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Relativistic dynamics of electrons in intense laser fields
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Following a brief review of the analytic solution for the relativistic motion of a single electron in
a pulse of very strong plane-wave radiation, numerical simulations are presented that probe the
effects of space-charge forces and spatial inhomogeneity of the radiation upon the one-electron dy-
namics. The nonlinearities introduced by relativistic effects can lead to irregular dynamics. For
pulses with a smoothly varying temporal envelope the behavior of electrons that are ionized during
the pulse can be very different from that of ambient electrons. The calculations support the use of
short-pulsed lasers to produce high-energy electrons and incoherent x rays, but reveal possible
difficulties in the formation of cold overionized plasmas suitable for recombination lasers.

I. INTRODUCTION

Interest in the interaction of atoms with intense elec-
tromagnetic radiation has been stimulated by the recent
development of short-pulse lasers that can be focused to
spot sizes of only a few times the laser wavelength. In-
tensities of over 10' W/cm have been achieved in
several laboratories' and equipment has been designed
to provide 10' —10 ' W/cm . In such fields light atoms
will be completely stripped and heavy atoms will lose
many of their electrons. The natural frequencies of the
remaining electrons are very high compared with the fre-
quency of the lasers in current use, so that high-field ion-
ization rates depend very weakly upon frequency and can
be estimated from dc tunneling rates. Many of the
subtleties of multiphoton ionization may thus disappear
at very high intensities.

It is now well established that photoelectrons can ab-
sorb many more than the minimum number of laser pho-
tons required for ionization and can emerge from the fo-
cal region of the laser with considerably energy. Cor-
kum, Burnett, and Brunel have developed a quasiclassi-
cal model for the energy spectrum of photoelectrons.
First the electron is detached from the atom, thereby ab-
sorbing the ionization potential, and then it interacts in a
classical fashion with the fluctuating laser field. The
probability for the initial ionization is obtained from dc
ionization theory, with a field strength equal to the in-
stantaneous field value. With linearly polarized light, the
electrons will be emitted preferentially at those points in
the optical cycle at which the field is near its maximum
value, whereas for circularly polarized light there will be
no preferred times for emission during each cycle. Cor-
kum et al. have analyzed the dynamics of the photoelec-
trons after their release from the atoms and have shown
that the two modes of polarization lead to very different
energy distributions for the electrons as they emerge from
the strong-field region.

For laser intensities above 10' W/cm the dynamics of

photoelectrons may become strongly relativistic. Boyer,
Luk, and Rhodes have pointed out that for Kr:F lasers
at 10 ' W/cm, the photoelectrons may reach energies in
excess of 10 MeV and that laser-driven electrofission may
be observable. At more modest intensities the production
of a plasma with electron energies in the range of 10 —10
eV could clearly lead to inner-shell ionization by electron
impact that could perhaps significantly increase the ion-
ization level above that reached by direct field ionization.

Many years ago, it was realized that the relativistic dy-
namics of single charged particles in plane-wave elec-
tromagnetic fields can be solved exactly. Sarachik and
Schappert provided a particularly lucid account of the
theory, based upon the Hamilton- Jacobi formalism.
They discussed at length the motion of an electron that is
at rest before the electromagnetic pulse arrives.

In Sec. II of this paper we will discuss the more general
solution in which the velocity of the electron is specified
at an arbitrary time during the pulse. This solution can
then be used to discuss the behavior of photoelectrons
that are detached from their parent atoms into a very di-
lute plasma or the motion of an electron following a
scattering event during a laser pulse. In Sec. III we will
describe the results of numerical solutions of the relativis-
tic dynamics for some more realistic situations.

II. EXACT SOLUTIONS FOR INDIVIDUAL
ELECTRONS IN STRONG PLANAR FIELDS

Neglecting the radiation reaction, the relativistic equa-
tions of motion can be solved exactly for electromagnetic
pulses that can be described by a vector field 2 that is
just a function of the phase q given by

g=cot —kz . (2.1)

Note that the z axis has been chosen along the direction
of propagation.

Let us impose the initial conditions at q =go, when
A(g) = Ao. The kinetic momentum is assumed to be
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p po= poT+POLz

and the canonical momentum is

(2.2)

eII IIO—= poT
—Ao +poLz .
C

(2.3)

The initial energy is

Eo=(poT+pol +m c )'~ (2.4)

+2por )

p po=o +z (2.5)

where

We will use the subscripts T and L throughout to indi-
cate transverse and longitudinal components. Note that
we have modified the notation of Sarachik and Schappert
(SS) by taking the electronic charge to be —e and by writ-
ing the vector potential as A (g). We will also change the
sign of the constant P that appears below so that it be-
comes positive. The symbol z denotes a unit vector in the
z direction.

