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Chaos and chaotic transients in an yttrium iron garnet sphere
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We present detailed results of studies of chaos and chaotic transients involving spin waves in an

yttrium iron garnet sphere. We drive the ferromagnetic resonance of this system at the 6rst-order
Suhl instability using driving frequencies between 2.0 and 3.4 GHz. In some regions of parameter
space we see chaotic transients, while in others we see quasiperiodic oscillations or stable chaos.
We characterize these states by various means, such as dimension or amplitude. We also present
some results of a three-spin-wave-mode calculation based on the Landau-Lifshitz equation. This
calculation produces phenomena similar to some of those seen in the experiment but is not sufficient

to reproduce all the behavior that we see. We believe that a calculation involving more spin-wave

modes is necessary to reproduce many of our experimental results.

INTRODUCTION

It has been known since the 1950s that spheres of yttri-
um iron garnet (YIG), when used in ferromagnetic reso-
nance experiments, display a breakdown of the ferromag-
netic resonance line at high radio-frequency (rf) powers
and exhibit unusual behavior, such as auto-oscillations,
above the breakdown power. ' The onset of this break-
down was explained by Suhl, but the nature of the auto-
oscillations (which, despite their name, may not be
periodic), as well as much other complex behavior, was
not understood at the time. More recently, Gibson and
Jeffries demonstrated that some of this unexplained be-
havior could also be seen in nonlinear Rows and maps.
Other experiments ' have expanded the range of phe-
nomena in YIG spheres that can be modeled using tech-
niques from nonlinear dynamics. " ' The use of the
methods of nonlinear dynamics to explain problems in
solid-state physics has been reviewed by Jeffries' and
Zettl. "

We have investigated the behavior of pure single-
crystal spheres of YIG in parameter regions not covered
by any previous experiments, and have seen phenomena
not seen in these other studies. Research that we have
published so far centers on transient chaos, produced
when initial conditions place the system on an unstable
chaotic attractor that overlaps the basins of attraction of
one or more stable nonchaotic attractors. In certain pa-
rameter regimes, this unstable chaotic attractor can dom-
inate the behavior of the system for very long times, even
though asymptotically, only nonchaotic attractors deter-
mine the stable phase-space trajectories. In this paper we
describe in more detail how the unstable chaotic attractor
inQuences the spin-wave properties of the YIG spheres,
as well as how the system behaves when the unstable
chaotic attractor is not present.

When a sample of yttrium iron garnet, a ferrimagnetic
material, is placed in a dc magnetic field, the magnetic
moment of the YIG will precess uniformly about the dc
field. Because of damping, this motion will die out unless
a rf magnetic field is applied (perpendicular to the dc field

in our experiinent). For a dc field on the order of 1000 G,
the resonance frequency is between 2 and 4 GHz when
the easy axis (the [111]axis) of magnetization of the YIG
sphere is parallel to the dc field. In our experiment, we

keep the rf field tuned to the resonant frequency as we

change the dc magnetic field.
Motion of a magnetic moment in a magnetic field may

be described by the Landau-Lifshitz equation

dm = —ymXH, ff
—amX(mXH, ff)

dt

coo — +yPk

~m 2X coo — +Pyk +2' sin8k0

1/2

where y is the gyromagnetic ratio and a is a damping pa-
rameter. In this case, H,z includes the applied dc field,

the applied rf field, the exchange field, and the dipole
field. Because the [111]axis of the crystal sphere is paral-
lel to the applied dc field, the anisotropy field is combined
with the term for the dc field when the magnitude of the
dc field is well above the saturation magnetization of the
sphere. A situation when the dc field is not well above
this value is mentioned below.

For small rf fields, only uniform precession is present.
The Suhl instability, responsible for the breakdown of
the ferromagnetic resonance line, occurs at a higher rf
power. At this power the nonlinearity in the Landau-
Lifshitz equation couples the uniform mode of precession
into spin-wave modes, which are spatially periodic varia-
tions in the amplitude or phase of the precession. At the
first-order Suhl instability, the rate of transfer of energy
from the uniform mode into the spin-wave modes goes as
first order in the amplitude of the uniform mode and the
first spin waves to be excited have a frequency half that of
the driving frequency. From the linear part of the
Landau-Lifshitz equation one may obtain a dispersion re-
lation for the spin waves:
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FIG. 1. Spin-wave dispersion relation for three different
values of OJ, . Arrow shows where first spin waves are excited
when the system is driven at 2.0 GHz.

