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Classical chaos in one-dimensional hydrogen in strong dc electric fields
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We analyze the effect of a dc electric field on classical chaos in one-dimensional hydrogen in a mi-

crowave field in the n nonmixing regime and also in the inter-n-mixing regime where significant dc
field-induced ionization occurs. We study the ac field-induced nonlinear classical resonances, the
threshold of chaos, and the number of states trapped in the resonances. In the strong-n-mixing and
ionizing regime (unclamping dc field), we find the chaotic dynamics depend sharply on the dc field
and the number of states trapped in the resonances, allowing the system to undergo a transition
from a regime of classical behavior to a regime of uniquely quantum behavior as the dc field is
changed. We show that ionization by classical chaos competes favorably with ionization by tunnel-

ing in the transition region, and that tunneling allows very sensitive spectroscopy of this region.

The flourishing of the study of nonintegrable classical
systems has stimulated interest in the equivalent quantum
systems, especially because quantum mechanics was
developed and tested from analogies with and observa-
tions of systems that classically are integrable. ' A great
deal of theoretical effort has been expended in an attempt
to understand the quantum dynamics of systems which
are classically chaotic. ' A wide variety of hypotheses
have been advanced. It has been widely stated that the
mathematical structure of quantum mechanics is incap-
able of producing chaos in certain physical situations in
which classical mechanics leads to chaos. Since chaos
now is accepted by some as the correct deterministic
foundation of the laws of classical statistical mechanics,
the viability of the standard laws of quantum mechanics
as a foundation of quantum-statistical mechanics has
been called into question. ' Computer simulations have
shown that, in some situations, quantum-correlation
functions decay more slowly than their classical counter-
parts. Other simulations have exhibited the diffusive en-
ergy growth expected for classical chaos, but it stopped
after a break time. These results have led to the idea of
a quantum "quenching" of chaos. However, studies of
other situations have shown that, under certain condi-
tions, there exists a classical limit in which the quantum
motion mimics the classically chaotic behavior for a finite
time. This classica1 limit can depend not only on the
principal quantum number n but also on whether the fre-
quency of the external driving force is greater than or less
than the frequency inherent in the system, and on the
number of quantum states "trapped" in a given nonlinear
resonance. Other analyses have predicted a profound al-
teration in the spectrum of the quantum system at the
point at which the equivalent classical system becomes
chaotic. '

The interaction of highly excited atomic hydrogen with
microwave radiation has been used to study some aspects
of this problem. ' However, it has been realized that
even the simplest of all atoms is not easily amenable to
theoretical calculations of this nature. More recent ex-
periments therefore exploited some properties of the

Stark components of the spectrum in external dc electric
fields in an attempt to reduce the six degrees of freedom
in phase space. ' Subsequent analysis of the experimental
results of this system assumed that the interaction of the
Stark components with fields is described in terms of
one-dimensional atoms. ' '" However, the validity of the
one-dimensionality under high-field strength necessary
for triggering classical chaos has since been ques-
tioned. ' Moreover, the question of the effect of the dc
field, if any, on the chaotic behavior of the hydrogen sys-
tem has been raised. ' Because the nature of the effects of
dc fields on the system varies considerably as the field
strength rises (i.e., from no appreciable mixing of quan-
tum numbers to inter-l-mixing to inter-n-mixing), the dc
field is expected to have large effects on the dimensionali-
ty and on the chaotic behavior.

Two studies of the effect of strong dc fields on the
chaotic behavior of hydrogen atoms were carried out re-
cently. ' ' One study focused on nonionizing states cor-
responding to clamping fields in surface electron exam-
ple, in the limit of very strong dc fields. ' In the second
study, ' expressions for the static field-dependent action-
angle variables were given in terms of complete elliptical
functions of the first and second kind. The ac-induced
nonlinear resonances and their widths and the threshold
for classical chaos were also given in terms of these in-
tegrals. Series expansion of these integrals were used to
arrive at analytical expressions to second order in the
static field strength. It was found that the static field
nontrivially modifies the response to the ac field, though
the size of the effect was inadequate to explain discrepan-
cies with recent experiment.

Here we examine some aspects of the problem by
studying the chaotic dynamics of one-dimensional hydro-
gen in fields from zero to well within the inter-n-mixing
regime and in situations where quantum-mechanical ion-
ization by tunneling is appreciable (corresponding to an
unclamping field in the surface electron model). We ana-
lyze the problem using a classical one-dimensional Ham-
iltonian. Although the one-dimensional model has given
thresholds essentially identical to those of a two-
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dimensional model, it is not clear whether the model will
prove to be appropriate in the presence of strong dc fields
where n is fully mixed. In any case we will assume the
appropriateness of the model with regard to the studies
we are presenting here.