The general SS solution can be obtained from their
Eqs. (2.6) and (2.8) by setting a = IIOT and
/3=ED/c —

poz . The kinetic momentum of the electron is
given by

pz
Uz

mp

2 4
—1

=c 1+4
2A 2

P

=c 1+ 4

q
(2. 1 1)

so that

d g ~z 4'—co 1
dt c q2

(2.12)

The period ~ and radius p of the transverse circular
motion are then given by

direction of propagation of the laser. Indeed, since the
mass of the electron rises as A and the transverse
momentum as A, the velocity of transverse oscillations
tends to zero as 1/Ao~ ~. Since p, is always positive,
the electron is carried along with the pulse, and a large
time dilation eA'ect is observed as g increases with time
much more slowly than cot. Thus the period of the trans-
verse oscillations increases. The amplitude of these oscil-
lations does not necessarily decrease with increasing A,
because of the time dilation efIect.

These dilation efIects can be computed easily for circu-
larly polarized light, since the longitudinal component of
momentum does not oscillate with the field. At the peak
of a pulse for which eAP &&mc the electron's longitudi-
nal velocity is

o = —[ A(rI) —Ao] . (2.6)
(2.13)

E =me+pc (2.7)

The energy of the electron can then be calculated from
and

pT

my
2c ~ Aq—7 = Cq=
q co 2

(2. 14)

This solution was first derived by Kruger and Bovyn.

A. The motion of preionized electrons

The standard SS solution can be recovered by setting
po =0 and A o =0 to represent the behavior of a free elec-
tron which is at rest prior to the arrival of the pulse. We
then have

e e Ap= —A+z
C 2mc

(2.8)

and

2A 2

E=mc 1+
2m c

=@me (2.9)

Let us next consider the significance of this solution for
pulses with A (g) of the form

A(g) =
APP (g)[x5 cosg+y (1 —5 )'~ sinrI] . (2.10)

The parameter 6 characterizes the polarization, with
6 =0, +4 giving linear polarization and 6 =+1/&2 giving
circular polarization. P (g) is an envelope function which
determines the pulse shape and has the value 1 at the
peak of the pulse. Following Sarachik and Schappert, we
define the dimensional parameter q =eAP/mc to de-
scribe the peak field strengths.

For intense fields most of the energy and momentum is
associated with motion in the z direction, i.e., along the

Thus the radius increases indefinitely as q increases,
despite the reduction in the transverse velocity!

For noncircular polarization the longitudinal momen-
tum oscillates with a frequency twice that of the trans-
verse motion. It is helpful to introduce a frame R which
is moving in the z direction with a velocity equal to the
average velocity of the electron, which is given by the
right-hand side of Eq. (2.11). In this reference frame the
electron executes a figure-eight motion.

Sarachik and Schappert have carefully analyzed the ra-
diation emitted by the electron. They show that the radi-
ation is concentrated around the surface of a cone in-
clined at an angle 90=&8/q to the z direction. The radi-
ated power per unit solid angle along this cone increases
as q and the radiation includes strong components from
all harmonics up to the order no=3(1/2q ) . Such an
intense source of high-order harmonics could have im-
portant practical significance if it persists in many-
electron systems.

Perhaps the most remarkable feature of the SS solution
is that after the pulse has passed the momentum of the
electron returns to zero. It has been pointed out '' that
this feature could lead to the formation of relatively cold
highly ionized plasmas, ideally suited to the production
of short-wavelength recombination lasers.

In the remaining sections of this paper we will examine
how the various features of this solution are modified as
the electron density is raised and inhomogeneities in the
radiation field are introduced.
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B. The dynamics of photoelectrons

In single-pulse experiments most of the electrons that
interact with the laser are created by photoionization
during the pulse. For intense lasers incident upon heavy
atoms, the outer electrons are detached early in the pulse
while the intensity is relatively low. As mentioned in the
Introduction, the inner electrons experience the laser as a
relatively low-frequency perturbation. Corkum et al.
have pointed out that the dynamics of electrons that are
ionized near the peak of the pulse is very sensitive to the
polarization of the light. For linearly polarized light the
ionization occurs predominantly during those points in
the cycle when the field is greatest. At these times the
vector potential is close to zero. On the other hand,
when the polarization is circular the magnitudes of the
electric field and vector potential do not vary during the
cycle. In either case the electron leaves the nucleus with
a speed which is small compared to that which it will at-
tain during the subsequent motion.

