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Inhibition of atomic phase decays by squeezed light in a microscopic Fabry-Perot cavity
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The inhibition of atomic phase decays by squeezed light, as first predicted by Ciardiner [Phys.
Rev. Lett. 56, 1917 (1986)], has yet to be confirmed experimentally. A major obstacle to such an ex-
periment is the production of an effective squeezed-vacuum —atom coupling, so that the atom in-

teracts only with squeezed modes of the radiation field. In this paper we propose the use of a micro-
scopic plane-mirror Fabry-Perot cavity to effect a strong selection of modes coupling to the atom.
It is shown that a significant reduction in fluctuations experienced by the atom can be achieved in

one quadrature, with an input squeezed beam of modest angular dimensions, provided that the
phase (and to lesser extent the amplitude) characteristics of the input beam are suitably matched to
the cavity.

I. INTRODUCTION

In recent years a number of very interesting phenome-
na have been predicted with regard to the interaction of
squeezed light with atomic systems. Gardiner ' first
pointed out that squeezed light incident upon a single
two-level atom can in principle inhibit the phase decay of
that atom, giving rise to line narrowing in the spectrum
of fIuorescent light. In particular, that component of the
atomic polarization which is in phase with the low-noise
quadrature phase experiences reduced fluctuations rela-
tive to the vacuum, and so decays slower than the other
component, which experiences increased fluctuations.

Since that first paper, analyses have been extended to
the treatment of resonance fiuorescence and atomic ab-
sorption spectra' in a squeezed vacuum, atomic level
shifts in a squeezed vacuum, squeezed pump lasers, and
most recently to photon echoes with coherent and
squeezed pulses.

Further work has also been done to incorporate the
effect of finite-bandwidth squeezing on the inhibition of
atomic phase decays. These investigations have shown
that the essential predictions of the broadband (white-
noise) theories are correct, provided that the bandwidth
of squeezing (in both quadratures) is reasonably large
compared to the natural linewidth of the transition. If
this is not the case, inhibition of the phase decay wi11 not
occur. In this work, of course, we sha11 assume the form-
er.

All of the above analyses have assumed an ideal cou-
pling between the atoms and the squeezed vacuum; that
is, the atom interacts only with squeezed modes of the ra-
diation field. This is a significant practical problem
which Gardiner pointed out in his original paper, stating
the need for either an incoming squeezed electric dipole
wave, or an appropriate one-dimensional situation.

The first suggestion presents somewhat formidable
practical problems in holding atoms still at the focus, and
consequently in minimizing Doppler effects. We will
therefore develop the second approach, using as experi-
mental support the recent work of De Martini and co-

workers with microscopic plane-mirror cavities. In their
experiments, De Martini et al. use two parallel plane
mirrors, separated by a distance L of the order of the
spontaneous-emission wavelength A, . With this micro-
scopic Fabry-Perot cavity, a strong selection of radiation
modes coupling to atoms within the cavity is possible. In
particular, for L =k/2, atoms whose dipole moments are
parallel to the mirrors couple strongly and exclusively
(for a cavity of sufficiently high finesse) to the modes
whose propagation vectors lie within a small solid angle
about a line perpendicular to the mirror surfaces. It is by
squeezing these modes that we shall aim to achieve an
effective squeezed-vacuum —atom coupling. Such a
scheme would also seem to suit the likely source of
squeezed light, a degenerate parametric oscillator, which
in present experiments produces a near-plane-wave out-
put.

II. EQUATIONS OF MOTION

The Heisenberg equations of motion, combined with
the commutation relations for the field and atomic opera-
tors, form the basis of our analysis of the coupled atom-
field system. Following the general principles of the
input-output formalism, ' modified to three dimensions,
we solve firstly for the field, and then substitute this result
into the equations of motion for the atomic "spin" opera-
tors. For a two-state atom, in the electric dipole approxi-
mation, we find

o , ( t) = ——p2, .[E ( h, t), o ( t) —cr +
( t) ]+ ,

where co, is the atomic transition frequency, and p2, is
the transition dipole moment. The vector h gives the po-
sition of the atom.