We examine in detail the effect of the dc field on the
width and spacing of the classical nonlinear resonances
for both clamping and unclamping fields, whose strength
covers a wide range of interaction regimes (I-mixing and
n-mixing regimes). Our results indicate that in the
weaker-field limit, where n mixing is not taking place, the
width and the spacings, and hence the threshold of chaos,
are insensitive to the field strength. However, in the
strong-field regime these are quite sensitive to the field
strength. In the clamping case, the resonances widen but
their spacings increase more rapidly with the field
strength, thus resulting in a higher threshold of chaos.
On the other hand, in the unclamping case, the reso-
nances get narrower but their spacings drop much faster
than the chaos threshold drops, a feature with advanta-
geous experimental implications.

Another interesting feature: Our results indicate that
the width of the resonances in the unclamping case can
be narrowed enough using appropriate field strength to
allow trapping a very few quantum levels at the threshold
of chaos. On the other hand, in the clamping case, with
typical microwave frequencies, one cannot help but trap
a large number of quantum levels at the threshold of
chaos, which indicates the usefulness of the unclamping
case in probing and contrasting features of both the clas-
sical and the quantum regimes.

The classical nonlinear oscillator model is

E =a(I)+F,x (O, I)cos(At), (3)

where I and 0 are the action and angle variables. The
constant a is

1a= —,'p„——+Fax . (4)

The variables 8 and I are chosen such that x (O, I) is
periodic in 8 with a period of 2m. Thus we expand x (O, I)
in the Fourier series'

and function inversions necessary. Berman, Zaslavsky,
and Kolovsky' took the case of a very strong clamping
dc field and dropped the Coulomb term, allowing an ex-
act analytical calculation of the overlap resonance cri-
terion in that limit. Stevens and Sundaram' gave expres-
sions for the static field-dependent action-angle variables
in terms of complete elliptical functions of the first and
second kind and used series expansions of these integrals
to arrive at an analytical expression for the resonance cri-
terion to second order in the dc field strength.

In our studies, we perform the necessary integrations
and function inversions numerically. Although our cal-
culations are done for specific values of the parameters of
the problems, scaling laws ensure the generality of the ap-
plication of our result. Note that we are not performing
a numerical simulation but rather are using numerical
methods to calculate the value of the nonlinear resonance
overlap criterion.

We now describe the formalism. We use a canonical
transformation to transform the Hamiltonian given in
Eq. (2) to

H(r, p, t)=p /2 Z/r+Fax+F—, x cos(At), F,x= V (I)e' with V = V

H(r, p, t) =p„/2 Z/x +Fax +F,x—cos(At) (2)

which reduces the system to two dimensions in phase
space. This system, in the absence of the external dc field
(F0=0) was extensively analyzed by numerical simula-
tion and the nonlinear resonance overlap method. It de-
scribes the system of an electron located over a liquid-
helium surface and interacting with an oscillatory field
polarized perpendicular to the surface. Z =1 for the hy-
drogen atoms; it is 7. 1 X 10 for the surface-state elec-
tron.

The basic procedure of our numerical calculation is
similar to the analytical procedure of Jensen, utilizing
action-angle variables and the nonlinear resonances over-
lap criterion' ' to determine chaos thresholds. Similar
procedures were also used in the two recent studies men-
tioned above. The difference between all of these calcula-
tions lies in the methods of performing the integrations

where FD is the strength of the dc field, F, is the arnpli-
tude of the microwave field, and Z is the nuclear charge.
We can use cylindrical symmetry about the direction of
the fields to reduce the dimensionality of the system from
six to four dimensions in phase space.