The final momentum of the photoelectron after the
passage of the pulse is obtained by setting 2=0 in Eqs.
(2.5) and (2.6). Thus

e eAp e
pf = po

——Ao —z . 2poT ——Ao . (2.15)

For linearly polarized light pp and Ap will be small and
/3=me. Thus the final momentum of the electron is ap-
proximately equal to its canonical momentum just after
ionization, and will thus also be small. For circularly po-
larized light, although po will usually be small and P close
to mc, Ap will be large. Thus

2 2e Ap
pf = ——Ap+z (2.16)

2mc

Thus when eAp &&mc, the photoelectrons will be left at
highly relativistic velocities, with most of the momentum
being along the direction of propagation of the laser.

Corkum et al. have observed that the photoelectrons
produced at moderate intensities by circularly polarized
light have greater residual energy than those produced by
linearly polarized light. The above analysis shows that
this feature is enhanced in the relativistic limit when the
electrons move independently in a plane-wave field. We
will show below that this effect is masked in more com-
plex situations.

It is interesting to note that electrons which are freed
from their parent ions near the peak of the pulse pick up
energy of the order of e 3 /4mc during the first cycle
after their release. The acquisition of this energy is not
associated with any gradients of the field energy. It
should also be noted that there appears to be some ambi-
guity about the definition of ponderomotive energy in the
relativistic limit. Bucksbaum" links the ponderomotive
energy to the energy of the transverse motion, whereas
other authors include the energy associated with the
motion along the direction of propagation.

C. Post-collision dynamics of scattered electrons

Suppose an electron which is at rest in a dilute gas be-
fore the arrival of the laser pulse undergoes a single col-

lision with an atom, ion, or another electron during the
interaction with the laser pulse. Let us denote the change
in the electron momentum due to the collision by hp and
the corresponding change in energy by AE. We will as-
sume that the duration of the collision is much shorter
than the laser period and denote the field vector at the
time and place of collision by Ap.

The momentum before collision is obtained by putting
A= Ao in Eq. (2.9). The momentum after collision then
serves as the initial momentum for the post-collision dy-
namics, which is thus described by Eqs. (2.5) —(2.7) with

e Ap
2 2

pp= Ap+z
3 +hp

2mc
(2.17)

and

P=mc —bp + bE . —1
L (2.18)

The residual momentum of the electron after passage of
the pulse is then

eAp
pf =Ap +z

2c

e Ap
25p T+mc'

eAp
(2.19)

(2.20)

For linearly polarized light the energy of the oscillating
electron varies significantly, and collisions are more likely
when the velocity is low, that is, for small values of c4p.
Thus for almost all collisions the residual momentum of
the electron will equal the momentum transferred to the
collision.

Electron-ion collisions that result in inner-shell excita-
tion or ionization are of special interest. Since hp and
AE are large in such collisions they can lead to a
significant increase in the residual energy of the scattered
electron. Furthermore, following inner-shell ionization
the emitted electron will in general emerge with a veloci-
ty that is not in phase with the laser in the manner ex-
pressed in Eq. (2.8). Thus its residual momentum will
also be large. Inner-shell ionization during the laser pulse
will then lead to two energetic electrons and will result in
significant absorption of energy from the field.

III. NUMERICAL SIMULATIONS
OF RELATIVISTIC ELECTRON DYNAMICS

In this chapter we study two generalizations of the an-
alytic theory described in Sec. II. For high-density plas-
mas the motion of the electrons produces strong space-
charge forces which modify the electron dynamics and
the propagation of the pulse. These effects can only be
fully analyzed through a multielectron simulation and we
have initiated such studies. Initial results suggest that
the results of many-electron simulations will be much

For most collisions we can assume that Ap «mc and
AE «mc . The residual momentum can then be ap-
proximated by

eAp e Ap
Pf =kP Z

2 ~PT+ 2 ~PL —AE
2mc mc
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more difficult to interpret. Thus we believe it will be very
helpful to perform some single-particle simulations in
which the space-charge effects are represented by a po-
tential and the effects of the electron motion upon laser
propagao agation are neglected. Such studies are described in
Sec. IIIA. These calculations follow the example of
K rala' who has used a similar approach to study theyra a
effect of the Coulomb interaction with the nucleus.

The creation of very intense fields can only be accom-
plished currently through tight focusing of a laser beam.
There is also evidence that narrow filaments will form in
intense beams, leading to spatial inhomogeneities. It will
therefore be necessary to study the effects of spatial varia-
tions in the laser intensity. In Sec. III B we discuss a sim-

ple model which illustrates the effect of such variations
on the electron dynamics. Again we do not study the
effects of the spatial variations of the laser intensity on
the propagation of the beam, and will postpone the pre-
sentation of a self-consistent solution for electron dynam-
ics and laser propagation to a later publication.

