant,
the exponent L9 depends on d and D and does not have a
superuniversal value of 2 as in aggregation processes.
However, in the droplet growth problem, the time t is
equal to the total number of particles that have been add-
ed to the system. Using (3) and (5) we can write

p=r = X sN, (r)- f ds s' 'f (s IS(r ) )-S'

0
c —2

-10
0 1 2 3 4 5 6

In (s)
7 8 9 10 11

X dxx' ' x-t"" (7)

where p is the density of the system. Since the second in-
tegral on the right-hand side of (7) is independent of t, (7)
implies that

FIG. 7. Droplet size distributions, N, (t) at 16 stages in
the deposition of three-dimensional droplets onto a two-
dimensional substrate. These results were obtained from 29
simulations. In each simulation, 2. 3 X 10 droplets with a radius
of 0.75 were deposited onto a substrate of area 512X 512 (with
periodic boundary conditions).
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0+1/z=2 .

2

Therefore 0 ~2 because z )0.
In order to determine t9 we note that the fraction of the

volume N occupied by the droplets is given b

C = g r N, (t) —f ds s "/ f(s/S(t))-S'+"/

-10
0 1 2 3 4 5 6

In (s)
7 8 9 10 11

Since N cannot diverge, then

0=1+d/D . (10)
12

»-(b)
10— SLOPE = 0.13

d=2, 0=3

4 I I I I I I I I I I

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2
In [s/S (t)]

FIG. 8.. Scaling of the droplet size distributions for the D = 3
d=2 ccase. (a) shows the droplet size distribution at five late

7

stages during the simulation taken from the simulations used to
obtain Fig. 7. (b) shows how these size distributions can be
scaled onto a common scaling function using the scaling form
given in Eq. (5) with a scaling exponent 0 of —,'given by Eq. (10).
The nonzero slope for small values of the argument of the scal-
ing function indicates that 0—~& 0.

For a gelling system 8) 2 and therefore Eq. (10) confirms
our earlier observation that for d )D the system will per-
colate. ' Note that when d =D, 0=2. Substituting this
in (g) we find that as d~D, z~ ~, implying that the
mean droplet size diverges exponentially, indicating a
percolation transition. This is consistent with our earlier
observations that for d =D, the system percolates after a
finite time, and the droplet size distribution is po-
lydispersed with a power-law decay of the distribution
with droplet mass (cf. Figs. 4 and 6).

Using (10) in (g) we find z =D /(D —d ). We can obtain
this result directly by assuming that R is the only
relevant length in the system. Let us define the correla-
tion function G(r) to be the probability that a site at dis-
tance r from an occupied site in a finite droplet is also oc-
cupied and belongs to the same droplet. In terms of
G (r), the mean cluster size S (t) is given by

S(t)=f d r G(r) .

0

Z

12

))- (a)
10—

SLOPE = 0.25

-10 I

0 1

I I I I

2 3 4 5 6
In (s)

I I

7 8
I I I

9 10 11 12 d=l, 0=2

4 I I I I I I

-11 -10 -9 -8 -7 -6 -5 -4
In [s/S (t)]

ll
)o- (b)

I I I I I

-3 -2 -1 0

Z -2

-4
8—

Z
SLOPE = 015

-10
0 1 2 3 4 5 6 7 8 9 10 ll

In (s)
FIG. 9. Dro letp size distributions obtained from simulation

of droplet deposition and coalescence on a line (d=1). (a)
shows results for two-dimensional droplets and (b) shows results
for three-dimensional droplets. The cluster size distributions
are shown at late stages in the simulation (close to the scaling
limit).

d=1, 0=3

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

In [s/S I))]

FIG. 10. Scaling of the droplet size distributions shown in
Fig. 9. The scaling form given in Eq. (5) was used with a scaling
exponent 9 of (D —d)/D [Eq. (10)]. The figures show that the
scaling function agrees with Eq. (6).
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in the problem,R (r) is the only length in pAssuming that R t is
G (r) can be written inin the form

&
I+zd ZDS(t) =pR f d "x k(x) —t (13)