Important to the derivation of these equations is the
fact that the system (the atom) and the bath (the field)
represent independent degrees of freedom, and hence that
equal-time commutators of atomic operators with field
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operators must be identically zero.
The field E (h, t) that appears in (2.1) can be divided

into two distinct contributions: a source-free or input
term, and a radiated field due to the atom. This leads us
to write

„p».[X,„(h,t), cT, ]+,1

2S
1

ay =(~, &)ax pqi [Y;„(h,t), cr, ]+, (2.8)

E (h, t)=E,„(h,t)+1(h, t),
where

ScopE;„(h,t) =i+
k, s

1/2
I6)I (f fO)

ak. «p)e ' '
fg, (h)

+H. c. ,

I (h, t) =i+ [p2, .fk, (h)]f„,(h)cT (t)
1, , 2

f —fo
X f dre " ' +H c.

0

(2.2)

(2.3)

(2.4)

o, = —P(h)+ p„.[X;„(h,t), c7„]+21

1+ P21 [Y;.(»t), a, l2R

where cr„=o +o+ and o. =i(o —o'+). These equa-
tions are of the form derived and used by Parkins and
Csardiner in their analysis of the effect of finite-
bandwidth squeezing. Following their treatment we can
define operators

~x(t)p= p21 [X—.(»t»p]+
Pr(t)P= —,'iM2, [Y;„(h,t),Pl+ ~

with fk, (h) the appropriate mode functions, evaluated at
the position of the atom, and s the polarization index
(s =1,2). The result (2.4) is not exact, in that we have as-
sumed the atom-field interaction to be weak, allowing us

I QJto make the approximation cr (t —r) =cr (t)e . This
is generally referred to as the adiabatic approximation,
and corresponds to a bad cavity limit, which we shall be
assuming in this paper.

Using the expressions (2.3), (2.4), Eq. (2.1) can be cast
in the form

which, owing to their properties of commutativity, can be
treated as classical noise sources. The statistics of Px(t)
and P„(t), as defined by the correlation functions
(I3x(t)13x(t') ) and (/3&(t)Pr(t') ), will then determine
the behavior of (cT„,(t) ) and, in particular, whether or
not the decay of one of (o„(t)) and (o(t) ) c. an be in-
hibited. The dependence of the atomic dipole decay on
the surrounding mode structure is now explicitly includ-
ed in p2, Y;„(h,t) [and p2, X;„(h,t)], which we write for
completeness

cr(t)= i'cp, o (—t) p2, —[E;„(h,t), c7(t)] +,2S " Scop
p2, .Y;„(h,t) =i+

k, s

1/2
—

& (co& —Q)t
ak (tp)e

o', (t)= —P(h) ——
)u2) [E,'„(h, t), a (t) —a+(t)]+, X[pz, fz, (h)]+H. c. (2.9)

where

'oP(h)= gcpktp~, fq, (h)~ f dre " ' +c.c.

Specification of the correlation functions will of course
require specifications of, for instance, ( z,a(tp)az. , (tp))
for a squeezed input field, incident over some finite solid
angle. We shall consider this later.

(2.6)

In deriving (2.5) we have made use of the following iden-
tities for the spin matrices:

[o+,o, ]+=[o,cr, ]+='0,

[o+,o —o+]+= —[a,cT —o+]+=1 .

With suitable approximation and renormalization, the
term P(h) gives the atomic linewidth and energy shift'
(in the absence of squeezing). We will not be concerned
with the evaluation of P(h), however.

Next, we move to a frame rotating at frequency A.
Defining input quadrature phases by

E;„(h,t)=X;„(h,t)si (Qnt —a)+Y;„(h,t)cos(Qt —a),
(2.7)

we make the usual rotating-wave approximation, and
after some manipulation of the equations we arrive finally
at (choosing a=~)

III. MODE FUNCTIONS OF THE CAVITY

fz, (r)= V ' g(k, )(ez, e'"'+ez, e '"'), (3.1)

where V is the quantization volume, and g (k, ) is taken to
have the form

Firstly, however, we shall consider the mode functions
appropriate to the plane-mirror Fabry-Perot con-
figuration (Fig. 1) we are contemplating. These give the
spatial dependence of the field, and can be computed us-
ing classical electromagnetic theory. The two plane mir-
rors lie parallel to the xy plane, the first a perfectly
rejecting mirror at z=0, and the second a partially
transmitting lossless mirror at z =L, with real reAectivity
R, and transmittivity i (1 —R )' (same for both direc-
tions). We assume that the mirrors are very large, so that
end effects can be ignored.

