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Potential radiation-pressure-induced instabilities in cavity interferometers
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The mirrors of an interferometer may be rendered dynamically unstable by the radiation pressure
of the sensing light. We assess the importance of this effect for optical cavities, concentrating in

particular on proposed laser-interferometric gravitational wave detectors. Both broadband and
narrow-band systems are considered, While the potential instabilities may well be important for
cavities with weak suspensions, realistic gravitational wave detectors should not encounter any
problems.

INTRODUCTION

Many different types of interferometer use Fabry-Perot
cavities to enhance a signal. A motion of the mirrors of
such a cavity produces not only a phase change on the
light emerging from it, but also an intensity change inside
the cavity. The resultant change in radiation pressure
will act back on the mirrors. This paper will address the
question of whether the feedback due to the radiation
pressure will be of sufticient magnitude to render the cav-
ity unstable to small perturbations. In particular, we will

investigate the importance of such eff'ects for long base-
line interferometric gravitational wave detectors. '

That radiation pressure changes in a Fabry-Perot cavi-
ty might be dynamically significant is not a new idea.
Braginsky and Manukin pointed out that the radiation
pressure in a cavity that is not perfectly resonant will
have two effects: it will provide a "rigidity" or spring ac-
tion which either acts against or reinforces any perturba-
tion, depending on which side of resonance the cavity is
operating; and the changing radiation pressure provides a
damping or antidamping, again depending on the operat-
ing point. If the spring action is to stabilize, the "damp-
ing" will tend to destabilize (the phase delay due to the
storage time of the cavity tends to destabilize the
radiation-pressure feedback system). Instability will re-
sult if this dominates the effect of the mirror suspension.
The spring action of the radiation pressure has been ex-
perimentally observed by Dorsel et al. and discussed by
Meystre et al.

Independently, Tourrenc and co-workers have con-
sidered the effect on stability of a non-negligible cavity
storage time. This was first emphasized by Deruelle and
Tourrenc, with linear destabilization in the presence of a
phase offset being indicated by Aguirregabiria and Bel.
Subsequent papers described an approximate differential-
equation treatment and a numerical investigation of mir-
ror motion in the unstable regime. These results have
been reviewed by Tourrenc and Aguirregabiria. In some
of these papers the possible danger of delay-induced in-
stability in interferometric gravitational wave detectors is
stressed.

We aim here to clear up any uncertainty concerning

the stability of realistic gravitational wave detectors. In
order to do this we include the effects of a possible servo
system which acts to position and maintain the mirrors at
the correct operating point on the cavity resonance curve
(effectively raising the natural angular frequency Oo of
the mirror suspension as well as providing damping). We
also provide analyses of the problem in both time and fre-
quency domains, with no restriction on possible time de-
lays. The time domain analysis extends the work of Ref.
6 using a stability boundary method, while the frequency
domain analysis is easily applicable to the realistic cases
where recycling is used in both broadband and narrow-
band mode' ' and leads to simple expressions for the
power required for the onset of instability in the cases. It
will be seen that raising the frequency Ao and lowering
the quality factor g of the mirror resonance dramatically
increases the critical power. While the discussion will
concentrate on interferometric gravitational wave detec-
tors, a similar analysis is applicable to other cavity inter-
ferometers.

RADIATION PRESSURE IN THE FREQUENCY
DOMAIN

In order to determine the dynamical consequences of
radiation pressure changes we will consider a small per-
turbation, at angular frequency co, to the position of one
of the test masses of an interferometer and calculate the
resulting change in intensity and in radiation pressure in
the detector cavities. This may be expressed as
frequency-dependent spring and damping terms which,
combined with corresponding terms due to the mirror
suspension (or servo system), give an effective oscillator
differential equation. The stability conditions can then be
found.

There are several possible optical arrangements to be
considered. We will restrict ourselves to a simple cavity
Michelson interferometer (see Fig. l, without mirrors
Mo, and M3), or to the same system with either standard,
detuned or dual recycling. ' ' All these variants may be
analyzed with the same mathematical method.

