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We formulate a general description of the inelastic interaction between charged particles and a
degenerate plasma in the presence of a strong laser field. The excitations in the plasma are de-
scribed according to the random-phase-approximation formalism, in terms of the dielectric function
of the medium, and including the effects of the laser field on the dynamical response. The energy
exchange and the scattering rate of the particle in the plasma are modified by multiphoton process-
es. The formalism describes the excitation of plasmons and electron-hole pairs, with simultaneous
emission or absorption of photons. We calculate the contribution of these processes to the energy-
loss rate and to the mean free path of the particle in the range of solid-state densities. New effects
due to the laser field are expected for intensities similar to those used in laser fusion experiments.

I. INTRODUCTION

The interaction of charged particles with a degenerate
electron gas has been a subject of great activity, starting
with the work of Bohm, Pines, Lindhard, Ritchie, and
other authors. ' A comprehensive treatment of the
quantities related to inelastic particle-solid and particle-
plasma interactions, like scattering rates and differential
and total mean free paths and energy losses, can be for-
mulated in terms of the dielectric response function ob-
tained from the electron gas model ~ The results have im-
portant applications in radiation and solid-state phys-
ics, ' and more recently, in studies of energy deposition
by ion beams in plasma fusion targets.

On the other hand, the achievement of high-intensity
laser beams with frequencies ranging between the in-
frared and vacuum-ultraviolet region has given rise to the
possibility of new studies of interaction processes, such as
electron-atom scattering in laser fields, ' multiphoton
ionization, inverse bremsstrahlung and plasma heat-
ing, ' '" and other processes of interest for applications in
optics, solid-state, and fusion research.

Here we present a study of the effects of strong laser
fields on the interaction of fast nonrelativistic particles
with a degenerate electron gas. he problem is formulat-
ed using the random-phase approximation (RPA), and in-
cludes the effects of the radiation field in a self-consistent
way. The results are expressed in terms of the RPA
dielectric function for quantum plasmas, e(k, co), with fre-
quencies associated to the harmonics of the laser frequen-
cy coo.

The electromagnetic field is treated in the long-

wavelength limit, and the electrons are considered nonre-
lativistic. These are good approximations provided that
(i) the wavelength of the laser field (A0=2vrclcgo) is much
larger than the Thomas-Fermi screening length
[ATF = vF /&3'„(with vF the Fermi velocity and ~ the
plasma frequency)], and (ii) the "quiver velocity" of the
electrons in the laser field (U, =eEolmcoo) is much small-
er than the speed of light c.

These conditions can be written as

~o 2~c
Ct)p UF

Q)p
(ii) IL « ,'nc(mc )—

COp

'2

where IL =cEp/8~ is the laser intensity. As an estimate
in the case of Al, with conduction electron density
n =1.8X10 cm, we get nmc /2=—2X10 W/cm .
Thus the limits (i) and (ii) are well above the values ob-
tained with currently available high-power laser, and so
the approximations are well justified.

The present formalism yields general expressions for
the inelastic scattering rates, which include plasmon and
single-particle excitations in the plasma, and single or
multiphoton emission or absorption processes.

We calculate the effects of the laser field on the mean
energy loss (stopping power) and on the mean free path
for plasmon excitation, and discuss the results in terms of
the probabilities for the various particle-plasma-laser in-
teraction processes.

3808 1989 The American Physical Society



LASER-FIELD EFFECTS ON THE INTERACTION OF. . . 3809

II. RPA FORMULATION This yields, using Eq. (2),

We start the calculation by writing the time-dependent
Hamiltonian for the electrons in the presence of both a
radiation field A(t) = (c /too)Eo coscoot, and a self-
consistent scalar field y(r, t), i.e.,

"
'2

(c~ t, c~ ) ——
(Z~ &

—
s~ )(c~ i, c~ )at

=
~

V'(k t)(fp i: -f, )
—.

H(t)= g p ——A(t)
1 e

2m c
c c —e g&p(k, t)c +t, c~

p, k

(2)

Here f =f(p) is the equilibrium distribution function
for the degenerate electron gas (in our case the zero-
temperature Fermi-Dirac distribution), and

2

where c,c are annihilation and creation operators for
electrons with momentum p, and pi(k, t) is the Fourier
transform of ip(r, t).