In performing these calculations we have used atomic
units, in which e =I,=6=1 and c=137.07. As an aid
to the reader we will retain these fundamental quantities
in the equations of this section, but all of the figures are
in atomic units.

(2.8). The maximum electron energy is 4.7 MeV.
The introduction of a weak restoring force leads to re-

sults, as shown in Figs. 2(a) and 2(b), which were obtained
with co =0.01. Note that the transverse component of
the canonical momentum remains zero so that

PT(q)= —A(q) . (3.3)

Thus the transverse kinetic momentum is modified on y1

because of changes in g, and oscillates between the same
limits as in Fig. 1(a). The effect of time dilation is ap-
parent near cut=0 and 80m, and of time contraction near
~t =40vr in both p and p, . The maximum values of
momentum and energy are changed very little from the
values found with co =0. However, as the value of co is
raised further, as shown in Figs. 3(a) and 3(b), the max-
imum in the longitudinal momentum is increased
significantly and the peak energy reaches values in excess
of 25 MeV.

In performing these integrations we found it necessary
to impose strict limits on the integration error tolerated
in each cycle. This suggests that the dynamics might be
very sensitive to small changes in the initial conditions,

A. A simple model of space-charge forces

We saw in Sec. II that irradiation by an intense laser
pulse propels free electrons at high average velocity in
the direction of propagation of the laser. In a dense plas-
ma this leads to a separation of charge and to the growth
of electrostatic forces that might cause significant
modification of the electron dynamics. To provide a sim-
ple model for this effect within the plane-wave pulse ap-
proximation, we will add a harmonic restoring force in
the direction of propagation of the laser, -3

E = 100

(aj

I = 0.0
p

F= —me@ z . (3.1)

We will refer to co as the plasma frequency, although its
role in our calculation is only through its control of the
strength of the restoring force.

The results presented in this chapter were all obtained
through the numerical solution of the relativistic
Newton-Lorentz equation

20 40

(b)

60

= 0.0
p

80 100

d P= —eE——vXB—mao z .
dt c

(3.2)

The variable-step Runge-Kutta technique was found to
be more e%cient than the Boris and Adams-Bashforth
methods. The code was first tested by setting co =0 and
comparing against the predictions of the Sarachik-
Schappert solution. Figures 1(a) and 1(b) show the time
variation of the transverse (p ) and longitudinal (p, ) mo-
menta for an electron, initially at rest, in a plane-wave

th oflinearly polarized field with a maximum field strengt o
100 a.u. (5.14 X 10" V/cm), corresponding to an intensity
of 3.5 X 10 W/cm at a frequency co=0.18 a.u. , which is
close to that of a Kr:F laser. This laser frequency will be
use d throughout this chapter. The results shown in Fig.fE.1 are in excellent agreement with the predictions o q.

O

N
CL

2

0

20 40 60 80 100

FICs. 1. Time dependence of the (a) transverse and (b) longi-
tudinal momentum for an electron under the influence of a
linearly polarized laser field of constant amplitude 100 a.u. and
frequency 0.18 a.u.
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which was confirmeded by the results shown in Fig. 4. This
figure shows the time dependence of th d'ffe i erence in the
momentum of two electrons which have imo ns w ic ave initial velocities

n . a.u. The difference in the initial mom t
corresponds to an

omen um

However t
p an energy difference of less th 0.2

, the difference in energy of th
ss an . eV.

after interacting with the field for 50 o tical c
e two electrons

the order of 5 MeV. This ex
' ' ' '

iae . is extreme sensitivity to the initial
conditions is characteristic of ho c aotic motion. It a ears
that the introduction of relativ' dre a ivistic dynamics has intro-

uce non inearities which transform th e periodic motion
of a driven harmonic oscillata or into irregular Inotion.

Although calculations with a fi d 1a xe aser intensity may
approximate the behavior of an electron that ie ec ron t at is ionized

'
g ong pulse, it is more interestin to c

pulses in which the
us next c

the aser intensity varies with t' L
onsider the motion of an amb' t 1

i ime. et

at rest before the arrival of a short ulse wi
ien e ectron that is

i ld fi db

O
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E = 100

(a)
I
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(b)
I
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0 if g(0
E rj)= Eosing sin (g/N) if 0(g(Nvr

0 if g)1Vm .
(3.4)
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I
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FIG. 3. Same as Fi . 2(b bu
00. 5 a.u. and (b) 0.1 a.u.