detector

where coo=yHd„k and cok are the wave number and fre-
quency of some spin-wave mode, co =4~yM„
P=H, „a /M„a is the lattice parameter, M, is the satu-
ration magnetization, y is the gyromagnetic ratio, and Ok

is the angle between the spin-wave vector k and the dc
field. As Ok is varied from 0 to 90, the dispersion rela-
tion sweeps the spin-wave manifold. We have chosen our
rf frequencies so that for a wave vector k=0, the first
spin waves to be excited lie within this spin-wave mani-
fold, as pictured in Fig. 1. This makes it possibles to ex-
cite spin waves of relatively low wave vector, so that the
Suhl instability occurs at small rf magnetic fields on the
order of tens of mOe. When two or more of these spin-
wave modes are excited, their interaction produces a
high-frequency (GHz) signal modulated by a lower-
frequency (kHz) signal, which, although it may not be
periodic, is known as an auto-oscillation. These auto-
oscillations, with frequencies ranging from 5 to 300 kHz,
are what we detect.

EXPERIMENTAL PROCEDURE

In this experiment, a 20-mil-diam undoped single-
crystal YIG sphere was held with Apiezon M grease in-
side a quartz tube so that the YIG sphere was between an
excitation coil and an orthogonal pickup coil. These coils
formed provided a nonresonant means to drive the pre-
cession of the magnetic moment. An electromagnet pro-
vided a dc field perpendicular to both coils and parallel to
the easy axis of the YIG sphere. Microwave power was
provided by a HP 8341A synthesized sweeper. The sig-
nal induced in the pickup coil by the YIG sphere was
detected by a crystal detector and amplified. The signal
was digitized at 3 MHz with a Lecroy TR8828C digitizer
with 8 bit resolution to produce a time series of up to
131072 points that was transferred to a VAX 11/780
computer. Figure 2 is a schematic of the experimental
setup. All measurements were made with the system
tuned to the center of the ferromagnetic resonance line
located in the range 2.0—3.3 GHz. The YIG sphere was
undercoupled to the pickup and excitation coils (the cou-

diaitizer

FIG. 2. Schematic of the experiment. YIG sphere is
represented by the black disk in between the magnet poles.

pling constant between the sphere and the excitation coil
was 0.4; for the pickup coil it was 0.01). We saw the
same behavior when the excitation coil coupling was re-
duced to one tenth the above value, suggesting that cou-
pling between the sphere and the excitation coil is not im-
portant for the phenomena that we see. To ensure repro-
ducibility, two different 20-mil spherical samples were
used.

METHODS OF ANALYSIS

Our analysis of this system depends on several ideas
from the field of nonlinear dynamics. The most impor-
tant of these is that over time the behavior of a dissipa-
tive dynamical system will occupy a bounded region in
phase space known as an attractor. ' If all variables of
the motion are known, this attractor may be constructed
by plotting the value of each variable on an orthogonal
axis and following these variables for some time. If a
time series in only one variable exists (for example, V, ,
V'7 V3 . . ), a topologically equivalent attractor may be
constructed in a D-dimensional phase space by choosing
a delay of n data points and plotting the end points
of the D-dimensional vector' ( V;, V;+„,V;+2„, . . . ,
V, +~D „„).In many cases, studying these attractors is
more useful than observing many of the usual quantities
used in signal analysis, such as Fourier transforms. Fig-
ure 3(a) shows a reconstruction in a three-dimensional
embedding space of a typical quasiperiodic auto-
oscillation for this system. Figure 3(b) is a reconstruction
of a chaotic attractor. Figure 3(c) is a reconstruction of
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FIG. 4. Plot of the log (base 10) of the order of a neighboring
phase-space point (n) vs the log of the distance to that neighbor
(r) for a chaotic attractor. The slope of this plot is the dimen-
sion of the attractor.
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FIG. 3. (a) Three-dimensional phase-space reconstruction of
a quasiperiodic attractor with a dimension of 4. (b) Reconstruc-
tion of a chaotic attractor with a dimension of 3.3. (c) Recon-
struction of amplifier noise.

digitized amplifier noise, shown for comparison with the
chaotic attractor. These attractors are all plotted with
the same delay of n =8 data points. The individual data
points were taken every 320 ns.