First consider a laser beam, initial amplitude Eo, in-
cident on a cavity with mirrors of amplitude reflection
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FIG. 1. Optical arrangement of a cavity gravitational wave
detector. The Michelson interferometer operates with output
port on a dark fringe. Standard recycling places mirror Mo to
recycle the laser power. Dual recycling adds M3 to recycle sig-
nal sidebands.

coefficients R, and R2 and transmission T, and T2. Fol-
lowing the traditional treatment of a Fabry-Perot cavi-
ty, ' we may regard the field E, inside the cavity as being
the sum of many beams, each of which has experienced a
different number of reflections inside the cavity:

E, /E =T,R g (R, R ) 'e'
N=1

where 6 is the static phase offset from resonance. So

light are produced by each beam in the cavity. The total
sideband field is obtained by adding up these contribu-
tions. The signal from the interferometer is contained in
the sideband fields.

At this point the differences between the different opti-
cal arrangements should be considered. For a simple
cavity system (no recycling), both laser light and side-
bands have the same reflectivity off the cavity mirrors. In
standard and detuned recycling, the sideband reflectivity
is just determined by the properties of M, and M2, but
the effective reflectivity of the input mirror for the laser
frequency is determined by both Mo and M& (together
with their separation); in other words, the input mirror in
recycling may be viewed as being made up of the cavity
formed by M0 and M, . The sidebands do not see this
cavity as they exit via the beamsplitter output port. In
dual recycling, however, the sidebands are reflected back
in by M3. The input mirror for the sidebands must then
be viewed as consisting of the cavity formed by M3 and
M, . To express, this, we will regard the input mirror as
having reflectivity R „for the carrier and R1+ and R,
for the +co and —co sidebands, respectively. If R1 is
defined to be rea1, then there is an associated phase
change P on reflection from this "mirror. " This may be
absorbed into the phase offset 5 which will therefore, in
general, be different for the three frequencies of interest:
6„5+,and 5

We can now add up the sideband fields generated on
each bounce. Consider just the +co field E+ in the cavi-
ty:

T, R2 e' —R1R2
/E

(1 —R,R2) 1+F'sin 5/2
(2) E+ 2'= —T R xe''

1c 2 g 0
0

where

4F 4R1R2

(1—R, R2)

Xg(R„R ) 'e
N=1

F is the finesse of the cavity.
Now consider a perturbation x =xocos(cot) to the

length of the cavity. For the general case to be con-
sidered here, it is convenient to use an explicit sideband
representation, in which the length change x is regarded
as phase modulating the light in the cavity to produce
two sidebands:

(
ECOf + !ddt

)
=2~

N=1
(4)

+ . 2'7T iutX0e
0

i(,5 +5+ —co/vO)T„R2

where U0=c/2l is the free spectral range of the cavity, of—in colvo
length I. The e ' term expresses the change in phase
of the signal over the history of the light which is stored
in the cavity. So

where 5P is the phase shift and A, is the wavelength of the
light. The field is multiplied by e' ~=1+i5$ Thus side-.
band fields at frequencies offset by +co from the laser

I

or

E

scot 2 c (& — l )
i 2mxoe'"'T&, R 2(e ' —R &, R 2 )(e + —R &+ R 2 )

k(1 —R &,R2) (1—R &+R2) (1+F,'sin 5, /2) I 1+F'+ sin [(5+—co/vo)/2] )

where

4R1cR 4R1+ R2F'= F'
2(1 —Ri, R~) (1—R, +R2)

I

For the other sideband, +co~ —co.
This basic expression can be used to derive either the

gravitational wave signal or the intensity change in the
cavity. Note that both detuned and dual recycling work
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by making 6, =0 and 6+ =co/vo (or 5 = —co/vo) to max-
imize the sideband amplitude. Henceforth we will as-
sume that M2 is highly reflecting and set R2 = 1 when it
appears as a multiplier (but keeping 1 —R2 =

—,
' A ).