In comparing (13) with (3) we find

z=D/(D —d ) . (14)
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+K,' ) IX, I
—K,'IX, , (17)

where Kij is the rate coefticient for coalescence of a drop-
let of size i with a droplet of size j, and K,'I is the rate of
growth of droplets of size i due to absorption of mono-
mers. The main advantage of the kinetic equation ap-
proach is that it provides a simple physical interpretation
of the temporal evolution of the size distribution. The
first term on the right-hand side is the rate at which
droplets of size s are formed by aggregation of droplets of
size i and j to form droplets of size s. The second term is
the rate at which droplets of size s disappear by coales-
cence with droplets of size j. The third and fourth terms
describe the growth of the droplets by absorption of
monomers from the vapor. The third term gives the rate
at which droplets of size s —1 grow to form droplets of
size s. The last term gives the rate at which the number
of droplets of size s disappear when they absorb a mono-

equation approach. Similarly, for the growth and
coalescence of droplets we can write the following kinetic
equation:

dN, oo

+ij +r Xj Ns g +sj Nj
i+j =s j=l

s ~bs,
b "t,

K ' b K'b 'b

N, (t)~b N, I, (b
' 't ),

(18)

where b is a scale factor and A, is the degree of homo-
geneity of the reaction kernel. Using these transforma-
tions in (17) we find the relation

0——=1+X .1

Z
(19)

mer and form droplets of size s+ 1.
The kinetic equation (17) provides a mean-field descrip-

tion of the growth and coalescence of droplets, because
spatial Auctuations in the density of the droplets is
neglected. Except for special cases, the kinetic equation
cannot be solved for the physically interesting forms of
the K; . However, using the dynamic scaling approach,
it is possible to obtain results without solving the kinetic
equation directly. According to the scaling assumption,
the rate equation (17) is invariant under the transforma-
tions

TABLE I. Effective values obtained for the exponents z, z', and ~ from the deposition and coalescence models (homogeneous nu-
cleation model). The theoretical value of z is given in parentheses. In all cases a convincing data collapse of the droplet size distribu-
tions could be obtained using the theoretical values for 0 (0= 1+d /D ).
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Combining (g) with (19) we find

2 3+A.z=
1 —A.

'
2

(20)

Substituting the exact values of 8 and z from (10) and
(14), respectively, in (20) we find

2d
1

D
(21)

This is a new nontrivial result for the degree of homo-
geneity of the reaction kernel in droplet coalescence and
growth. It would be instructive to determine the kernel
directly using techniques similar to those used in the
study of cluster-cluster aggregation' in order to test rela-
tion (21).

III. HETEROGENEOUS NUCLEATION

A. Model

In order to describe droplet growth and coalescence
with heterogeneous nucleation we have developed a mod-
el where initially, there is a fixed number of nucleation
sites in the system. The simulations are started by plac-
ing No droplets of diameter do in a d-dimensional system
of size L"such that there is no overlap between the drop-
lets. In general, droplets grow by two distinct mecha-
nisms. The first process is direct absorption from the va-
por and the second is droplet coalescence. In a uniform
vapor density, every droplet grows at a rate that is pro-
portional to its surface area. As a generalization of this
scenario, we assume that the droplet radii grow as

dr ~r
dt

(22)

where co is an arbitrary exponent which can be varied in
the model in order to test the theoretical predictions. In
each time step in the simulations, the radius of each of
the droplets is increased according to (22) using the for-
mula

(23)

where r' is the new radius, /=1 —co, and 5 is a small
number. As the growth of the droplets continues, the
separation of various droplets decreases and —upon
contact —droplets coalesce to form larger droplets. We
assume that all the nucleation events occur at the start of
the growth and coalescence process and that after coales-
cence of two (or more) droplets no new nucleation sites
are exposed. .In each time step, droplets are examined for
possible overlaps and overlapping droplets are coalesced
with mass and center-of-mass conservation using relation
(1).