The field y(k, t) is produced by the external particle, of
charge Ze and velocity v, and by the induced electronic
density, viz. ,

e
s (t)= p ——A(t)

c
2m

(c~ &c~ ), = (f „f~)f d—t'ip(k t')Q(t')

For a general time-dependent field A(t) Eq. (5) has the
solution"

k y(k, t)=4 rpt(k, t) 4vre g—(ct „c ),
P

(3)

being p(k, t) the Fourier transform of the particle charge
density, p( r, t )

=Ze 5( r v t ). —
The time evolution of the operator ( cz i, cz ), can be

obtained from the equation

with

Q(t') =exp ——J dt "[7. i, (t")—s (t")]

~ ai' (c~ i, c~)=[c t, c,H(t)] .
Bt

(4)
and in particular, for an oscillatory field A( t )= Aocoscoot, with Ao=cEo/mo, we obtain

(ct &c ), = (f & f—) dt—'cp(k, t')exp (s —s & )(t —t') exp[ —ik a(sincoot —sincoo ')]

where a=eEO/mcoo is the transverse oscillation ampli-
tude of the electrons driven by the electromagnetic field
(quiver amplitude).

Finally, using Eq. (3) and making a further Fourier
transform we obtain a solution for the field y in the form

ip(r, t) = Id k+ J (k.a)J„(k a)
2&2

ik(r —vt) ' " ]~0e' e

k e(k, k.v —n too)
(12)

4~e' fp -~ fi-
co —(s~ —s i, )/%+i 5

p(k, Co) (9)
4m.

jc

where we introduced the frequency transforms g(k, co),
p(k, co) of the quantities

y(k, t) =y(k, t)exp(ik. a sintoot ),
p(k, t) =p(k, t)exp(ik. a sinco„t ) .

The term within large parentheses in Eq. (9) can be
identified with the RPA expression for the dielectric
function e(k, co).

In the case of a particle with velocity v, p(r, t)
Ze5(r —vt) we fin-d

p(k, to) =2vrZe $ J„(k.a)5(co —k.v+ n)too

The result represents the dynamical response of the medi-
um to the motion of the test particle in the presence of
the laser field; it takes the form of an expansion over all
the harmonics of the laser frequency, with coe%cients
J„(k.a) that depend on the intensity IL ~ a .

III. ENERGY LOSS AND STOPPING POWER

From Eq. (12) it is straightforward to calculate the
electric field E(r, t)= Vy(r, t), a—nd the time average of
the stopping field E, =(,E(vt, t) ) acting on the particle.
Then, the mean energy-loss rate of the test particle be-
comes

=Zev E,

(Ze) I d3 (k.v)

and using Eq. (9) we finally obtain, for the self-consistent
field &p(r, t),

X g J (ka)Im
—1

e(k, fI„) (13)
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with A„=k.v —
naacp.

To illustrate the efFects of the laser field we first consid-
er the calculation of the stopping power S= (dF. /
dx) =v '(dE/dt ). It is convenient to take into ac-
count the symmetry of the integrand in Eq. (13), with
respect to the change k, n ~ —k, —n:Im[ —I /e(k,
0„)]changes sign, as well as the factor k.v. Using also
the property

J„(x)=J „(x) (14)

we obtain

S= Jdk J( )I
2& U k

—1

e(k, k.v)

+2 g J~(x)Im
N=1

—1

e(k, Q~)

In order to calculate the terms in Eq. (15), we illustrate
in Fig. 1 the map of excitations in the co-k plane for a de-
generate electron gas, and the integration ranges for the

(15)

with x =k.a, Az =k - v —N~p.
Hence, the stopping power depends on the particle ve-

locity v, and on the frequency cup and intensity
Iz =cEO/Sn. of the laser (the intensity dependence is
given through the quiver amplitude a =eEo /m coo ).
Moreover, since the vector k in Eq. (15) is spherically in-

tegrated, 5 becomes also a function of the angle a be-
tween the velocity v and the direction of polarization of
the laser field, represented by a.