'g. , but with a plasma frequency of (a)

O

CL

-3

20 40 60 80 100

The time variation of the electric field experienced b th
electron with N=100 '

y e
—00 is shown in Figs. 5(a) and 5(b). For

small values of co, as used in Fi . 5( ) h'n ig. a, t e time dilation
e ect is large and the electron interacts with the field for
much longer than the time that it t k h
a xe point in space. At larger values of co the electron
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E = 100

~~= 0.01

(b)

E = 100
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20 40 60 80 100

-8

-12
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FIG. 2. Same as Fig. 1, except for the resen

g orce with a strength equivalent to a nonr
plasma frequency of 0.01 a u

o a nonrelativistic
~ ~

FIG. 4. Time dependence of the difference in

Fi . 3
um o two electrons movioving under the conditions of

ig. (a) with initial momenta p, of 0 and 0.1 a u~ ~
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is not carried along by the pulse and the interaction time
is close to the pulse length.

Figures 6(a) and 6(b) show the time variation of the
longitudinal momentum for two values of co such that
to T ((21r, where T ( =N7rlcu) is the pulse length. The
amplitude of the oscillations in p, rises and falls with the
laser intensity, and the residual momentum of the elec-
tron is relatively small. Figure 7 corresponds to a value
of co T/2~ equal to 1.4 and shows that the residual
momentum can be larger when the frequency associated
with the laser intensity envelope matches the plasma fre-

O

CL

(a)
I

E = 100 co = 0.0001
P

pulse length = 100 &

quency.
As cu is raised further the residual momentum be-

comes small again, as shown in Figs. 8(a) and 8(b). Note
that in this region, for which

50 100 150 200 250 300 350 400
Mt/n

2' « co «2',
N

(3.5)

the maximum value ofp, near the peak of the pulse is rel-
atively insensitive to the value of co, but is significantly
lower than the value obtained with co~=0. Figures 9(a)
and 9(b) suggest that this peak value is also insensitive to
the pulse length. Figure 9(a) corresponds to a pulse with O

N
CL

l

,
1

E = 1000 o) = 0.001
P

pulse length = 100 &

100

60

(a)
I

E = 100

p
= 0.0001

50 100 150
mt /z

200 250 300

LU

20

-20

FIG. 6. Time dependence of the longitudinal momentum for
the shaped pulse of Fig. 5 with (a) coP =10 ' a.u. and (b)
co =10 'a.u.P

-60

50

t

pulse length = 100'

100 150 200 250 300 350 400

a "sine-square" envelope of double length, whereas Fig.
9(b) was obtained by inserting a 100m segment of constant
field intensity in the center of the 100vr sine-square pulse.

A second resonance region is found with m between
0.2 and 0.4, as illustrated in Figs. 10(a) and 10(b). During
the interaction with the pulse the longitudinal momen-

60

E = 100

to = 0.05

2O $
2

-20
O

N
Ch.

0

-60
pulse length = 100'

-100
40 80 120 160 200

-2

cot / xt

FIG. 5. Time dependence of the field experienced by elec-
trons in the laser field described by Eq. (3.4) with E0=100 a.u.
and cV= 100, with (a) coP = 10 a.u. and (b) coP =0.05 a.u.

3

40 80 120 160
cot /n

FIG. 7. Same as Fig. 6, but with coP =0.005 a.u.

200
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turn exceeds the value obtained with co =0, and the re-
sidual value after the passage of the pulse is large. At
higher values of co the residual momentum is again very
small, as shown in Fig. 11. However, propagation at the
densities required to produce such high values of co will

only be possible at very high laser intensity.
The dependence of the residual momentum upon co is

shown in Fig. 12. For co between 0.03 and 0.20, ambient
electrons, which are at rest before the arrival of the pulse,
return to a low velocity after the passage of the pulse, as
was found by Sarachik and Schappert for co =0. We do
not yet fully understand the fine structure in the upper
resonance region.

In Fig. 13 we show the dependence of the maximum
value of p, upon the peak intensity in the pulse for
co =0.05 and coT=100m. At small values of E0, for
which q ( 1, the peak value is proportional to E0, as is ex-
pected for nonrelativistic dynamics. At higher values of
E0 the maximum momentum rises more slowly, approxi-
mately proportional to E0. Thus adiabatic switching of
the field significantly reduces the peak momentum and
energy associated with the quiver motion of electrons
which are at rest prior to the arrival of the pulse.