By a consideration of boundary conditions at the mir-
rors, "' we derive the following expression for the mode
functions inside the cavity
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squeezed

angle), that is, a strong coupling is eff'ected only with
those modes in a small solid angle about the z axis, (i.e.,
perpendicular to the mirrors). In the next section we
shall examine the requirements for producing an effective
squeezing of these modes.

light IV. SQUEEZED-VACUUM INPUT

z=0 Z=L

FIG. 1. Cavity configuration.

The form u1ation of squeezing in a full three-
dimensional electromagnetic field has not been con-
sidered before, so it seems appropriate to set this out with
some care. In a one-dimensional situation, a multimode
squeezed state can be specified by operators A (co), A (co),
such that

—2k L
1 —Re

(3.2)

[A (cu), A (co')]=5(co—co'),

( A (co)A(cu')) =5(co—co')N(co), (4.1)

Outside the cavity, the mode functions have the form

y —1/2[& ik r+h (k )&
ik r]'

where

(3.3)

( A (co) A (co') ) =5(20—co —co')M(co),

where 0 is the central frequency about which squeezing
takes place. To generalize this to three dimensions, let us
define an operator analogous to 3 (co),

h(k, )=—
i2k L

1 —Re
(3.4)

A (k) =pa,*(k)ak, ,
k, s

with

(4.2)

We have assumed that the reAectivity R is the same for
both polarizations. The polarization vector ek„and the
wave vector k, can be written as a sum of components
parallel and perpendicular to the xy plane, respectively,

(3.5)

The primed quantities in (3.1) and (3.3) are then defined
as

k, s

(4.3)

where k is a unit vector in the direction of k. %'e want
the same kind of relations as for A (co) to be true. But
further, let us specify that the field is not squeezed in any
other modes. This can be achieved by defining the state
by

k = —k'+k~~ (3.6)
[ak ~k', '1 5k, k'5$,

3 (4.4)

We note that the following identities hold: k.e
=k 6 =0, 6'E' =E' E' =1.

For our purposes, we need only know the mode func-
tions inside and outside of the cavity. For a precise
check on the orthogonality of the mode functions, one
must of course, take account of the partially transmitting
mirror. In the case of an infinitely thin mirror, this
necessitates an additional surface term in the orthogonal-
ity integral. ' If the mirror is given a finite thickness and
finite dielectric constant, an approach such as is used in
Ref. 13 for the quantization of fields about an interface is
then required.

The effect of the cavity is most clearly exhibited in the
form of ~g(k, )~, which we identify as the Airy function
of the cavity

(ak, ak, ) =N(k —K)a,'(k)a, (k')5k „5..
(ak, ak, . ) =M(k —K)a, (k)a, (k')5„2x. k 5..

where K =0/c. In this case, we can see

( A (k)A(k')) =N(k —K)5k k

( A (k)A (k ) ) =M(k K)5k

However, if

B (k) =QP,*(k)ak, ,
k, s

and

ga, (k)g,*(k)=0,
k, s

(4.5)

(4.6)

(4.7)

(4.8)

1 —R
(1 —R) +4R sin (k,L)

(3.7)

If R is close to 1, then this function displays a series of
sharp peaks for angles of incidence such that
sin(k, L)=sin(kL cosH&)=0. If, therefore, L =XI2, the
function given in (3.7) will exhibit a peak centered at
cosOk = 1 (the peak at cos8„=0 can be ignored, as other
factors that enter our calculations later are zero at this

then the operator B (k) is not squeezed, and indeed has
no excitation in it at all. Thus the definitions (4.4) and
(4.5) represent a situation in which there is squeezing
only between modes with wave function a, (k).