By comparison, the stopping power in the absence of
laser field is given by

(Ze) I ) (kv) —1
Im

2m'v k' e(k ~)

cases N =0, 1,2. The excitations are represented by the
energy-loss function Im[ —1/e(k, co) ] according to the ex-
pressions for the degenerate electron gas. Since
Im[ —1/e(k, co)] is an odd function of the frequency co,
the map of excitations is symmetric with respect to the k
axis.

The lines marked 3 1,B1 indicate the sharp resonances
due to plasmon excitation. ' The frequency of these
modes cok is given by the dispersion relation: e(k, co„)=0,
or to lowest order in k: m„=~ +—'k U where
co =(4mne /m )' is the usual plasma frequency.

The dashed regions denoted by A2 and B2 in Fig. 1

correspond to single-particle excitations or electron-hole
pairs (i.e. , excitations of electrons from the Fermi sphere),
and are bound by the lines co =+co& 2, with' co, 2
=6k /2m+kUF.

Next we consider the regions of integration in the co-k
plane for the various terms in Eq. (15). The range of fre-
quencies of interest is determined by the dependence
e(k, k.v —Neo). Therefore the integration range for the
Nth term is given by

kU NMp & co & ku —Ncop

Figure 1 shows these limits for N= 0, 1,2, with dashed,
dash-dotted, and dash-double-dotted lines. The origin of
integration is displaced from co=0 (for X=O), to co = —

coo

(for X= 1), co = —2coo (for %=2), and so on.
For a physical interpretation of the various cases we

show in the right-hand side of Fig. 1 the diagrams of the
corresponding inelastic processes. In general, we observe
that the range ~)0 corresponds to processes accom-
panied by photon emission, whereas the range co &0 cor-
responds to photon absorption, and X =

~n~ is the num-
ber of photons involved in the process. Since the formal-
ism describes two kinds of elementary excitations in the
plasma the scattering can give place to either plasmons

&o
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/
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/
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FIG. 1. Map of excitations in the co-k plane (left side) for an electron gas in the presence of a laser field. The lines A1,81 represent
the excitation of plasmons with energy Acuk, accompanied by emission or absorption of n photons. The dashed regions A2, 82 corre-
spond to excitations of electron-hole pairs with energy Ace, /, , and simultaneous emission or absorption of n photons. These processes
are illustrated by the diagrams on the right.



LASER-FIELD EFFECTS ON THE INTERACTION OF. . . 3811

(lines Al, Bl), or electron-hole pairs (regions A2, B2).
Each of these processes is represented by the correspond-
ing diagram in the right-hand side of Fig. 1.

IV. DERIVATION OF THE MEAN FREE PATH

X [Fo(k, k v m—coo) —Fo(k, —k v+mcoo)],

X =fd k J (k. )
k

(22)

To derive the expression for the mean free path (MFP)
and scattering rate we note that Eq. (13) is of the form

X [Fo(k, k v+mcoo) —Fo(k, —k v —mego)] .

dE d3k dE dP
(18)

By a parity transformation, k~ —k, in the second term of
X we find

where AEI, =6k v is the energy transfer in the scattering
of a "heavy" particle (recoil terms are neglected) interact-
ing inelastically with the plasma, and dP/d k is the
differential probability for particle-plasma scattering with
momentum transfer Ak, and energy transfer AEk, in the
presence of the laser field.

From this relation we can derive the value of dP/d k.
However, we should first collect the terms of Eq. (13) in
such a way to obtain always positive scattering probabili-
ties.

In the RPA formulation of Sec. II the electromagnetic
field was considered as a classical quantity, while the sys-
tem (electron gas) was treated quantum mechanically.
This agrees with the semiclassical radiation theory ap-
proach. In addition, in this description the test particle
was also considered as a classical external source. The
result for the energy-loss rate (dE/dt ), Eq. (13), be-
comes an integral over the frequency range described in
Fig. 1. However, in calculating the probabilities for
quantum-mechanical processes of inelastic scattering, the
frequency co in e( k, co ) represents also the energy
transferred to the plasma (%co) in the scattering event.