Analysis of these reconstructed attractors is a field that
is still under development. Many techniques require ex-
cessive computer time or higher resolution data than we
have been able to acquire. The most useful method that
we have found so far is the calculation of information di-
mension. ' We have used the method of Termonia and
Alexandrowicz, in which one chooses many random
centers on the attractor and determines the distance to
the nearest neighbor, the next nearest neighbor, etc. for
all data points. Averaging neighbor distances for all
centers, one then plots the log of neighbor order versus
the log of the distance for different embedding dimen-
sions. The slope of this curve is the information dimen-
sion of the attractor. If the dimension of the embedding
space is too low, the slope of this curve increases as the
dimension of the embedding space increases. The slope
will saturate when the dimension of the embedding space
is large enough to completely describe motion on the em-
bedded attractor.

Figure 4 is an example of this calculation for a chaotic
attractor from experimental data with a dimension of ap-
proximately 3.3. For periodic or quasiperiodic time
series, the dimension calculated this way corresponds to
the number of fundamental frequencies present in the
waveform. In a chaotic time series, the minimum embed-
ding dimension reveals the number of degrees of freedom
necessary to produce that chaotic motion. The low reso-

lution of our data makes it hard to determine exactly at
which embedding dimension the attractor dimension sat-
urates. Our best estimate of the minimum embedding di-
mension necessary to represent the chaotic motion is 8.

MAP OF PARAMETER SPACE

In order to observe how different external parameters
affect the nonlinear behavior of yttrium iron garnet, this
behavior was mapped out by varying driving frequency
and rf power, all while changing the applied dc magnetic
field to keep the system tuned to the ferromagnetic reso-
nance. The resulting map of the parameter space in Fig.
5 shows three major regions. In the nontransient region
(labeled "auto-osciilations" in Fig. 3) only quasiperiodic
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FIG. 5. Parameter space map for the ferromagnetic reso-
nance in a yttrium iron garnet sphere. Microwave driving fre-
quency and dc magnetic field vary simultaneously to keep the
system tuned to the center of the ferromagnetic resonance line.
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auto-oscillations were seen. This bottom of this region is
only approximate. At any specific rf frequency, the exact
power for the onset of auto-oscillations varied greatly
with only small variations of the dc magnetic field. In the
transient region (shaded in Fig. 3) chaotic transients were
seen. There is also a region where only chaotic
waveforms were seen (labeled "chaos" in Fig. 3). Figure
6 shows a typical Fourier spectrum of chaos seen in this
experiment.

Chaos and auto-oscillations have been seen in other
spin-wave experiments. ' A striking feature of this pa-
rameter space map is the presence of chaotic transients,
in which the system behaves chaotically for some time
and then suddenly switches permanently into a quasi-
periodic oscillation. This behavior has not been seen in
previous spin-wave experiments (which investigated other
regions of parameter space) and has been reported in only
a few other experiments, ' although some theories pre-
dict that they could be a feature of many nonlinear sys-
tems.

Finally, it should be noted that when the rf driving fre-
quency was between 2.8 and 3.4 GHz, no chaos was seen
at the rf driving powers available to us for this experi-
ment.

CHAOTIC TRANSIENTS

Chaotic transients were seen in the transient region
during transitions between different quasiperiodic auto-
oscillations that were induced by steadily increasing rf
driving power (Fig. 7). As rf power was steadily in-
creased, a quasiperiodic auto-oscillation would suddenly
change into chaos. This chaos would persist for some
time until it would suddenly change into another quasi-
periodic auto-oscillation. In Fig. 7, rf power is increasing
with time, but the chaotic transient would still end in a
quasiperiodic oscillation if the increase in rf power was
stopped after the start of the transient. In fact, we could
also observe chaotic transients by turning on the rf power
suddenly to a fixed power level. The particular auto-
oscillation seen after a chaotic transient was not related
to the auto-oscillation present before the transient, nor
did the sequence of events seen when increasing rf power
reverse itself when decreasing rf power.

FIG. 7. Chaotic transient observed while steadily increasing
rf driving power.

These transients could not be initiated by perturbing
the system with white noise or magnetic pulses as large as
0.3 G, leading us to conclude that these transients were
not random or noise-induced events, but were a product
of the internal dynamics of the system. The lengths of all
chaotic transients fit the distribution P(t)-exp( t I( t ) )—
for fixed driving and dc fields.

After the end of a chaotic transient, many different
auto-oscillations could be seen, but all fit into one of two
types. Type-2 auto-oscillations had an amplitude ap-
proximately four times as large as type-B auto-
oscillations. The attractors corresponding to type- A
auto-oscillations had a dimension of 4, while the attrac-
tors corresponding to type-8 auto-oscillations had a di-
mension of 5. The measured dimensions were not exactly
integers, but because the Fourier spectra of these auto-
oscillations consisted of discreet lines, these numbers
were rounded off to the nearest integer.