In the case of strong F0 we will assume one can ap-
proximate (see the discussion above) the Hamiltonian of
the nonlinear oscillator to

which when substituted in Eq. (3) and rearranging the
terms while using the fact that V =V because x is
symmetrical about 0=0 gives

E =a(I)+ g V (I)cos(mO At) . — (6)

The problem is first solved for weak time-dependent
fields. The effect of higher intensities will be determined
as a distortion to the weak-field solution. If V is weak,
the microwave field can only affect the system
significantly when the phase m 0—At =0. This condition
is called the mth resonance. Thus, when the system is ex-
cited to near the mth resonance, it can only interact
strongly with this resonance in the weak-field limit, and
consequently the expansion in Eq. (6) can be separated as
follows:

K =a(I)+ V (I)cos(mO At)+ f (t), —(7)

where

f (t) = g V„(I)cos(nO —At)
n(Wm)

contributes very little to the interaction in the weak-field
limit, and hence can be neglected. The system of Eq. (7)
with f (t) neglected can now be solved by making another
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transformation to get rid of the explicit time dependence.
The new variables b and P are defined as follows:

I I—=md, and P=m0 Q—,t . (9)

The new corresponding generating function is

F(b„,8, t)=(I +md, )(0 Q—t/m)

with the transformation equations

(10)

The transformed Hamiltonian becomes

E'=a(I) QI/m—+ V (I)cosg . (12)

V (I)=V (I ), (13)

d2a(I)=a(I )+ md+ —,
' m b,

dI
(14)

dc'
dI

dO

dt

we get

&'=CIA + V cosP+Cz (16)

where C, =
—,'m (dc'/dI)~t and C, =a(I )

—(~/m)I
are constants. Hamiltonian (16) is a pendulum Hamil-
tonian, where b, and p can be associated with the angular
momentum and the pendulum angle, respectively.

From K' we can determine the phase and the angular
momentum of the system near a resonance. A separatrix
divides two kinds of motions where on one side the pen-
dulum always swings in the same direction, while on the
other side it swings back and forth. Moreover, each
separatrix is symmetric and its width is given in terms of
the maximum b, . Since 6 maximizes for /=0, one can
show that near the mth resonance,

—1 1/2

It is to be noted that the new variable m 6 is just the
small change in the action of the mth resonance caused
by the weak microwave field. The new variable P mea-
sures the phase difference between the phase of the sys-
tem m 0 and that of the external field Qt. In order to see
the nature of K' further, we can examine it in the limit of
very small V, that is in the limit of small b, and P. Tak-
ing

1 BR'
2 Bx

1——+Fx =a,
X

time-dependent external force can push them to one side
of the separatrix or the other, changing their motion
completely. For trajectories very close to the separatrix,
the side of the separatrix they end up on in the next cycle
depends not at all on which side of the separatrix they
start on, but rather which way the force happens to be
pushing them along the way. Since different trajectories
take different amounts of time to complete a cycle, espe-
cially near the separatrix, this pushing can be completely
different for two very close trajectories. Very close to the
separatrix, the trajectories get all twisted up. Two trajec-
tories that are nearly the same to start with may end up
going in opposite directions, and two that are different to
start with may end up going in the same direction.

If one simulates this motion on a computer, it looks ir-
regular and disordered. Researchers have searched
through their computer results for some kind of correla-
tion and order in this motion but found none. All corre-
lations that have been examined die out within a fairly
short time. It appears that a random motion has arisen
from a deterministic system. This is called "chaos."

As the external field is increased, the system undergoes
a change from a situation in which most orbits are regu-
lar to one in which most are chaotic. A reliable estimate
to this threshold of chaos is the external field at which
two adjacent resonances overlap. ' This estimate has
proven correct in varying situations. ' The transition to
global chaos happens within a factor of about 2 in ac field
of the resonance overlap estimate in the problem with no
dc field.

The pendulum approximation is not as good when the
transition to global chaos has occurred for all resonances
but one is trying to see if the m =1 separatrix extends
down low enough to encompass states of low I (other-
wise, those states will still be stable, even if global chaos
occurs). In this case, we compute the actual separatrix of
the Hamiltonian K', following Jensen.

To estimate the threshold of chaos, we need to calcu-
late V (I ) and des/dI and I . We use the following
procedure. First, we need to be able to compute I(a).
Given W the generating function for the transformation
to action angle coordinates, ' we have Ho(x, p )

=Ho(x, BW/Bx) =a, the initial energy, or one can calcu-
late a and I by taking [from Eq. (4)]

2

(I I ),„=2 V—
dI (17)

1/2

(18)

We can now discuss the case in which the amplitude of
the microwave field FI is not weak and the term f (t) in
Eq. (7) becomes significant. First, the width of the reso-
nances given by Eq. (17) will increase since V is propor-
tional to F, . Second, the f (t) term acts as an additional
time-dependent perturbation embodying the interaction
between the otherwise noninteracting resonances.