A. Ideal matching

Cxardiner' considered the case of an atom in free space,
noting that a, (k) should, in that case, correspond as
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a, (k)=JV ' p' f„*,(ho),
where

~= f d&kXIv2) fks(ho)I'
sq

(4.9)

and ho=(0, 0, h, ). A choice such as (4.9) is important,
otherwise the phase of the squeezing can be altered to an
extent that a significant reduction in fluctuations is no

I

closely as possible to an electric dipole wave, with Q, ,
the solid angle over which the input is squeezed, approxi-
mately 4Ir, giving the maximum overlap of a, (k) with

p2) f)„(h). Similarly, we may attempt to maximize this
overlap for our particular situation by choosing

longer possible. In simple terms, the mode structure of
the squeezing incident upon the cavity should match as
closely as possible to the mode structure of the cavity in
which we aim to carry out the experiment. In practice,
some approximation will be necessary, but for the rno-
ment we consider the "ideal" case (4.9). Later we shall
examine other possible choices of a, (k), at which stage
the importance of matching will be emphasized more
definitively.

Computation of the correlation function
(Py(t)Py(t'}), from which we may solve for the decay
rate of ((r ), proceeds as follows. If p„ is the bath densi-

ty operator, then, using the properties of the trace, one
can write

(Py(t)Py(t ))—:Trh[Py(t)Py(t )pb]

b [[V»,.(» [V»;.( '»pb]+]+]
=

—,'Trb [[)M2).Y;„(h,t),p2( Y;„(h,t'}]+pb I

= I ( [F21 Y( (h t} F21 Y( (h t )]+ ~ (4.10)

Using (2.9) and (4.5), and moving to an integral representation (for the necessary modifications to our discrete expres-
sions see, for example, Ref. 14), we derive

X f dQk f dAk. a, (k)[p2) fk, (h)]a, (k')[p2) fks(h)]
sq sq

" g f dk k3 iec(k —K)(t —t')i()tk
(2Ir) 2, o

X f d Qk f d Ak.a,*(k ) [pz) . fk, (h ) ]a, (k') [p2) fk, (h ) ]+C. C.
sq

half-sphere
S

(4.11)

where k'=kk'. We move via Fourier transform to k space (frequency space), substitute (4.9) for a, (k), and evaluate
what results at k =K =0/c, the central squeezing wave number,

V AK 2

(Py(k)Py(k )) = M(K)g f dQk[p21 f~ (ho)][@2) f~ (h)] 5(k+k )+c.c.
(2Ir)3 2 k 21 Ks 0

+
3 N(IC)g f dQk[pz) fz, (ho)][@2).fz, (h)] 5(k +k')+c.c.V AK j.

(2Ir) 2 k 21 Ks 0

AK+, f dnk +I@2) f~, (h)I'5(k+k'),
( 2Ir ) 2 half-sphere

(4.12)

where by K we mean K =Kk. To carry out the polarization sum, it is convenient to use the circular polarization vec-
tors

1

+—( cosOk cost)ttk +i singk, cosOk sing k I cosgk, s1nOk )ev'2

1
ek = —( —cos8kcosgk i sint((tk, —c SOO sik—tnttki+c sot})tski 8n) kev'2

(4.13)

With this particular choice, the polarizations are unique when Ok =0 (i.e., the same for any tttk).
We shall assume that with suitable optical pumping the atoms can be prepared in a state from which only a 5M=+1

transition is possible (Jhe et al. ). For our cavity configuration, this shall correspond to transitions in which the emit-
ted photons are polarized in a plane parallel to the mirror surfaces (i.e., the atom quantization axis is chosen as the nor-
mal to the mirrors), and for which the dipole moment can be written'
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P21
pz, = (l, i 0) .v'2

We then find

p2, fK+(h) = i&—1/V Iu2, g(K, )(1 —cos81, )e sin(Kh, cos8„)exp[iK(h„sin8j, cosgk+h~sin8ksingk )],
)ui, . z (h)= —i&I/Vpz, g(K, )(1+cos8&)sin(Kh, cos8&)exp[iK(h sin8kcosgk+h sin8ksing„)] .