The intensity change inside the cavity is

where E* is the complete conjugate of E. The fluctuating
parts of the intensity are, to first order,

6I, =E,E~. +E,*Ei+E,E* +E,*E

5I, =(E,+E~ +E )(E,*+E~+E*), (7) Just taking the +co sideband for the moment, this gives

'2

1 —R [cR

(1 —R&+R2) 1+F,'sin
2

6 — / o1+F'+ sin
2

or

Ti, 2irx0[ —R, + R &sin(cut ) + sin(cot + 6+ —co/vo) ]

k(1 —R &, R2) (1—R &+R2) [1+F,'sin (5, /2)][1+F'+ sin [(5+—co/vo)/2] }
(10)

where Io is the laser power incident on the detector. This may be rewritten as (6 « 1)

2irxo T„[cos[cut(5+—cu/vo)]+sin[cut(1 —R, +R& )]}
A(1 —R &, R &) (1 —R, +R &) [1+F,'sin (5, /2)]} 1+F'+ sin [(6+—co/vo)/2]}

Adding the effect of the two sidebands then gives the total intensity fluctuation in the cavity:

6I, 2&xp T]
A(1 —R&,R2) [1+F,'sin (6, /2)]

(5~ —cu/vo)F ~ /ir (6 + cu/vo)F /~
X cos(cut ) +

1+F'+ sin [(6+—co/vo)/2] 1+F' sin [(5 +co/vo)/2]

F~ /m+ sin(cot ) 1+F'~ sin [(5~—co/vo)/2]

F /v
1+F' sin [(6 +co/vo)/2]

SIMPLE INTERFEROMETERS

The general expression (12) applies to any of the optical arrangements. Consider first an interferometer with no recy-
cling. In this case 6, =6+ =6 and R „=R&+ =R, . The intensity change in the cavity can then be written as

6I,
Io

277~ p 7 ]F /77

k( 1 —R, R 2 )[ 1+F'sin'(5/2 ) ]

(F /~)(6 co/vo)—(F /ir )(6+co /vo)
X cos(cot ) +

1+F'sin [(5—~/vo)/2] 1+F'sin [(6+co/vo)2]
I 1+ sin(cot ) 1+F'sin [(5—co/vo)/2]

1

1+F'sin [(6+co/vo/2]

or

Io

4rtxoT, (F le)5ticos(cot )[1+(F./ir) (5' —co Ivo)]+(2Fcolrrvo)sin(cot ) }

A(1 —R, R z )[1+F'sin (5/2)] [1+F'sin [(6+co/vo)/2] } } 1+F'sin [(6—co/vo)/2) }

(14)

This expression contains some rather interesting features.
As expected, the intensity in the cavity only changes (to
first-order) if the cavity is not perfectly resonant (6%0).
For small offsets (F6/m. « 1), the intensity change is pro-

portional to 6; it is opposite for offsets on opposite sides
of the fringe. Also, at very high frequency Fco/~vp&&1
the intensity changes are very small:
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IQ &Vp

—2

=(o)~, )
2 if 5 &&co/vo, (15)

where ~, =2F//mc is the storage time, the 1/e decay time
for the cavity field. Both of these features arise because
phase modulation (the original perturbation) is only con-
verted into amplitude modulation if the two sidebands
resonate differently in the cavity. Even if the laser fre-
quency is well down the cavity resonance curve the two
sidebands resonate similarly (and poorly) if they are off'set

by a frequency that is large compared with the cavity
linewidth.

The radiation-pressure force contains components that
are of the same (or opposite) phase and of the quadrature
phase to the original motion. The in-phase component
acts like a spring, the quadrature component provides

damping or antidamping. Note that the quadrature term
is proportional to minus the velocity, so when the spring
is stable, antidamping is produced which tends to destabi-
lize the system. In the low storage time case
Fco/~v0 && 1, the damping increases with increasing
storage time (or "delay" ). However, the magnitude of the
antidamping falls for high co~, .