Figure 12 shows the distribution of droplets at three
stages in a simulation in which three-dimensional drop-
lets grow and coalesce on a two-dimensional surface with
a growth exponent co of —,'. The simulations were carried
out starting with No =20000 nuclei with a diameter do of
1.5 on a surface of area 512X 512. Figures 12(a)—12(c)
show a 200X200 (133do X 133do) area at the stage where
the mean droplet size S has grown to 10.3, 1036, and

B. Scaling theory and exponents

We can describe the process of droplet growth with
heterogeneous nucleation in a way very similar to our ap-
proach for homogeneous nucleation, using the scaling
form (5). In order to show qualitatively that the droplet
size distribution can be scaled according to (5), in Fig. 15
we have plotted the distributions at three different times
during the growth, but we have rescaled all the lengths in
such a way that the system size in all three figures is
equal to 8doS', where S is the mean droplet size. It is
clear from these figures that the droplet size distribution
is quite self-similar. Figure 16 shows three more distribu-
tions obtained from three different versions of hetero-
geneously nucleated droplet growth and coalescence
model. Figures 16(a) and 16(b) show results from simula-
tions with D =3 and d =2 with growth exponents co of 0
and 0.5, respectively. Figure 16(c) shows the droplet size
distribution for simulations with D=2 and d=1 with
co=0. The scaling of the droplet size distributions shown
in Fig. 16 is demonstrated in Fig. 17. Here the scaling
form given in Eq. (5) was used with a scaling exponent 0
of (D+d )/D [Eq. (26)]. We have obtained equally excel-
lent scaling plots for other values of co and D in d =1, 2,
and 3.

We now determine the exponents 6, z, and z' exactly
for the case of heterogeneously nucleated droplets. Al-
though we can follow exactly the same line of reasoning
as in the case of homogeneous nucleation, we give here a
slightly different derivation of the results to show the ver-
satility of the scaling approach. As before, the only as-
sumption in our calculation is that the mean droplet ra-
dius R (t) is the only characteristic length in the problem.
For the mass density p we can write

g D —d tz(D —d))/D (24)

Using the scaling form (5) in the definition of p, we get

108744, respectively. These figures show that unlike the
case of homogeneous nucleation the distribution is
asymptotically quite monodispersed with no power-law
background.

Figure 13 shows the results obtained from a simulation
similar to the one illustrated in Fig. 12 except that the
dimensionality D of the droplets is 2. Figures 13(a)—13(c)
show a portion of the system at the stages at which the
mean cluster size S has reached values of 103, 1989, and
10156, respectively. Note that unlike the case D) d,
here the distribution is polydispersed. The reason for the
transition from the monodispersed distribution to the po-
lydispersed case is similar to the homogeneous nucleation
case discussed in Sec. II.

Figure 14 shows three stages in a simulation in which
three-dimensional droplets were grown on a two-
dimensional substrate with a growth exponent co of 0.
The simulation was stopped and the droplet distribution
recorded at the stages corresponding to mean droplet
sizes S of 11.5, 1011,and 101 631 in Figs. 14(a) —14(c), re-
spectively. Since D & d, the distribution is mono-
dispersed, as expected.
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p= X sN, (r)- f ds s' 'j"(sIS(t))-S' 9=1+—.d
D

(26)

X f dx x' 'f(x)-t"'
In comparing (24) with (25) we find

(25) This expression is the same as the one given in (10) for
homogeneous nucleation because the arguments leading
to (10) are independent of the rule for the growth of the

+o(:I +Q o oooo (3 CX) ~ ~O+o Q o& ~ O c o" op o~o O~o o

v po ~ ~pg o~ ~'Q or& 0 0 ci

(b)

133 do 133 do

(c)

133 do

FIG. 12. Three stages in a simulation in which three-dimensional droplets grow and coalesce on a two-dimensional surface with a
growth exponent (co) of 2. (a) —(c) show a 200X 200 (133do X 133do) area at the stage where the mean droplet size (S) has grown to
10.3, 1036, and 108744, respectively. The simulations were carried out starting with 20000 nuclei with a diameter do of 1.5 on a sur-
face of area 512X 512.
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individual droplets.
In order to determine the growth-law exponent z, we

note that our scaling assumption indicates that the
growth of the mean droplet radius is governed by (22),
with or without coalescence. This implies that

(27)

Using the fact that S(t)—R (t), from (3) and (27) we find

(28)

Alternatively, we can obtain this expression for z by sub-
stituting for R from (27) and for p from (25) in (13).