(4.14)

(4.15)

(4.16)

We note at this point that with ~g (K, ) ~
sharply peaked about cos8k = 1, the dominant contribution to the quantities we

compute will come from terms involving pz, .fic (h) [rather than p2, fK+(h), which is small], that is, from only a sin-
gle polarization.

To simplify matters we set h =0, so that we shall be considering variations in the atom's position along the x axis
[from the "central squeezing position" ho=(0, 0, h, )]. By varying h„, we will be able to gauge the area inside the cavity
over which reduced Auctuations can be achieved.

The solid angle over which the squeezing shall be incident is defined by

f dIIk =—f d8ksin81, . f dpk, (4.17)

that is, we consider a cone centered on the z axis. After some calculation, and a change of integration variable
(u =cos8„),we produce [with N—:N(K), M—:M(K)]

(Pi (k)Pr(k') ) /5(k +k')

fipziK 1+R 1 i sin (Kh, u )
(N —M), f du (1 —u)', '

Jo(Kh„( I —u ')'~')
'"ez 1+Fsin (KLu)

Ap E21

Sm.

Ap JC21

4m

Ap E21

6~

1+R 1 sin (Kh, u)
(N —M), 1 du (1+u)

2 Jo(Kh„(1—u )'i )
1 —R ~' cose2 1+Fsin (KLu)

1+R sin (Kh, u)
du(1+u )

1 —R o 1+Fsin (KLu)

(h),

2

(4.18)

where F =4R /(1 —R ), Jo is the zeroth-order Bessel
function, and now

1 sin (Kh, u)JV'= du(1+u )
COSOp 1+Fsin (KLu)

(4.19)

For reference back to the original equations of motion, it
follows from (4.18) that

AP21E
(pi (r)p&(&'))=, &(h)&(t —&'), (4.20)

and hence that

, )=( .—&)( „)—y&(h)( (4.21)

where y is the free-space spontaneous-emission rate. Un-
der free-space conditions, B (h) is equal to —,'.

The integrals appearing in (4.18) and (4.19) can be eval-
uated by numerical integration. To obtain some estimate
by analytical means, we can set h =0, and approximate
the sharply peaked Airy function by a Lorentzian. We
further assume that the other factors in the integrands do
not vary significantly over the width of this Lorentzian,
and hence that they can be removed from the integral
and set equal to their values at u =1. Considering the
case where KL =n(L =A, /2), a.nd Kh, =n/2 (i.e., the.
atom is at the center of the cavity), we find

8 (h„=O, h, =L /2)

t
—'tan '(n&F )

3 1+R
~ v'R

+(N —M)tan '[n&F (1 —cos8z)]],

(4.22)

where, for an ideal parametric oscillator producing
broadband squeezed light, M = [N(N+1)]' (Refs. 16
and 17), so that for good squeezing N —M approaches

Hence, choosing cos02=0 the term in curly brack-
ets may become very small. However, if F is large, this
requirement may be relaxed; for instance, if R =0.98,
and 82 =0.3 rad, then tan '( n &F ) = l. 57, while

tan '[~&F (1 —cos8z)]=1.50,
that is, a substantial reduction in Auctuations is still pos-
sible at the point we have chosen midway between the
mirrors.

Numerical results

The results of computer evaluation of 8 (h), as defined
in Eqs. (4.18) and (4.19), are shown in Figs. 2 and 3. In
Fig. 2 we display four plots for L =A. /2, R =0.99, and
N —M= —

—,", (94% squeezing), with 82=0, 0.1, 0.3, and
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particular, we choose

a (k)=0,
(4.24)

a+(k)=JV ' exp[ —csin 6)& —i (g+gsin Ok)]

Xi sin(K, h, ),
where 5, g, and g are real constants, and the normaliza-
tion factor

A' =j deal, exp( —25sin Ok)sin (Kh, cos8~), (4.25)
0,sq

with j dQk as defined in (4.17). This form may be con-

sidered to model a focused Gaussian beam in the paraxial
approximation.