How does the radiation pressure affect the dynamics of
the cavity? The expression for the changing intensity
may be converted into a differential equation for changes
in cavity length (mx =25I, /c, m is the reduced mass of
both mirrors):

2~, Q,
X x Qyx =0

1+(F /~ )(5 co /v —)

where

SvrIOTi. (F/7r) 5[1+(F /m )(5 co /vo)—]
Amc(1 —R,R2)[1+F'sin (5/2)]t 1+Fsin [(&+co/vo)/2][ t 1+F'sin [(5—cavo)/2]]

(17)

2~, Q„ +(II„+Qox)=0 .1+(F /m )(5 co lvo)—

(18)

where we have taken the case of the "spring" term being
stable, producing an antidamped resonance at 0„. If the
mirror position is maintained by a damped spring of an-
gular frequency Qo and quality factor Qo (either mechani-
cally or via an appropriate servo system), the equation
governing the cavity length becomes

oo
X+X

Qo 00 =Ap/~,
0+s

(22)

performance of an interferometer is not altered by the
presence of a wideband, well-damped servo system. The
signal remains as the force required to keep the test
masses stationary relative to the light. ) If Qo »1, then
reference to (21) shows that II, =00, i.e., the instability
frequency will lie close to the oscillator-servo frequency.

On the other hand, if Qo = —,', we find the simple result

This system will be unstable if

2v, Q„ 00)
1 + (F2/~2)(52 g2/v2) Q

or

(0;~, ) =Qor, . (23)

where 0 is the new natural frequency:

0 =00+0„. (20)

Combining (19) and (20) we find an expression for the fre-
quency Q; at which any instability will occur:

AQ

2r, Qo

AQ~,1+
2QO

F2/2

772

(21)

This general expression is a little messy, though useful for
numerical work. In any practical situation, however, we
may assume an offset from resonance that is small
F5/n «1 (F5/~ is the fractional ofFset on the fringe).
Further simplification is obtained if we restrict attention
to the two limiting cases: of a resonance either with very
little damping (Qo » 1) or with damping close to critical
(Qo = 1/2). (It must be emphasized that a low Q does not
necessarily give poor thermal noise performance, since
the sensor may have a low noise temperature: the noise

So high damping requires a significant change in natural
frequency for instability —the radiation-pressure feed-
back system must dominate the artificial servo. Knowing
the eigenfrequency, we can substitute back into (19), us-
ing (17), to find an expression for the incident power Io
required for instability. Remembering that the offset is
small (F5/m «1, 5 & co/vo), then the high-Qo case gives

Go[1+(Qor, ) ] A, ml
IQ)

S~Qoc~, (F5/~)
(24)

while the low-Q case (Qo = —,') gives

Qo(1+Bar, ) A,ml
Ip)

S~Qocr, (F5/m). (25)

Note that (25) is valid for all Q values in the sense that if
the inequality is not satisfied, the system will be stable. A
simple cavity interferometer is guaranteed to be stable as
long as the power is less than I„;,:
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I„;,=6X10 [Qo(10 rads ')](Qo)

X[m(100 kg)][l(3 km)] [r, (ms)]

X(10'F6/vr) ' W . (26)

The parameters chosen here are quite conservative for a
gravitational wave detector; for example, the servo on the
University of Glasgow 10-m prototype has Ao = 10
rads ' and Qo= 1. A, is assumed to be 0.5 pm.

So very high power levels are required to obtain insta-
bility in such a system. If, however, we were to choose a
system with 60=6 rads ', Q —10, 1=10 m, m =10 kg,
F6/~= 1, and ~, =300ps, instability might be observed at
a power level of only —10 ' W. Small systems with

weak suspensions and little damping are more susceptible
to radiation-pressure-induced instabilities.