Since the scaling function f (x) goes to zero for both

133 do 133 do

133 do

FIG. 13. Results obtained from a simulation similar to that illustrated in Fig. 12 except that the dimensionality {D)of the droplets
is 2. (a) —(c) show a portion of the system at the stages at which the mean cluster size S has reached values of 103, 1989, and 10156,
respecti vely.
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small and large values of x, the exponent z' can be ob-
tained directly from the definition of N(t) and the scaling
form (5). We find

N(t)= QN, (t)- Jds s f(s jS(t))-S'

In comparing (29) with (4), and substituting the values of
0 and z from (26) and (28), respectively, we obtain

X dx x x —t" (29)
Figures 18(a)—18(c) show the growth of the mean droplet
size (S) and time dependence of the total number of drop-

267 do

(c)
267 do

267 do

FIG. 14. Three stages in a simulation of droplet growth and coalescence. In this case, three-dimensional droplets are growing on a
two-dimensional substrate with a growth exponent ~ of 0. The simulation was stopped and the droplet distribution recorded at the
stages corresponding to mean droplet sizes (S) of 11.5, 1011,and 101 631 in (a)—(c), respectively.
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lets (X) obtained from the simulations used to generate
Figures 16(a)—16(c), respectively. The slope of the lines
for S and N are in agreement with the theoretical predic-
tions z =D/(1 —co), [Eq. (28)], and z'=d/(1 —co), [Eq.
(30)], respectively.

The effective values obtained for the exponents z and z'
are listed in Table II. The theoretical values obtained
from (28) and (30) are given in parentheses. In all cases
we have obtained the best scaling plots of the droplet size
distributions using the theoretical value for 8 from (26).

ds co+D —1
s, 1 (32)

Therefore the kinetic equation gives the same expression
(28) for the growth exponent z. Substituting the exact
values of 0 and z from (26) and (28), respectively, in (31)
we find

In addition, the coefficient K,'I is given by the rate of
growth of the droplets, namely

C. Kinetic equation approach for heterogeneous nucleation

0——=1+A, .1

z
(31)

We can apply the kinetic equation (17) to heterogene-
ous nucleation, but here K,', is the rate of growth of
droplets of size i according to (22), which is the growth
rate due to absorption of monomers. Using the same
scaling transformations as in (18) we find

co+d 1

D
(33)

We are not aware of any derivations of (33). However,
since (33) reduces to (21) for a special value of co (see Sec.
IV), it should be possible to use a unified approach to
determine the degree of homogeneity of the kernel for
both the homogeneous and the heterogeneous nucleation
models.

8 S' do 8 S do

8S" d 0

FIG. 15. Results taken from a simulation of droplet growth and deposition for the case D =3, d=2, and co=0. The system is
shown at three stages (S=507, 4182, and 32 015) on scales proportional to S ' (S ' ). This figure illustrates the scaling properties of
the system and the self-similarity of the droplet size distribution at diA'erent times when the length scale is rescaled by S'
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IV. DISCUSSION

A. Comparison with homogeneous nucleation

d(R ) d

dt
(34)

We now compare and contrast heterogeneous droplet
growth with homogeneous nucleation. The growth of
large droplets in homogeneous nucleation is governed by
the rate at which a droplet absorbs small droplets from
the vapor. Assuming a uniform vapor density, the rate of
growth of the volume of the droplets is proportional to
their area, i.e.,

This implies that R -t' ' "'. In comparing this result
with (27), we find that co= 1 D—+d for the growth of
large droplets in homogeneous nucleation. Substituting
this value of n) in (28) we find z=D/(D —d), in agree-
ment with (14). The same result is found if we substitute
the value co= 1 —D+d for homogeneous nucleation in
(32). In this way, again we find

2d
D

(35)

in agreement with (21).
The main difference between homogeneous nucleation

and heterogeneous nucleation is the continuous replen-
ishment of monomers and small droplets in the case of
homogeneous nucleation. This is reflected in the appear-
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FIG. 16. Droplet size distributions obtained from three
different models for heterogeneously nucleated droplet growth
and coalescence. (a) and (b) show results from simulations with
D =3 and d =2 with growth exponents co of 0 and 0.5, respec-
tively. (c) shows the distribution for simulations with D =2 and
d =1 with co=0.
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FICs. 17. Scaling of the droplet size distributions shown in