A comparison of the magnitude and phase of g(K, )

with exp( —csin 01, ) (appropriately scaled) and
(q+gsin 8&), respectively, is shown in Fig. 7, for
R =0.99, and L =k/2, with 6= 120, g = m. /2, and
g= —200 (a particular choice of parameters we shall con-
sider later). The Lorentzian-type long-time tails of g (K, )

are not well matched, but in the more important small-
angle region, where g (K, ) is sharply peaked, the approxi-
mation is much better.

Using the expressions (4.24) for a+(k) in (4.11), we ob-
tain
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fluctuations relative to the vacuum depends strongly on
the choice of g, emphasizing the need for good matching
of the mode functions (in particular, the phase). Reduced
fluctuations at h =0, are found for values of g in the
range 130—290. At the position h, /L =0.5, the op-
timum choice of parameters (5=120, /=200, t) = —n. /2)
gives a maximum reduction below vacuum level of
-72%. This compares very favorably with that obtained
with ideal matching when 02=0. 1, but is somewhat less
than the maximum possible reduction one could expect
with an ideally matched input (with larger 02), as shown
in Fig. 8(c).

In Fig. 9, we display the behavior in the x direction for
the optimum choice of g and 6 given above. This figure is
to be compared with Fig. 2(b). Reduced values of 8 are
found over a similar area to that when the input is ideally
matched.

As we have seen, our results are very dependent on g.
They are much less sensitive, however, to variations in 6,
as we demonstrate in Fig. 10, where we fix (=200 and
compare results for 6=0 and 300. The graphs are virtu-
ally identical, and both give a maximum reduction below
vacuum level of —60% (the optimum choice of 6=120
gives a 72% reduction).

Unlike the ideally matched case, increasing the angular
limit O2 does not lead to an appreciable improvement in
the amount of noise reduction possible. This is not
surprising as the phase approximation used ceases to be
effective for Ok &0. 1, as shown in Fig. 7(b). If R is de-
creased slightly, then values of O2 larger than 0. 1 give the
best results (provided 6 and g are fitted appropriately).
However, a limit (above which no further improvement
occurs) is again reached, with a inaximum reduction in
fluctuations similar to those found above. Our approxi-
mation to the phase is obviously limited, and some more
accurate approximation would be needed to yield better
reductions.

We shall not consider in detail any further approxima-
tions in this paper, but, in brief, Lorentzian approxima-
tions to the phase are found to give significant improve-
ments over the above results, particularly as the angular
limit O2 is increased. For example, if we replace
q+gsin'0, by

circularly-polarized
squeezed light source

isolator focusing and

phasing optics
cavity

FIG. 11. Possible experimental setup.

V. EXPERIMENTAL CONSIDERATIONS

The experimental setup one might envisage is depicted
in Fig. 11. As we have found, suitably prepared atoms
inside the cavity will respond to only a single (circular)
polarization of the field. Hence a single source of circu-
larly polarized squeezed light should suffice.

This squeezed light would have to be passed through a
system of lenses and phase plates in order to produce a
focused beam of squeezed light with characteristics of the
sort discussed earlier, that is, with appropriately matched
phase and amplitude.

The cavity itself should be a bad cavity (i.e. , low Q),
which, in the case of a microscopic optical cavity, does
not seem too difficult to achieve. In particular, we have,
for the lifetime t, of a photon within the cavity

L —10 s,—13

(1 —R)c

for L —10 m and R=0.99 (i.e. , Q —100). This time
should be significantly shorter than the typical
spontaneous-emission lifetime, so that the process can be
regarded as irreversible. If this is not the case new effects
may arise, such as the collective stimulated emission pro-
cess observed by De Martini and Jacobovitz, ' in which
long-range atom-atom correlations occur when more
than one atom undergoes a radiative decay within a
period t, . A low-density atomic or molecular sample
would therefore also seem appropriate in avoiding such
cooperative effects.

77 LU

m +O

in Eq. (4.24), then for R =0.99, X —M = —
—,", , with

O2=0. 3, one finds a reduction at h, /L =0.5, h /L =0 of
—88% with the choice m =0.057, 6=90. This is compa-
rable to the result obtained with ideal matching, and
exceeds the maximum reduction possible (for any 92) us-

ing a Gaussian distribution.
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