RECYCLED INTERFEROMETERS

Realistic gravitational wave detectors will use recy-
cling. Standard recycling increases the power circulating
round the interferometer, so reducing the laser power re-
quired for the onset of stability. This can be incorporated
by choosing 6, =0 (maximum power enhancement) and a
value of T&, compatible with the degree of recycling. If
the losses in the detector cavities dominate any losses at
the beamsplitter, maximum power build up is obtained by
choosing T„=2 A, where A is the loss coefficient
(R + T + A =1), assumed to be equal in both cavity
mirrors. Rewriting (12) then gives the intensity change in
a detector cavity:

2nxo(F/vr) 6[cos(cut )[1+(F /tr )(6 —co /vo)]+(2Fco/servo)sin(cot ) }

A, A [1+F'sin[(6+co/vo)/2] j [1+F'sin [(6—co/vo)/2]]

Qo(1+Qor, ) A,mlA
Io(

4~QO r, (F6/tr )
(28)

Or, more simply and more stringently, stability will be
ensured in standard recycling as long as

where F is the finesse of the detector cavities. This is
larger than the simple case by a factor m. /4FA for low
loss cavities. Reference to (25) then indicates that an in-
terferometer with standard recycling will be stable as
long as

of the two signal sidebands perfectly resonant. Now a
single, perfectly resonant sideband provides pure damp-
ing or antidamping, since the intensity change lags the
phase change by 90' [cf. (11) with 6+ =co/vo]. If worried
about radiation-pressure-induced instabilities, it would
therefore seem sensible to choose to resonate the side-
band which damps any motion. The only concern then is
whether the spring action will push the cavity off its
proper operating point to produce a zero-frequency insta-
bility. This would require 0, )Ao at co=0, which, when
the detector is tuned to a frequency v, needs a power

Io (10 [Qo(10 rads ')][m(100 kg)](QO)

X[1(3 km)][r, (ms)] (10 A )(10 F6/vr) ' W .

Io ) 2AOA kml v

Or, stability is assured if the laser power is less than

(29) I,„;,=3 X 10 [Ao(10 rads ')] [m /(100 kg)]

(30)

Current designs do not imagine more than 200 W being
used. So a large broadband interferometer with a reason-
able servo system should not encounter any problems
with radiation-pressure-induced instabilities.

Both detuned and dual recycling may be used to
enhance a signal within a restricted bandwidth. We wish
to determine the stability properties of such systems.

In the usual way of operating dual recycling, and in de-
tuned recycling, 6+ =6 and F+ =F to high accuracy.
Other cases will not be discussed here, The expression
(27) for the intensity change in standard recycling may
then be used, with the understanding that F is the finesse
that the signal sees, i.e., the detector cavity finesse in de-
tuned recycling and the finesse determined by M& and M&
in dual recycling. Thus, when operated in a broadband
mode, dual and detuned recycling have the same stability
properties as a standard recycling system with the same
signal storage time.

When operated in narrow-band mode, the signal finesse
is made high and the optical system tuned to make either

X[1(3 km)][v (100 Hz)](10 A ) W . (31)

4~Aok. mcv (A )

Icrit (32)

or

I,„;,=200[00(10 rad s ')]

X[v (100 Hz)][m(100 kg)](10 A') W . (33)

This is significantly lower critical power than the other
sideband.

Again, the interferometer should be stable at reasonable
power levels.

It is interesting to see how the critical power for a
narrow-band system alters if the other sideband is
resonated. The detector will tend to go unstable at
0, =co, the frequency of maximum antidamping, with a
critical power
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While the discussion of narrow-band systems has been
confined to detuned and dual recycling, similar results
should apply to resonant recycling: all of the narrow-
band arrangements share the same characteristic of
ensuring perfect resonance for both the laser light and
one sideband. In addition, a delay line system that uses
dual recycling will have the same stability properties as a
corresponding cavity system.