The reduction in the magnitude of the longitudinal
momentum due to adiabatic switching is even more

dramatic for circularly polarized light. Figures 14(a) and
14(b) show results for a maximum field strength of 70.7
a.u. , which produces the same average laser intensity as
the linearly polarized waves with a maximum field
strength of 100 a.u. With a constant field amplitude the
momentum reaches values in excess of 20mc, correspond-
ing to energies over 10 MeV. However, when the field is
turned on over 25 optical cycles the maximum value of
the longitudinal momentum is three orders of magnitude
smaller. We will try to explain this behavior in Sec. IV.

B. Effects of space-charge forces on photoelectrons

In Sec. II B we pointed out that for linearly polarized
light most photoelectrons are created with relatively low
velocities at times and positions such that the vector po-
tential is also small, and argued that the subsequent dy-
namics of photoelectrons is therefore similar to that of
ambient electrons that are at rest before the arrival of the
pulse. This leads to small residual momenta for most
photoelectrons ionized by linearly polarized lasers in very
dilute gases.

When there are substantial space-charge forces this
similarity is destroyed, since the points, in time and
space, at which the longitudinal momentum is zero do
not correspond to the points where the vector potential is

1.4

0.6

0.2
O

N

-0.2

-0.6

(a)

E = 1000 = 0.05
P

1.4

0.6

0.2
O

N

-0.2

-0.6

(a)

E = 1000 = 0.05
P

pulse length = 100& -1.4
pulse length = 200&

-1.4
40 80 120 160 200

50 100 150 200 250

1.4

0.6

0.2
O

N

-0.2

,iLI

(b)

E = 1000 = 0.1
P

0.6

0.2
O

N

-0.2

-0.6

(b)

E„ = 100 co = 0 os
P

pulse length = 100~ -1.4

rise-time = 50&

pulse length = 100m
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FIG. 8. Same as Fig. 6, but with (a) co~=0.05 a.u. and (b)

co~ =0.1 a.u.

FIG. 9. Same as Fig. 8(a) but with (a) a longer pulse with
N=200 and (b) a constant field amplitude portion in the center
of the pulse used in Fig. 8(a).
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FIG. 12. Residual longitudinal momentum of the electron
following the laser pulse of SO-cycle duration with maximum
field amplitude of 100 a.u. as a function of the strength of the
harmonic restoring force.
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C. K8'ects of spatial variations in laser intensity

Let us suppose that the laser is polarized along the x
axis, and that the field strength varies with x as
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E(x) ~exp
S 2 (3.6)
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cot/z

FIG. 10 Same as Fig. 6, but with. (a) coP =0.21 a.u. and (b)
cu =0.36 a.u. Note that the laser frequency is 0.18 a.u.P

zero. Thus there is no reason to expect that photoelec-
trons which are created near the peak of an intense laser
pulse will return most of their quiver energy to the field.
To check this we followed the motion of an electron
created with zero velocity at the origin half-way through
the pulse described by Eq. (3.3). The resulting longitudi-
nal momentum is shown in Fig. 15, and a large residual
value is obtained. The formation of a cool overionized
plasma will be hindered by this effect.

We will refer to the scale length s as the spot size.
Let us first suppose that one can create an intense

beam with a relatively large spot size of 5 X 10 a0, which
corresponds to 2.6 pm or 10.7X, with a pulse length of 25
optical cycles (20 fsec). The transverse motion of an elec-
tron which is initially at rest at the center of the beam is
shown in Figs. 16(a) and 16(b). The maximum amplitude
of the oscillations during the pulse is approximately
6000a0 or 1.2X. This value can exceed k only because of
the time dilation effect, since its speed must be less than c
and the transverse oscillations are in phase with the field.
Note that the maximum value of p„/c is close to the
value of 4.06 expected for oscillation at the peak intensity
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P
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FIG. 11. Same as Fig. 6, but with ~P =O.S.
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FIG. 13. Maximum value of the longitudinal momentum at-
tained during a SO-cycle pulse with co=0.18 and coP =0.0S, as a
function of the peak field strength.
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FIG. 16. Tra. Transverse motion of an electron initially at rest on
the axis of a linearly polarized laser beam of radius 5X 10 a.u.
and 25-cycle pulse duration with peak field of 100
ion coordinate (in a.u. ); (b) momentum.

and that the residual momentu 11. Thm is sma . e longitudi-
nal momentum, shown in Fig 17g. , is similar to that found
with a spatially uniform field. Ver diffey rent results are
oun w en the electron is started away from the b

center. As cancan be seen in Figs. 18(a) and 18(b) the elec-
e earn

tron is ejected from the beam with a large value of both
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p and p, .
When the s ot s

in at t e
p size is reduced, even electrons th t b-

g t the center of the beam are ejected at high velocity,
as shown in Figs. 19(a) and 19(b). It is clear from these
two calculations that the dependenc f thence o t e components
of the residual momentum upon F.upon 0 is neit er linear nor
quadratic. Photoelectrons which are released by the ions
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FICx. 17. Lon itu inag' urinal momentum corresponding to the
transverse motion shown in Fig. 16.
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near the center of the pulse are ejected more rapidly, as
shown in Figs. 20(a) and 20(b). The spot size used in
these latter calculations is approximately 2A, .