According to the theories of Grebogi, Ott, and
Yorke, a chaotic transient results when a stable
chaotic attractor is made unstable by overlapping the
boundary of the basin of attraction of another, stable, at-
tractor. When the initial conditions place the system on
the unstable chaotic attractor, the system will follow the
chaotic trajectory until it reaches the boundary of the
basin of attraction of the stable attractor. At his time,
the system begins to follow a path on the stable attractor,
and the chaotic transient ends. For our system, the final
stable attractor corresponds to a quasiperiodic auto-
oscillation. The exact length of the chaotic transient de-
pends on the initial conditions. As rf driving power in-
creases, the overlap between the chaotic attractor and the
basin of attraction of the nonchaotic attractor decreases,
until at some critical power P„ the overlap is zero and
the chaotic attractor is stable. This scenario constitutes a
route to chaos via a crisis.

In this model, the average length of the chaotic tran-
sients should increase as rf driving power increases ac-
cording to the power law (t ) =K/(P, P)~, where P,is-
the critical power, P is the rf driving power, and y is the
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critical exponent. In our experiment, two classes of
quasiperiodic attractors are seen after the end of the
chaotic transient, a situation which the above power law
can be extended to fit. In Fig. 8(a) the average transient
lengths from our experiment versus. rf driving power are
fit to the two-attractor power law

3

~ ~

K)K2
(r

K2(P, I P) '—+K, (P,2 P) '—

where (in decibel units) P„=21.8 dB above the Suhl in-
stability, P,2

=25.9 dB above the Suhl instability,

y, =13.0, and @2=6.1. P„and y, are the critical power
and critical exponent for the chaotic transient to fall into
a type-A attractor, while P, 2 and y2 are the critical
power and exponent for the chaotic transient to fall into
a type-B attractor. The power-law parameters were in-
dependent of both the driving frequency between 2.3 and
2.8 GHz and the method by which the transients were ex-
cited.

Below a driving frequency of 2.3 GHz, the transient
length versus driving power curve no longer fit this type
of power law (Fig. 9). The rf power at which the average
transient length was 5 ms decreased from 14 dB above
the Suhl instability at frequencies above 2.3 GHz to 4 dB
above the Suhl instability at frequencies below 2.3 GHz,
while the onset of stable chaos decreased from 26 to 9 dB.
Intermittency was also observed over a very narrow
power region between 2.0 and 2.3 GHz.

These changes in the behavior of chaotic transients at
lower frequencies are roughly correlated with an increase
in the width of the ferromagnetic resonance line at a driv-
ing power below the Suhl instability. Figure 10 shows the
full width at half maximum of this line as a function of rf
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FIG. 9. Average length of chaotic transients at 2.2 6Hz.
Each point represents an average over 40 transients.

frequency. This width drops as the driving frequency in-
creases, leveling out at 1.2 G near 2.3 GHz. This in-
crease in line width at lower frequencies is probably relat-
ed to the very small internal magnetic field in the YIG
sphere below 2.3 GHz. The internal dc magnetic field in
a ferromagnetic sphere' is Ho —(4~/3)M„where Ho is
the applied dc field and 4m.M„ the saturation magnetiza-
tion, is 1780 G in our sphere. This internal field therefore
goes to zero at an applied dc field of 593 G (a resonant
frequency near 1.7 GHz) and the small anisotropy fields
due to crystalline imperfections, etc. , cause the magneti-
zation to break up into domains. These extra anisotropy
fields may also be felt when the internal magnetization is
small, leading to a broadening of the ferromagnetic reso-

A

V
1 0

measured

power law fit

O

I
U

~~ 150—
C3

C3 a
2-

CLg

gg
E 100-

0
CP

50
10.0

I I

20.0 30.0

rf power (dB above Sl)

I

40.0

I.5

a ~0

2.5

frequency (6Hz)

4

3.5

FICs. 8. (a} Average length of chaotic transients at 2.5 GHz.
Each point represents an average over 40 transients. Line
represents a fit to a two-attractor power law. (b} rms amplitude
of the chaotic time series as rf power increases.

FIG. 10. Full width at half maximum of the ferromagnetic
resonance line in YIG at different frequencies. All widths are
taken at least 3 dB below the Suhl instability.
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nance line. These anisotropy fields should complicate the
spin-wave behavior, and might be responsible for some of
the changes in behavior that we see below 2.3 GHz.