The function Im[ —I/e(k, co)] appearing in Eq. (13)
(usually called the energy-loss function) is odd with
respect to co, and therefore it can contribute with positive
and negative terms to the integral. Hence, for a correct
definition of (positive) scattering probabilities, we will de-
scribe the energy absorption by the function

Im[ —1/e(k, co)], co) 0
F (kocr))= '() (0

corresponding to a system that can only absorb energy.
The integral in Eq. (13),

X [Fo(k, k.v —meso)+Fo(k, k v+ mego)] . (23)

An identical result is obtained from X, by the same
transformation in the second term, and using that
J (x) =J (x). Thus we get

(X +X )=2fd k
2

J (k a)
k

X [Fo(k,k.v —meso)

+Fo(k, k v+mcoo)] . (24)

2 f d k J (k a)FO(k, co)
k co =k v —m co & 00

(25)

and to photon absorption,

2 f d k J (k a)Fo(k, co)
k co=k.v+ men )00

(25')

which in both cases have the correct behavior corre-
sponding to real energy absorption by the electron gas
(instead, the particle can gain or lose energy, depending
on the energy exchange with the radiation field).

The scattering probability P, the MFP A, =—1/p, and the
mean scattering time ~, are related by P =1/~=v/A, .
Hence we define the diff'erential inverse MFP (DIMFP)
dp„, and the inverse MFP (IMFP) p„, which according
to Eqs. (13), (18), (25), and (25') take the form

1 (Ze) d k
dp„= dP„= —J„(k.a )Im

~Au k

—1

e(k, Q„) n )0

We can now separate from this integral the terms corre-
sponding to photon emission,

X„=f d k J„(k.a)Im
—1

e(k, II„) Z 2

p„= f d k J„(k a)Im
mku k

(26)

(27)

with A„=k.v —nco0, can be expressed in terms of the
function Fo(k, co) through the replacement

—1

e(k, Q„)
=Fo(k, Q„)—Fo(k, —0„) . (21)

Then, for a given m )0 we consider the contributions of
both terms, with n =+m, viz. ,

These equations give the DIMFP and IMFP for the in-
elastic scattering of the particle in the plasma, with
simultaneous absorption (if n (0) or emission (if n )0) of
n photons of frequency co0.

As shown, the scattering rate dP„, Eq. (26), is well
defined only for Q,„=k-v—nco0) 0. Therefore the regions
of integration for the inverse mean free path are those
shown in Fig. 2, where we illustrate only the particular
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FIG. 2. Integration ranges for absorption (n &0) or emission
(n )0) processes, according to the derivation of the scattering
probabilities given in the text. They pertain to the same pro-
cesses as Fig. 1, but the integration is restricted here to positive
frequencies (see text for discussion).

cases with n =+1.
The calculation of the MFP according to Eq. (27) is

analogous to the stopping power integration, but the
range of integration is restricted now to positive frequen-
cies, whereas in the energy-loss integration of Fig. 1, both
absorption and emission domains are mixed in an extend-
ed picture.

In fact, the integration over co) 0 in Fig. 1 for n =+1
agrees exactly with the integration range for the emission
term (n =+1) in Fig. 2, while the integration domain
co (0 in Fig. 1, with n = —1, is the mirror image of the
domain corresponding to the absorption process
(n= —1) in Fig. 2. Hence both pictures become
equivalent.

An alternative treatment of inelastic scattering pro-
cesses, with absorption or emission of single photons (and
simultaneous plasmon excitation), is given in the Appen-
dix using perturbation theory and a simple model
description of the plasmon field.

Here we note that the present expressions of dp„and
p„are generalizations of those obtained in the Appendix
in two important ways: (1) inclusion of multiphoton pro-
cesses (~n

~

) 1), of interest for very strong fields, and (2)
self-consistent description of screening and dynamical-
response effects through the properties of e(k, k.v —nero).