CHARACTERISTIC EQUATION

In this section we consider the connections between the
results so far and the treatment of the simple cavity by
Aguirregabiria and Bel. They treat the dynamics of a
suspended mirror with delayed radiation pressure by
linearization about a fixed point. Their linearized equa-
tion of motion contains an infinite series of delayed re-
storing force terms. Any one of these, if treated by a
Taylor-series expansion in the delay, suffices to make the
differential equation of infinite order. ' Consequently, the
characteristic equation has an infinite number of roots.
However, those significant for the onset of instability are
the pure imaginary roots, corresponding to a complex
conjugate pair of roots moving from one half plane to the
other. The characteristic equation with pure imaginary
root z=i/3 has at most two roots in the range of delays
that are relevant. This equation gives two real equations,
of the form

/3
—II0=F(a, /3),

AO =G(a, /3),

(34)

(35)

to be solved for the eigenfrequency /3 and a bifurcation
parameter e. This process resembles that in the effective
force treatment above, in which a damping force term is
set equal to zero and the restoring force term in then used
to give the frequency 0, .

Our previous method regarded the noise as consisting
of a set of Fourier components, the effects of which were
ana1yzed largely in the frequency domain. In contrast,
the method of the characteristic equation studies the time
evolution of an initial offset. However, we do not expect
the linear stability of a system to depend on either the
form of the perturbation or the domain of analysis.
Indeed, we shall see that the two approaches do give the
same answer for the stability of a simple cavity inter-
ferometer.

When the cavity length I, or the corresponding passage
time 21/c = 1/vo is taken as the bifurcation parameter, at
constant power Io, and fixed values of the optical param-
eters, there is either no instability, for low enough Io, or
else there is instability over a finite intermediate range of
cavity length. We can interpret this in terms of the loca-
tion of the sidebands on the resonance peak. By treating
the mean delay as fixed, and the reflectivity as the bifur-
cation parameter (or the cavity length, since these are
now not independent parameters) and by looking at the
case of almost perfect reflectivity, we obtain an expres-
sion for the eigenfrequency /3 that is independent of Io
and of the reflectivity. This turns out to be identical to

= —A g cos"9 sin(k 5)( t —k /vo) .
k=0

(36)

Here we change their notation to conform with that
adopted in the rest of this paper. They take the suspend-
ed mirror M2 to be perfectly reflecting, and the mirror
M& to have R =cos 0, T =sin 0. We shall follow their
practice of parametrizing the phase offset 5 as 5= —,'yO,
where 0& y & 1. So y =F5/n. in the notation used ear-
lier. (In their paper 5 is denoted E, y is denoted 5, and
vo

' is denoted r )The. constant A is

with

16~~o
csin 0,

Mck
(37)

b, =(1+cos 9—2cos9cos5) (38)

The characteristic equation corresponding to Eq. (36) is

ZOO —zk /voz + +00= —Agcos"9sin(k5)e
~0 k

(39)

or, for pure imaginary eigenvalue z =i/3,

i/30, 0 —iPk /vo
/3

—Qo — = Agcos"9 sin(k5)e
&0

(40)

The Fourier series can be summed explicitly, and the
result is conveniently expressed to contain a delay-
dependent factor H(i/) =H(i/3/vo). This factor tends to
1 for zero delay (vo~ oo), is real, negative, and very
small for /3/vo=m, and is periodic with period 2~. Equa-
tion (40) becomes

i/300
/3

—II — = A b, (cos9)(sin5)H(i P),0 g
(41)

with

1+cos 9—2(cos9)(cos5)H ~ e'~+e 'icos 9—2(cos9)(cos5)
(42)

We first take vo as bifurcation parameter. The qualita-
tive nature of the problem is illustrated in the schematic
diagram, Fig. 2. The parabola is traced out as /3 increases
from zero. The closed curve is traced out as P increases
from 0 to 2~. At low Io there are no intersections, and so
no pure imaginary root of (39) and no change from stabil-
ity. For larger Io there are a pair of intersections (/3&, p&)
and (/32, $z). That with larger /3 has smaller P and so
larger vo. This gives destabilization as the cavity length
increases, a pair of roots passing from the left-hand half-
plane to the right-hand half plane. We show in the Ap-
pendix that the intersection corresponding to longer cavi-
ty length has the same pair of roots passing back into the

Eq. (21), once we make clear the distinction between the
mean delay used here and the storage time used so far.