NONTRANSIENT BEHA VIOR

We did not see any chaos or chaotic transients in this
system between 2.8 and 3.4 GHz. If the spin-wave sys-
tem can become chaotic in this frequency range, it will
only do so for microwave driving powers greater than
those available to us (200 mW at the output of our
source, or about 20 mW at the sample). Because there is
no unstable chaotic attractor that the system can fall into
when one quasiperiodic attractor becomes unstable, the
route by which transitions between different auto-
oscillations are made as driving power increases is
different in the nontransient region than it was in the
transient region.

Figure 11 shows Fourier transforms of a transition in
the nontransient region. Figure 11(a) is a Fourier
transform of the original stable auto-oscillation. In Fig.
11(b) one can see the Fourier components of the original
auto-oscillation, along with an increased background
noise level and Fourier components from a new auto-
oscillation. As rf power continues to increase, the noise
and Fourier components of the original auto-oscillation
shrink in amplitude, leaving a new stable auto-oscillation,
whose Fourier transform is seen in Fig. 11(c). Some hys-
terisis is present during this transition. This transition is
not transient; if the rf power stops increasing while the
system is in the state seen in Fig. 11(b), the system will

stay in this state. The lack of intermodulation between
the two auto-oscillations suggests that the spin-wave sys-
tem is moving back and forth between two independent
at tractors. Effects such as the increased background
noise level during this process have been attributed in
other systems to fractal basin boundaries between the two
at tractors.

As the rf driving power increases, the amount of noise
present during these transitions increases. Beyond about
30 dB above the Suhl instability, these noisy transitions
occur so close together that only a very noisy state is
seen. We do not see any unique sequence of attractors as
rf power is increased, but this may be due to the great
sensitivity of this system to the external parameters. A
dc magnetic field change as small as 0.05 G may change
the auto-oscillation present.

MICROWA VE REFLECTION COEFFICIENT

The presence or absence of an unstable chaotic attrac-
tor affects other aspects of the behavior of this system as
well. Associated with the transitions that occur via
chaotic transients are sudden changes in the microwave
signal reflected from the sample. Figure 12 shows the
reflection coefficient of the YIG sample as a function of rf
power as power is swept up above the Suhl instability.
The sudden jumps and dips in the reflection coefficient
occur when the spin-wave system changes from one
auto-oscillation to another via a chaotic transient.
These sudden changes are seen only in the transient re-
gion; in the parameter region where chaotic transients
are not present, the reflection coefficient is a smooth func-
tion of power.

As with the transitions between auto-oscillations, the
locations of these sudden changes are not the same for
every power sweep. If 40 power sweeps (taken at 200 ms
to sweep through 20 dB) are averaged together, however,
some sharp features remain in the time-averaged
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FIG. 11. Series of Fourier amplitude spectra for a nontran-
sient transition between two auto-oscillations as driving power
steadily increases. (a) Spectrum for the original auto-oscillation.
(b) Spectrum of a noisy state during the transition. (c) Spectrum
of the final auto-oscillation seen after the transition.
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FIG. 12. Reflection coefficient of an YIG sphere at 2.5 GHz
as rf power is steadily increased, showing sudden changes. This
is a single power sweep, not the time-averaged result.
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reAection coefficient, indicating that on this time scale,
some of the chaotic transitions vary about some average
location.

The first sudden change in reAection coefficient comes
at about 6 dB above the Suhl instability. Even in the
time-averaged reAection coefficients, there is a great deal
of variation in the location of the first sharp change, but
this number does seem to be a good lower limit on the
power at which the first change is seen. These variations
obscure any change in this location that might be present
at different rf frequencies.
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CHAOTIC ATTRACTOR

Some properties of the chaotic attractor itself change
as rf driving power increases. We use the term "chaotic
attractor" to refer both to the stable chaotic attractor
present at high rf driving powers and the unstable chaotic
attractor present during chaotic transients. Figure 8(b)
shows the rms amplitude of the chaotic waveforms that
we observed as a function of rf driving power at a driving
frequency at 2.5 GHz.