V. CALCULATIONS AND DISCUSSION

V/VF

FIG. 3. Calculations of the stopping power for an electron
gas with Acu~=15. 5 eV, at two laser frequencies, cop/co~=1. 2
and 2.0, for co~a/u„=0. 5. The dashed line shows the "normal"
stopping power (in the absence of laser field). The contributions
due to plasmon excitations are shown with dash-dotted lines for
no-photon (n =0) and single-photon (n = -1) absorption. The
low-velocity rise of the stopping power is due to the process of
plasmon excitation assisted by photon absorption as discussed
in the text.

S
(a.u. )

So

respect to the stopping power without laser field (dashed
line). However, for coo/co =1.2 we observe a different
behavior at low velocities, where there is an increase of
the stopping power. We find that this effect is due to a
different mechanism for plasmon excitation which arises
when coo=—co, and below the "normal" velocity thresh-
old.

The dependence of the stopping power on the angle a,
between the velocity v and the direction of laser-field po-
larization, is shown in Fig. 4 for v =vF.

In order to analyze the mechanism of plasmon excita-
tion for low-velocity particles we show in Fig. 5, (a) the

We show in Fig. 3 the results of stopping power calcu-
lations for an electron gas with %co = 15.5 eV, or
vF =0.92 a.u. (these values correspond to the conduction
band of Al), for two laser frequencies, coo/co =1.2 and
2.0, and for co~a/vF =0.5 (for the case of Al this corre-
sponds to laser intensities —10' W/cm). The line
denoted So" is the energy loss due to plasmon excitation
without the laser field, and has a threshold for
v/vF = 1.4.

In general, we find that the effect of the laser field is to
reduce the stopping power for velocities v -vF, with

1.2 I

30
Q. (deg)

I

60 90

FICs. 4. Angular dependence of the stopping power at u = uF,
in terms of the angle a between the particle velocity v and the
direction of polarization of the laser field E'p=Ep/Ep.
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(a.u.)

10'

(a)

a=0

We notice the strong increase in the probability for
process Bl (n = —1) when coo approaches cu . This be-
havior is further illustrated in 5(b), where we show the
values of p &

for a set of ratios coo/m .
To explain this effect, we consider the energy exchange

by the particle in the process n = —1 (photon absorption
with plasmon emission), given by (cf. the Appendix)

— 10 AEk =6k.v=kcoo —keek . (28)

10 2

103
0.1

V/VF

I I

10

I
~~ 2.0

J g, ~ 10

j sK —10

l

I

I

I

I

This indicates the possibility of energy loss (for
co &coo&cok) or energy gain (for coo) co„) depending on
the value of ~o.

Due to plasmon dispersion effects, the value of co& lies
in the range between m and co„cf. Fig. 2, where cu, is
the limiting plasmon frequency corresponding to a wave
vector k, such that p1asmons start to decay into
electron-hole pairs. '

Therefore, since plasmons are bound by co& &co„and
k & k„Eq. (28) gives a finite velocity threshold for pro-
cess n = —1, namely,

u, =(coo—co, )/k, (29)

(a .g 1T, /2

—10

as long as coo)co, . When coo is smaller than cu„ the
threshold velocity for this process becomes null. For the
case considered here, cu, /co =-1.5, and so we see from
Fig. 5 that for coo/co & 1.5 there is no threshold for p
In this case there is a frequency range, cok -coo, which al-
ways contributes at low velocities, since the photon fre-
quency is in resonance with some plasmon mode (in other
words, part of the plasmon line will remain within the
closing range between the two n = —1 lines of Fig. 2 for
all smaller velocities).

102 VI. SUMMARY

103
0.1

I I I I

10

FIG. 5. Calculations of inverse mean free paths (IMFP) for
plasmon excitation accompanied by single-photon absorption
(n = —1, solid lines) and emission (n = 1, dash-dotted lines), for
laser frequencies in the range ct)p/co~ 1.2 to 2.0, and for angles
a=0 (a) and m/2 (b). The line pp is the "normal" IMFP (in the
absence of laser field). The figure shows the shift and disappear-
ance of the plasmon threshold when cop approaches co~.

calculated inverse mean free path for plasmon excitation,
p+, , for the two processes of first order with respect to
the radiation field. Thus p+, corresponds to the process
of particle scattering with emission of both a photon and
a plasmon, while p &

represents the process of photon
absorption accompanied by the emission of a plasmon.
They are represented respectively by the diagrams Al
and Bl in Fig. 1 (with n =+1 in this case). By compar-
ison we also show the IMFP for "normal" plasmon exci-
tation (i.e., in absence of laser field, dashed line).