It is likely that filaments will form in the focal regions
of very intense lasers. The inhomogeneities associated
with these filaments will also increase the residual
momentum of electrons ionized therein.

Since the major purpose of this paper is to provide nu-
merical results for simple systems, in the hope of stimu-
lating analytical study, we do not present results for sys-
tems with both lateral variations in intensity and trans-
verse space-charge forces. The introduction of transverse
space-charge forces should restrain and expulsion of elec-
trons, but will not necessarily reduce the residual momen-
tum of the electrons. The study of lateral variations in
electron density and their eAects on the refractive index
and laser propagation will form an important part of our
future studies.

p, +mes z = ——vXB .dt' ~ c
(4.1)

Writing B=V X A, replacing v by e A/m yc, and using

dA U BA U BA
1 —— = —c 1 ——

dt c Bt c Bz
(4.2)

the equation of motion becomes

d z e 1 d zp, +mco2z = (A ) .
dt '

2mc y(1 —
U, z, ) dt

(4.3)

The simplicity of the solution for co =0 arises because

Uz

y 1 ——=1.
c

(4.4)

motion. The longitudinal momentum is given by the
equation

IV. ANALYSIS OF THE ONE-DIMENSIONAL MODEL

The model introduced in Sec. IIIA is essentially one
dimensional since the transverse components of the
canonical momentum are constant throughout the

However, when co %0 this relationship between v, and y
does not hold. The magnitude of the product on the left-
hand side of Eq. (4.4) provides the key to understanding
the longitudinal motion. Small values of v, /c are not
necessarily accompanied by small values of UT /c;
y(1 —

U, /c) is then greater than 1 and ldp, /dtl is re-
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FIG. 18. Time dependence of the momentum of an electron
in the laser pulse of Fig. 16 which begins at rest at a position
2X10 a.u. ofF the laser beam axis: (a) transverse momentum;
(b) longitudinal momentum.

FIG. 19. Transverse and longitudinal momenta for an elec-
tron which starts at rest on the axis of a narrow laser beam of
radius 1X10 a.u. for a peak field strength of (a) 100 a.u. and (b)
250 a.u.
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duced. This leads to the reduction of the magnitude of
the oscillations in p, during the adiabatically switched
pulses as seen in Figs. 7 —9, 11, and 14(b). For circularly
polarized light A varies slowly with time and the oscilla-
tions in p, are very small.

When U, approaches c and exceeds UT, y(1 —
U, /c) is

then close to 1 and the full effects of time dilation are
seen. The phase changes induced by the space-charge
force can then lead to increases in the quiver energy.

The nonlinearity of Eq. (4.3) can perhaps be best illus-
trated through the contrast between Figs. 3(a) and 9(b),
which are both obtained with co =0.05 and E0=100.
The quasiperiodic motion observed in the center portion
of Fig. 3(a) and the irregular motion seen in Fig. 9(b)
satisfy the same equation of motion, and thus the
difference must be due to the initial conditions.

The nature of the dynamics can be probed through a
phase-space map as shown in Fig. 21. Equation (4.3) is
solved for a linearly polarized plane wave of constant am-
plitude with E0=100 and co =0.05, and the values of z
and p, are recorded whenever the phase g is an integral
multiple of 2m, so that A (g) =0. Several trajectories are
shown, each starting with z=0, with various initial values
of p, . When p, (0) is between two critical values, which
are approximately —0.25c and —3.7c, the motion is
quasiperiodic. For values outside this range the motion is
chaotic. At the center of the regular region there is a
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I
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FIG. 21. Phase-space portraits over 100 cycles, as described
in the text, for electrons with different initial momenta in a
linearly polarized laser field of constant amplitude 100 a.u. with
co =005: 0, p,p=2.0c, p,p= —0.5c; D, p,p=0. 3c; and 0,
p p= 0.2c.

V. CONCLUSIONS

periodic orbit with z(0) =0 and p, (0)= —1.36. This is the
orbit that is attained when the amplitude of the elec-
tromagnetic wave is increased adiabatically. The pulse
lengths of 50 and 100 cycles used in generating Figs. 8(a),
9(a), and 9(b) are sufficiently long that the motion is close
to the adiabatic limit and the oscillations in p, near the
center of the pulse are between values close to +1.36c.