Up to a certain power, the amplitude of the chaotic
waveform increases with power. The breaks in this rising
curve occur at approximately the same locations as the
critical powers found in the power-law fit to the average
transient length as a function of power [Fig. 8(a)]. In the
same rf power range that Fig. 8(a) shows the overlap be-
tween the unstable chaotic attractor and the basin of at-
traction of the class-A attractor decreasing, Fig. 8(b)
shows the amplitude of the chaotic waveform increasing.
At the power above which the chaotic attractor no longer
overlaps the basin of attraction of the class-A attractor,
both curves have a smaller positive slope than they did
below this power. Above the rf power at which the
chaotic attractor no longer overlaps the basin of attrac-
tion of any other attractor, its amplitude is seen to de-
crease. The lowest break in the amplitude versus power
curve (near 11 dB) may be caused by the presence of a
third class of nonchaotic attractor whose basin of attrac-
tion also overlaps the chaotic attractor. There is a simi-
lar break in the transient length versus power curve at
about the same location.

The chaos size versus power curve does not fit a
power-law curve as the transient length versus power
curve does. Attempts to subtract out a decreasing back-
ground curve based on the decreasing amplitude of the
chaos at high power were not successful at converting the
low power curve into a power-law form. Nevertheless,
the data in Figs. 8(a) and 8(b) do suggest a relation be-
tween the amplitude of the chaotic time series and the de-
gree to which it overlaps the basins of attraction of non-
chaotic at tractors.

Figure 13 shows the dimension of the chaotic
waveforms as a function of power. This calculation re-
quired too much data to be used with the shortest chaotic
transients. The dimension of the chaos is 3.3+0.2 up to
about 35 dB above the Suhl instability, at which point the
dimension begins to increase. The minimum embedding
dimension required to measure the attractor's dimension
is 8. An embedding dimension of 8 implies that 8 de-
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FIG. 13. Dimension of chaos and chaotic transients at 2.5
GHz as a function of driving power.

grees of freedom are present, so that this chaos is the
product of an interaction between at least four spin-wave
modes, each with a real and imaginary part.
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FIG. 14. Dimension and rms amplitude of chaos in an YIG
sphere at 2.2 GHz.

Unless otherwise noted, the properties of the chaotic
attractor described previously vary little between driving
frequencies of 2.3 and 2.8 GHz. Different behavior is
seen between 2.0 and 2.3 GHz. The effects seen at 2.2
GHz are typical of, although not identical to, the type of
behavior seen in this lower-frequency region.

Figure 14 shows the rms amplitude of chaos versus
power at 2.2 GHz. The rms amplitude of the chaotic
waveform at 2.2 GHz varies little until about 28 dB
above the Suhl instability, at which point the amplitude
of the chaotic waveform increases discontinuously.
Above the power at which this sudden increase occurs,
the amplitude of the chaotic signal decreases rapidly but
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continuously. Figure 14 also shows the dimension of the
chaos as a function of power, showing the same tendency
to increase at higher power as the dimension of chaos at
2.5 GHz. Figure 9 contains the average length of chaotic
transients as a function of driving power at 2.2 GHz.
This plot cannot be fit by a combination of power-law
curves as the equivalent plot for chaotic transients at 2.5
GHz. Comparing Fig. 9 and 14 to Fig. 8 reveals large
differences between the behavior of this system at driving
frequencies below 2.3 and above 2.3 GHz. It was pro-
posed above that some of these difFerences might be
caused by the large effects of anisotropy fields being felt
when the dc magnetic field dropped below a certain
value.

THREE-MODE SPIN-WAVE MODEL

Our experimental situation is one of an undercoupled
YIG sample, driven at resonance through the first-order
Suhl instability. The equations of motion for spin-wave
modes available in the literature do not cover this specific
situation, necessitating a new derivation (e.g. , the uni-
form mode will now couple to other modes, leading to
diferent terms in the equations than in the nonresonance
situation). This derivation is complicated and lengthy, so
in this paper we have included only a study of a simple
set of equations of motion, the "three-mode" case. This
was developed using a spin-wave expansion for the mag-
netization following Suhl.

It turns out that the three-mode model is not sufFicient
to see most of the rich behavior in the experiment, but
does mode1 we11 some of the lower power behavior and
appears to exhibit the same transition to chaos (via crisis)
as the experiment.

The development of the equations of motion is well
covered in Ref. 3 as well as by Bryant et al. , Zhang and
Suhl, ' ' and Pecora so we give only an outline here.
The damping term is added at the end of the derivation in
the usual way. ' '

The first step is to rewrite the equations using the nor-
malized magnetization m ( =M/~ M

~
) and to change vari-

ables. The new variables come from the projection of the
magnetization onto the x-y plane in complex coordinates:
m+ =m„+im and m =m —im . We use the rela-
tionship m, =(1—m+m )' to generate the expansion
approximation of m, —1 —m+ m /2 to eliminate m,
from the equations. This is possible since ~M~ is con-
served.