We have developed a general formulation for the
effects of strong laser fields on the inelastic interaction of
swift particles with a quantum-mechanical plasma.

The RPA formulation, as extended in the presence of a
laser field, provides a self-consistent description of the in-
elastic processes pertaining to particle-plasma-laser in-
teractions. The formalism describes excitations of
plasmons and electron-hole pairs, with simultaneous
emission or absorption of photons. The interaction with
the test particle provides a mechanism for energy transfer
between the radiation and plasmon fields.

The scattering rates and the energy exchange are
modified by single or multiphoton processes, depending
on the laser-field intensity. Strong effects due to the laser
field are found for intensities in the range of interest of
laser fusion experiments.

For intermediate velocities, v —vF, the laser produces
in general a decrease of the stopping power. However,
when the laser frequency coo approaches the plasma fre-
quency co new effects arise in the range of low velocities
(u «uF). We describe the effects on the energy loss and
inelastic mean free paths.

We find that the main contribution comes from the
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process of plasmon excitation assisted by photon absorp-
tion; this occurs for velocities below the normal threshold
for plasmon excitation, provided that coo is within the
range of plasmon dispersion frequencies (co& &aio&co, ).
In this case the threshold disappears and the energy of
the absorbed photon is transferred to the plasmon field.
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APPENDIX: PERTURBATIVE CALCULATION
OF SINGLE-PHOTON PROCESSES

We consider in this appendix an alternative derivation
of the scattering rates for processes Al and Bl (n =+1)
discussed in Secs. III—V, corresponding to single-photon
emission or absorption. For this calculation we use a
quantum-electrodynamical description of the photon and
plasmon fields.

Hence we write the Hamiltonian for particle-plasma-
laser interaction in the form

H =Ho+Hi (Al)

The first two terms correspond to the coupling between
the particle and the radiation and plasmon fields, and are
given by

H i =gG (a +a
q )cp+qcp(p'e )

Hi'=Qgk(bk+6 ~)ci+„cf, ,
p, k

(A3)

(A4)

where Aq, kk, and Ap are the momenta of the photons,
plasmons, and external particle, and a, bk, and c are the

where Ho consists of the separate Hamiltonians of the ra-
diation field, electron gas, and external particle, while the
interaction Hamiltonian Hi is given by' ''

(A2)

respective annihilation operators; e is the polarization
vector of the photons, and the coupling constants are

2

G2 2m' eA
(A5)

m
q

et'
(A5')

Vk k

2

where co and cok represent the photon and plasmon fre-
quencies. In this case cu, q, and e are given by the laser
frequency coo, wave vector qo, and polarization vector E'().

The term Hi' in Eq. (A2) accounts for the short-range
coupling between the test particle and the electrons. This
term gives place to electron-hole excitations (Fig. 1, dia-
grams A2, B2) and will not be discussed in this appendix.

Let us now calculate the matrix elements for the pro-
cesses of plasmon excitation accompanied by spontaneous
or stimulated photon emission, like those shown in Fig. 6.

The second-order matrix element for a transition be-
tween the initial ~a & and the final state ~b & is

& b IH ) I
i & & i IH i I

a &

M, b =g
l

(A6)

&i, ~H;"~a &=G, (X,+I)'"(p ~, ) (A7)

where No is the number of photons with momentum Aqo
in the radiation field.

The second transition, from ~i, & to ~b &, given by the
term H i', yields

&b IHi'Ii) & =gk (A7')

The energy and momentum of the intermediate state
~ i, &

are

(for the process under consideration the first-order term
& b ~H, ~a & gives no contribution).