The difference in the character of a regular and irregu-
lar orbit can be seen by comparing Fig. 22(a), obtained
with p, (0)= —0.3c to Fig. 22(b), for which p, (0)
= —0.2c. The regular motion leads to points which form
a single closed contour in phase space. During the early
portion of the irregular motion there is some clustering
around a single contour, but at later times the motion
breaks away and the magnitude of p, increases substan-
tially. The duration of the motion shown in Figs. 22(a)
and 22(b) is 400 cycles.

It is especially significant that the regular region does
not intersect the axis along which p, =0. Thus all photo-
electrons that emerge from ions with nonrelativistic ve-
locities (v ~0.2c) when A (g)=0 follow irregular trajec-
tories. Very few photoelectrons are freed at other times
during the optical cycle. Electrons that are launched into
irregular trajectories during a laser pulse will not return
to rest as the laser intensity declines. They will either be
ejected from the focal region at high velocity or, if
trapped by the space-charge forces, will form a very hot
residual plasma.

10 4
spot size = 1 x 10

0
p /c

half pulse = 100~

-10
10 20 30 40 50 60 70 80

FICx. 20. Same as Fig. 19, but for electrons born at rest at the
center of a pulse of length 50 cycles.

In this paper we have presented a selection of many in-
teresting results that emerged from our single-particle
simulations of relativistic dynamics. Most of the simula-
tions were performed with plane-wave pulses so that the
results are functions of only two variables, z and t (or z
and q). The one-dimensional harmonic oscillator model
of space-charge forces was chosen because the nonrela-
tivistic dynamics can be calculated analytically. Howev-
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er, we have so far been unable to obtain a similar solution
in the relativistic regime.

The phase-space portraits discussed in Sec. IV provide
an explanation for the very different behavior of electrons
that are at rest before the arrival of a shaped pulse and
electrons which are released into the influence of a time-
independent electromagnetic field. Even for pulses as
short as 2 —3 optical cycles, the continuous increase and
decrease in the laser amplitude can lead to significant
reductions in the momentum of the quivering electrons.
However, when an electron emerges from an ion when
the laser amplitude is close to its peak, the resulting
mismatch between the phase of the electromagnetic field
and the subsequent oscillations of the photoelectron can

FIG. 22. Phase-space portraits over 400 cycles for (a) a regu-
lar orbit with p, o

= —0.3c and (b) an irregular orbit with

p o= 0.2c.

lead to irregular motion with very high momentum.
When the space-charge fields are large, the results of

Sec. IV suggest that almost all photoelectrons that are
released at high field intensities execute irregular high-
energy orbits, irrespective of the polarization of the laser,
whereas for low-density plasma linear polarization usual-
ly leads to orbits with low residual energy. For electrons
that are ionized through collisions, there is a possibility
that the momentum immediately after ionization may
place the electron in a regular orbit, but most secondary
electrons will also enter irregular trajectories.

The rapid post-ionization acceleration has an impor-
tant effect on the threshold behavior of cross sections of
collisions in intense fields. Despite the fact that the freed
electron must enter an orbit with very high energy, most
of this energy is supplied by the field. Although the
quiver energy effectively raises the threshold for collision-
al ionization, the quiver energy is gained from the laser
field during the first cycle after ionization, and does not
have to be supplied by the colliding particle. When the
time of the collision is very short, compared with the
laser period, the ionization cross section will be close to
that found with a dc external field. Since almost a11 of the
outer electrons will have been stripped from the ions dur-
ing the growth of the field, most of the interesting pro-
cesses such as inner-shell ionization and pair production
have very short time scales and relatively high threshold
energies. The cross sections describing the electron
release can then be approximated fairly well by the field-
free cross sections.

With respect to the physics of relativistic laser-
produced plasmas, the results of these numerical experi-
ments must be checked by multiparticle simulations with
a consistent treatment of electron dynamics and laser
propagation. In the meantime we can make the following
preliminary conclusions.

(i) The production of electrons with velocities
suf5ciently high to induce nuclear reactions through col-
lisions with ionic nuclei is not seriously hindered by
space-charge effects.

(ii) The formation of cold overionized plasmas suitable
for short-wavelength recombination lasers may be more
difficult than is suggested by earlier analyses, since
space-charge effects and spatial variations in laser intensi-
ty both increase the energy of the residual electrons. The
low temperatures required for recombination lasers must
then be attained through rapid cooling of the plasma
after the pulse has passed.
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