The second step is to substitute a spin-wave expansion
of m+ and m into the Landau-Lifshitz equation,

m+ = ake'"', m = a * ke'"'
k k

This yields a set of equations of motion for the spin-
wave coefficients, ak,

dak ak=Lk, + Uk(a„. ),
dt a*

At the third step we make a transformation to new
mode variables (bi, ) in which Lz is diagonal with eigen-
values +i~k which are the spin-wave frequencies, each
associated with a spin-wave with wave vector k. This
gives the equations of motion

dbk

dt
'Cpkbi + Uk(bi ) (3)

where U'=SU with S being the transformation from ak
to bz (bi, =Sai, ).

The fourth step is to make a slow-time transformation
which is equivalent to using the method of averaging

1CO) t
on Eq. (3). We let bi, =ci,(t)e . This eliminates the
linear term and averages over the high frequencies (co&)
which are in the GHz range to give equations of motion
for low-frequency phenomena (cz) in the MHz or less
range which are observed in the experiment. This gives
the equations of motion

dck

dt
=Uk (ci, ), (4)

dcp
=ihy —gpcp+up(1)ckck cp+up(2)cpcp

dt

+ up(3)ckck + up(4)ck+ up(5)c pep,

dcg

dt
=&6kck 7]kck + uk( 1 )ckcpcp+u„(2)ckck

where U"(ci, ) is the averaged nonlinear term. The only
terms which can survive are those for which co&-co/2
(first-order Suhl intability, our case) or co&-cp (second-
order Suhl instability), where co is the driving frequency.
These are the equations to be solved, subject to a choice
of which of the infinite number of modes (ci, ) will be in-
cluded.

A final step in our case is to limit the number of modes
to three, ck, c*

&, and c&. As we have described above,
this is a nonresonant experiment, so we do not include a
resonater mode in our analysis. The mode co is the uni-
form mode and is the only mode present at low rf powers.
It represents the uniform precession of the magnetization
about the applied static field. The other two modes can
be arbitrarily chosen, but in our case we chose k to be
such that these modes represented some of the first
modes excited at the Suhl instability. ' In addition we
used the typical approximation that, because of the sym-
metry of the equations of motion' ' c k =c&. Note that
this is not the same as simply setting c k =0; extra terms
and factors are still retained.

Damping can be included by simply adding a term like—
g&c& where g& is determined from the damping

coefficient in the Landau-Lifshtz equation. ' In addi-
tion, one must include detuning terms, ' ' hz (k&0)
which allow for the fact that &ok is not exactly equal to
cp/2. The final equations have the form

+u„(3 )cpck + u & (5 )c p ck +uk (6)cpck (6)
where Lk is a linear operator which acts only on the sub-
set ak and a k and Uk is the nonlinear term which, in
general couples all the modes (coefficients), ak .

where up(i) and uk(i) are the coefficients for the non-
linear terms for the uniform mode (cp) and the spin-wave
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FIG. 15. (a) Bifurcation plot from a three-mode spin-wave
model showing the Suhl instability at a dc field of 2.044 mo and
the onset of chaos at 3.673 mCx. (b) Stability analysis plot from
the three-mode spin-wave model, showing stable fixed points
(black) and unstable fixed points (gray).

mode (ck ), respectively. These coefficients contain terms
from the effective field (applied, dipole, and exchange
fields) resulting from the above analysis.

We solved these equations numerically using a 4—5 step
Runge-Kutta algorithm with variable step size and con-
tinuous error checking at each step. The salient parame-
ters were taken to be static field, Ho =893.5 G;
y = 1.758 X 10; saturation magnetization, M, = 141.65
G; damping gk =2.217 X 10 and go=4. 468 X 10;
k =5.25X10 cm ', Oi =14.9; /k=0', and exchange,
D/M, =2.262X10 ' (see Refs. 3 and 27 for more de-
tails on these parameters). The parameter ranges in rf
power and driving (resonant) frequency were adjusted to
cover the same regimes as the experiment. The following
results for co=coo=1.5708X10' Hz (=2.5 GHz driving
frequency), cok =7.795 X 10 Hz ( =co/2, the first-order
Suhl instability), and rf field going from 10 to 10 ' G
are typical for all solutions we found.