In the case of diagram Al, the transition from ~a & to
the intermediate states

~ i, & (containing a particle with
momentum tip, i and a photon with momentum A'qo), is
produced by the interaction term Hi', Eq. (A3), and
yields

/
(dx

/
/

/
/

/
A1'

/
/

p 1=p qo=p +k

E;,=A'coo+ (p —qo)

(Ag)

being M the mass of the particle.
In the same form, we calculate the matrix elements for

the diagram A1' in Fig. 6:

~ ~x
/

/

/

&i, lH", la & =g, ,

&blHi" li~&=G (No+I) (p' g )

(A9)

(A9')

with

FIG. 6. Processes of lowest order with respect to the photon
and plasmon fields, corresponding to the perturbative calcula-
tion of single-photon processes.

p; =p —k=p'+qo,
g2

E =fico + (p —k)2 .
2M

(A 10)
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Therefore the total matrix element for plasmons excita-
tion and single-photon emission, diagrams A1 and A1',
becomes

M(b+1) =gk Gq (No+ l)1/2 P &o P &o+E —E. E —Ell l2

(Al 1)

This corresponds to the process with n = + 1 of Sec. V.
In the same way we calculate the matrix elements for

the diagrams B1,81' of Fig. 6, namely,

For a heavy particle (or a fast electron), we can neglect
the particle recoil in the scattering process. Therefore
the energy change by the particle is

[p —(p —k) ]=— (2p k)=A'v k .
2M 2M

(A 1 8)

The energy difference AE,b=Ep+A~o —Ep —
Amok, in

the low-q approximation (p' -=p —k } becomes

2

bE'b—"=+Sicko—Acok+ [p —(p —k) ] . (A17)

with

(i3~H" ~a ) =Gq (No)' (p eo),

& b ~H~' ~i, & =g„,
(i,~H('~a ) =g, ,

(b~H" ~i4) =G (N )' (p'. eo)

(A12}

Hence

b,E,'b "———A'(k—v+coo —cok ) . (A19)

Finally, using Eqs. (A16)—(A19), we obtain the proba-
bility for processes n =+1:

e "co N (k eo)
dW+i =

2 3
—

2
5(k v —cok+coo)d k

m 'cvocal„~ k'
p; =p+qo=p'+k,

p, =p &=p qo

E; = (p+qo)2M

E; =Rcoo+ficok+ (p' —qo)

Hence the matrix element becomes

(A13}

(A20)

for n = —1 (photon absorption), and
N =No+ 1 for n = + 1 (photon emission).

This result can be compared with Eq. (26), obtained
from the dielectric function formalism. The present per-
turbation analysis, for single-photon processes, applies
for relatively low intensities of the laser field. Therefore
in the limit of low laser intensities we approximate
J, (k a)—= (k a) /4 in Eq. (26). Moreover we use the
plasmon-pole approximation for the plasma resonance,
v1z.

M.';"=g„G, (N )'" P'&o P '&o
+E —E E —El3 l4

(A14)
2—1 a~p

Im 5(co—
cok) .

e(k, co) 2 cok
(A21)

This corresponds to the process of plasmon excitation
with single-photon absorption, (i.e., the n = —1 term of
Sec. V.

The terms within brackets in Eqs. (Al 1) and (A14) can
still be reduced to a simpler form if the photon momen-
tum is neglected (low-q approximation). This corre-
sponds to the nonrelativistic approximation.

Thus neglecting terms of order v/c we obtain

P'&o P &o+E —E; E —E,'
k.eo

A'(rvk —k v)
(A15)

where E =A p /2M is the particle kinetic energy.

The transition probability per unit time is given by the
well-known expession

Vd k

(2')
(A16)

Then, from Eq. (26), with n =+1,we get

(A22)

and since 0+, =k.v+ rvo, a=eEoeo/mrvo, we get

(k eo) e Eo co
dI'~, =

2 5(k v+ rvo —rv„)d'k,
87Tfl k pyz ~p 69k

(A23)

which fully agrees with Eq. (A20), since the number of
photons per unit volume is related to Eo as
+/P =Ep~ /8~@~o.

To conclude we note that while the RPA treatment
given in Secs. III—V yields a more comprehensive
description, the present approach provides a simple phys-
ical insight into the problem. In addition, both descrip-
tions are equivalent for single-photon processes in the
plasmon-pole approximation.
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