The linearized delay-differential equation of Aguirrega-
biria and Bel is

d x(t) +0 dx(t) z+Box t
Qo dt
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diferent ways. Both methods, that of studying the
characteristic equation and that of finding an eftective os-
cillator equation with frequency dependent terms, give
the same results for simple cavity interferometers. The
latter method also gives simple results for both broad-
band and narrow-band recycled interferometers. The
conclusions are clear: while radiation-pressure-induced
instabilities may well be important in small interferome-
ters with weak suspensions, they will not be a problem for
currently conceived interferometric gravitational wave
detectors.
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APPENDIX: DESTABILIZATION
AND RESTABILIZATION

FIG. 4. Here again the parabola is traced out by the real and
imaginary parts of the right-hand side of Eq. (38), as P increases.
The lines are traced out by the real and imaginary parts of the
right-hand side as 0 varies, for small 0. There is a diferent line
for each value of P.

interest. Close to the origin, corresponding to large 0,
there are loops of a complicated kind, but over the
relevant range of 0 a straight line is an excellent approxi-
mation. In fact, if we equate the ratios of left- and right-
hand sides of Eqs. (34} and (35), and work to order 8,
with 6= —,'yO, the dependence on 0 cancels. The result is
an equation for the eigenfrequency P,

Q T
/3~ —Qo = 1—

Qo~o P
(46)

CONCLUSION

We have seen that the question of whether cavity inter-
ferometers will experience radiation-pressure-induced
dynamical instabilities can be addressed in two rather

Taking account of the relation (45) between the ap-
proximate mean delay To and the storage time ~„one
can see that this result is identical with Eq. (21) for 0, .
Thus if the eigenfrequency P is identified with the insta-
bility frequency 0, , our two methods give the same
answer.

The characteristic equation can be numerically solved,
aided by the graphical method of Fig. 4, without the
small 0 approximation. Results obtained thus, for the
trend with mean delay T and cavity length l, in the case
y = 1, agree with the trends found using the other
method. The numerical solutions do not readily reveal as
much about the dependence of critical power on all
relevant parameters as do the results obtained above, and
we have not extended this approach beyond the simple
cavity.

In this Appendix we examine the characteristic Eq.
(39) with r = vo

' and Io treated as free parameters, using
the stability boundary method. ' ' (We shall see that
the product from rz is more natural here than the ratio
r/vo. ) This characteristic equation is somewhat unusual
in having terms of all orders in k. The favored method'
for equations with a few terms of low k is of no use here,
since it works by successively removing terms from the
highest k down. However, one can explicitly sum the
series on the right-hand side of Eq. (39), which allows us
to apply the stability boundary method. We write Eq.
(39) as

z +zoo/Qo =Do= gH(rz), — (A 1)

where

H(rz) =5 '(e"'+e "'cos 8 —2cosH cos5) (A2)

and g = A 6 cosO sin6. When we insert a pure imaginary
eigenvalue z =iP in Eq. (Al} the left-hand side depends
only on P and the right-hand side only on the angle vari-
able tt =Pr. The stability boundary method begins by
seeking intersections of two curves in the complex plane.
One is the "ratio curve" (P —Ao, iPQo/Qo), which is
traced out as /3 increases from zero to infinity, and the
other is the "delay curve" traced out by the real and
imaginary parts of gH(ig) as P increases from 0 to 2~.
Since the right-hand side of Eq. (40) is now a Fourier
series, H(ig) is periodic with period 2' The delay cu. rve
is a bounded simple closed curve in the complex plane.
The real value H(0)=1; the other real value of H is
H(iver), and it is readily seen that for small 8 and 5 this
value is negative, but very small. The ratio curve starts
at (