The overall behavior can be easily understood by look-
ing at a bifurcation plot [Fig. 15(a)] in which the long-
time behavior of the real part of cz is plotted as a func-
tion of driving field, h. A similar plot results from using
the imaginary part of c&. To make this plot we set the h

value and chose the initial conditions at random. We
then allowed the system to evolve for a time step of a few
ms and plotted the next several hundred points separated
by a time step of 100 ns. The value of h was then in-

creased slightly, the initial conditions of the system were
reset to random values, and the same plotting was done
at the new h value. This was done for h values from
—1.8 to 8.0 mG.

This generated a plot in which it is easy to discern
fixed-point behavior from periodic or chaotic behavior.
The fixed points (seen at lower h values) represent
can=const. In certain cases, if the frequency of any
periodic behavior can be found, the time steps can be set
to strobe this trajectory and make it stand out as though
it were a fixed point, too. Fourier transforms of non-
fixed-point trajectories (above about 3.673 mG) showed
no periodic behavior. Hence, on this plot 3.673 mG
demarcates the boundary in the h parameter between
fixed-point and chaotic behavior.

No periodic behavior implies that auto-oscillations ap-
pear to be absent from the three-mode model in the pa-
rameter regime we have explored. This is in agreement
with the work of Bryant et al. in which it was found
that in off-resonance situations, for the first-order Suhl in-
stability, auto-oscillations are missing from a three-mode
model. In Bryant's case more modes must be added to
the system to enable this behavior. It appears that this is
so in our on-resonance situation, too.

We also did a linear stability study of the fixed-point
solutions below the threshold for chaos. This is an
analysis of whether the solutions are stable to small per-
turbations. The result of this is shown in Fig. 15(b).
Stable fixed-point branches are shown to Re(ci, ) in black
and unstable parts of the branches are shown in gray
shading.

Figure 15 then shows clearly the regimes of rf driving
field where the spin-wave-mode amplitudes are constant
or are chaotic. The Suhl instability near 2.044 mG is
clearly visible (below this there are no spin waves, cz =0).
At 2.044 mG there is a pitchfork bifurcation and two,
nonzero fixed points emerge. In this regime the spin
waves have constant amplitude. This presumably hap-
pens in the experiment and is evidenced in the plots of
reflectivity versus h (Fig. 12), but the constant behavior
of the spin waves is not detectable by the digitization cir-
cuitry since we rely on time-dependent coupling to the
uniform mode for the detection of the signals.

Above about 3.673 mG the system breaks into chaotic
behavior. Just before this point we see very short ( —ps)
chaotic transients over a very small range of rf field
( -0.2 mG). Above the threshold for chaos, allowing the
system to run for very long times (tens of ms) shows the
same chaotic behavior as for short times. This would not
be expected if there were transients present above 3.673
mG. While a three-mode is sufhcient to produce chaotic
transients it is not good enough to reproduce the long-
lived transients that we see in the experiment.

Figure 16 shows a typical plot of the system behavior
in the chaotic regime at a rf power of 4.0 mG. Three
components [Re(co), Im(co), and Re(ck)] of the four-
component system are plotted. In the low power chaotic
regimes, the system resembles the Lorenz attractor, '

where the two fixed points have become hyperbolic fixed
points. In the Lorenz attractor the two fixed points go
unstable by a subcritical bifurcation. ' From the stability
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FIG. 16. Three-dimensional plot of a chaotic attractor for
the three-mode spin-wave model. One component, the imagi-
nary part of cq, has been left for clarity.

the Lorenz attractor.
In the Lorenz attractor metastable chaos is detectable

over about half of the two-steady-state branch. In our
three-mode model it is detectable only over about 14% of
the spin-wave steady-state range and the transients ap-
pear to be very short over most of this range. We have
not made an examination of the scaling behavior of the
transients, as we did for the experimental data.

It must be remembered that the system in Eq. (5) and
(6) is a four-dimensional system, so that care must be tak-
en in comparing details of the behavior to the three-
dimensiona1 Lorenz system.

While the three-mode model reflects a few aspects of
the behavior of our experimental system, there are many
phenomena that it does not model. This suggests that the
complex behavior in the experiment results from the in-
teraction of more than three spin-wave modes. This is
also suggested by our analysis of the fractal dimension of
the chaotic attractor and transients in the data. The frac-
tal dimension saturates at an embedding dimension of 8,
implying that the smallest dynamical model of the spin-
wave system must have at least eight components. Work
by others ' ' in the nonresonant parameter regime also
suggests that more than three modes are necessary.
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