Fig. 16. The scaling form given in Eq. (5) was used with a scal-
ing exponent 0 of (D+d)/D [Eq. (26)].
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ance of two types of size distributions in the homogene-
ous nucleation system: a power-law decay at small sizes,
indicating a polydispersed distribution, superimposed on
a bell-shaped curve at larger droplet sizes. The bell-
shaped distribution arises from the growth and coales-
cence of large droplets. The polydispersed part of the
distribution, which does not exist in the case of hetero-
geneous nucleation, is due to the continuous feeding of
the monomers and nucleation of small droplets. The fact
that a source of particles leads to the formation of a
steady-state power-law size distribution was recognized
already in the case of cluster-cluster aggregation in the
presence of a source and a sink.

In order to show that the bell-shaped part of the distri-
butions in both models have the same origin, in Fig. 19

we have plotted the scaled distributions for the case of
homogeneous and heterogeneous nucleation models. The
graphs show that, in fact, the distribution of large drop-
lets in the two models are quite similar, indicating that
these droplets form by the growth and coalescence pro-
cess. In contrast, the feeding of small droplets and their
homogeneous nucleation leads to the formation of the po-
lydispersed part of the distribution in the homogeneous
nucleation process.

TABLE II. Effective values obtained for the exponents z and
z' from the droplet growth and coalescence models (heterogene-
ous nucleation model). The theoretical values are given in
parentheses. In all cases a convincing data collapse of the drop-
let size distributions could be obtained using the theoretical
values for 0 ( t9 = 1+d /D ).
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tively. The slope of the lines for S and N are in agreement with
the theoretical predictions z =D /( 1 —co), [Eq. (28)], and
z'=d/(1 —co), [Eq. (30)], respectively.
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FIG. 19. Scaling of the large droplet part of the size distributions in the deposition and coalescence (homogeneous nucleation) and
growth and coalescence (heterogeneous nucleation) models. The similarity of the two distributions is quite evident and points to the
conclusion that the large droplets part of the distribution in the homogeneous nucleation model arise from growth and coalescence of
similar size droplets.

B. Summary

In general, droplet formation occurs either by spon-
taneous nucleation or by growth from heterogeneously
distributed nucleation centers, such as impurities. We in-
troduced two models to describe these two types of pro-
cesses. In the model for homogeneous nucleation, we as-
sume that droplets can form and grow anywhere in the
system at any stage during the deposition, growth, and
coalescence process. This model appears to capture the
essential features of the distribution of droplets in vapor
deposited thin-film experiments. ' The reason is that one
can clearly observe two types of distinct distribution of
droplets in the scanning electron microscope micro-
graphs of tin deposited on sapphire [see Fig. 1(a)]. One
pattern consists of the larger droplets that form a mono-
dispersed distribution. This distribution is superimposed
on a highly polydispersed distribution of smaller droplets
forming the background in the micrographs. We have
obtained similar bimodal distribution of droplets in our
simulations of the homogeneous nucleation model. In
contrast, in the case of droplet growth and coalescence
from nucleation centers, there exists only a single distri-
bution consisting of a monodispersed distribution of large
droplets that evolves with time. Thus the homogeneous
nucleation model appears to be a better candidate for
describing the experiments on droplet growth in vapor-
deposited thin films. Currently we are carrying out an
extensive analysis of the experimental data and a quanti-
tative comparison with the homogeneous nucleation

model and the results will be published elsewhere.
In summary, the formation of a distribution of droplets

is ubiquitous in nature, from thin films to water droplets
in rain and clouds. We showed that the scaling descrip-
tion is an effective method for describing the kinetics of
droplet growth. The reason is that any function specify-
ing the space-time evolution of the droplet growth pro-
cess can be written in a universal form by transforming
the variables (r, t) into (br, b 't). This rescaling allows
comparison of data from quite different systems. In addi-
tion, we developed kinetic equations for describing the
evolution of the droplet size distribution and obtained ex-
pressions for the homogeneity kernel for the homogene-
ous and heterogeneous nucleation processes. We hope
that these results will stimulate further experiments,
simulations, and theoretical work and will provide a solid
foundation for understanding droplet growth in diverse
physical systems.
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