—Qo, 0), well outside the delay curve, and is unbound-
ed. The two curves either do not intersect, or touch, or
intersect twice, as shown in Fig. 2. For very small g the
curves do not intersect, and there is stability at all r. If g
exceeds a certain critical value, for which the two curves
touch, there are two intersections. The pair of critical
values f3, , r, with r, the smaller delay, corresponds to
destabilization. We show that the other, with the larger
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dz
dl

—c)S/Br
aS/az

(A3)

(The denominator here is zero for a multiple root, at
which the ratio curve is tangential to the delay curve. )

We introduce the notation P(z) here to emphasize the
generality of the method; it does not require any specific
form for either P (z) or H(it/t). If this quantity is negative
at the second solution, there is a change back to stability,
since the only pair of roots with positive real part now
crosses back to the negative half plane.

(iv) We mention this step for completeness although it
is not needed in the present application. Repetitions of
these intersections for 2n tr & P & 2(n + l )tr, can give re-
peated windows of stability, but only for a finite number
of repetitions. The successive critical r are

t' i„=r i + 2tl ttl/3i, rz„=r2+ 2ntr//3~,

respectively, and in a case such as that considered here
the /3, for instability exceeds the /3z for stability, so that
the two sequences of T values cease to alternate. The ar-

delay rz, gives restabilization. In order to determine the
stability at a point in r, P space using the stability bound-
ary method, one must proceed in the following way.

(i) Establish stability at a particular point, in fact, one
with r =0, where the problem is a conventional one, and
in this case is trivial. At this point all roots lie in the
left-hand half plane.

(ii) Seek solutions /3 and P of Eq. (Al) for z =i/3, hav-
ing real positive /3 and 0 & P & 2'; at these the real part of
a pair of conjugate roots changes sign. If there are no
such solutions there is stability at all r. The first such
solution (meaning that with smallest r) must give a
change from stability at low r (all roots have negative real
part) to instability at higher r (one pair of roots has posi-
tive real part). So at this solution the quantity d Rez/dr
is positive.

(iii) For any subsequent solution (larger r, still with
0 & P & 2m) test the sign of this gradient. Denoting

z~+zQo/Qo+flo+gH(rz) =P(z)+gH(rz)

by S(r,z ), this is found, for any simple root, from

gument here is due to Cooke and Grossman. ' In the
present context, however, we are only concerned with
small values of P.

In the previous applications of this method the gra-
dient specified in (iii) has been evaluated explicitly for the
particular ratio and delay curves used or else, in seeking
generality, an alternative method is used which does not
employ the ratio curve. ' ' . Here, because the delay
curve is a rather complicated function of P, we give a
general argument. The sign of the real part of (A3) is the
same as that of the real part of the reciprocal expression

—as
az

as
Br

gaH aa aH
dz Br Bz Br

dP gBH
dz Br

(A4)

dA dT dB dU
dz dP dz dtt

(A5)

At a double root, where d A /dz =g d U/dz and
dB/dz=g dT/dz, the quantity (A5) is zero. In fact, the
quantity (A5) is the scalar product of two vectors, one
pointing tangentially along the ratio curve in the sense of
increasing /3, and other pointing along the outward nor-
mal to the delay curve. At an intersection with the ratio
curve crossing the delay curve outwards the sign of
d Rez/dr is positive. At an intersection with the ratio
curve crossing the delay curve inwards the sign is nega-
tive. In the present problem the intersection with higher
/3 and lower ~)) (and so the smaller critical value of r) has
d Rez /dr positive, giving destabilization as expected.
The intersection with lower /3 and higher P (and so higher
critical r) has dRez/dr negative, and gives restabiliza-
tion.

Since we only require z=i/3, the second term in (A4) is
pure imaginary. Writing

P(i/3) = A (/3)+iB(/3),

H(i P) = U(P)+iT($),
the real part of the first term in (A4) is, to within a posi-
tive factor,
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