What happens to this system when we include the
time-dependent perturbation f ( t)? Trajectories far away
from the separatrix are affected very little. Trajectories
near the separatrix are strongly affected, because the

aw 1=+ 2 (z+ ——Fx

Then I(a) is simply

I(a)= fP„dx = f dx
1 aw

2TT 27T BX

which, upon substitution from Eq. (18), gives
1/2

dx
max 1I (a) =— 2 a+ —Fx—

77 0 X

(19)

(20)



3730 D. C. HUMM AND MUNIR H. NAYFEH

This integration is performed numerically, using
Simpson's rule with Richardson extrapolation, after
singularities in the integrand at x =0 and x,„have been
removed by a transformation of variables. Between 41
and 121 integration points were used and the results were
checked for independence of the number of integration
points above a given number.

At resonance mO=A, t so daldI =co=A/m. We com-

pute dew/dI using

da (a+5)—(a —5)
dI I (a+5)—I(a —5)

with 5 —10 t'ai. We guess a until da/dI comes within
one part in 10 of 0/m, giving a and I . We can then
compute

d cc)

dI
CX

dI r

[(a +25) —a ]/[I(a +26)—I(a )]—[a —(a —25)]/[I(a ) I(a ——2$))
I (a + |i) I(a ——5)

Finally, we wish to obtain V (I). First, we can obtain
0 as a function of x from

W(x, a+6) —W(x, a —$)
I(a+ 5)—I(a —5)

where W(x, a+5) is obtained by numerical integration of
Eq. (18). Then

dO 0(x +5)—0(x —5)
dx (x +5)—(x —6)

Now we can use these to compute the Fourier component
V (I ) by integrating V(x (H, I) ) =Fx (8,I) times
cosm 0. This is transformed to

d8(x, I )
V (I )=f Fx cos[mB(x, I )] dx,

which we integrate numerically, giving V (I ). Then we
have I, V (I ), and (dao/dI)~it, and we can substitute

m

into Eq. (17) to get the positions and widths of the reso-
nances and see at what field strength they overlap, the
criterion we use for the threshold of chaos. All calcula-
tions were performed using a desktop microcomputer
with a numeric coprocessor.

We now present the results of these calculations. First
we studied the effect of the dc field on the spacing and
width of the classical nonlinear resonances. Figure 1

gives these for the second and third nonlinear resonances
(as an example) for a number of dc fields strengths at con-
stant ac field strength below that necessary to induce
classical chaos. The results show that the spacing in-
creases as the clamping field strength increases, and de-
creases as the unclamping field strength increases, with
the size of the effect being larger the higher the order of
the resonance.

As one increases the ac field strength, the system un-
dergoes a transition to chaos near a certain threshold,
which we estimate using the resonance overlap technique.
Figure 2 gives the ac field (for a 30-GHz ac field) thresh-
old of chaos so computed as a function of the initial ac-
tion of the electron (the action in units of F1 is approxi-
mately equal to the quantum number n) for a number of
different values of the dc field. Figure 3 is a log-log plot,
but 36 is subtracted from the action to bring out some
features of the curves for unclamping fields which would
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nances as a function of applied dc field of an ac field of ampli-
tude 0.2 V/cm and frequency 30.5 CxHz. H, spacing; 0, width
of m =1; 8, , width of m =2.

otherwise be difricult to see. This subtraction is purely
for convenience of exposition.

Figure 2 includes a wide range of dc fields ranging
from —240 V/cm to 1 kV/cm and in the portion of the
spectrum from n =39 to 1036. The ratio of the external
field frequency to the natural frequency of the atom,
which does not change when the problem is scaled to oth-
er frequencies, extends from 0.27 to 25 in the Ed, =0
case. This range is narrower for both clamping and un-
clamping fields. The lower limit remains similar, but the
upper limit drops. In the extreme cases of Ed, = 1000 and
—240 V/cm, the upper limit of this ratio drops to less
than 2. For other threshold curves, the upper limit of the
frequency ratio can be determined by counting the num-

ber of resonances. The order of a resonance I is equal to
the frequency ratio 0/cu at its center.

The wide range of this ratio shows the wide range of
application of the curves in Fig. 2. The region graphed is
the interesting one, where the internal and external fre-
quencies are of nearly the same order of magnitude and
so interact. Small external frequencies are essentially dc,
and large ones can be described by a single-photon excita-
tion to the continuum. Scaling laws make Fig. 2 useful
for other frequencies, further extending its range of appli-
cability.

Before we set out to discuss the present results we dis-
cuss the accuracy of our numerical procedure by compar-
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ing the zero static field results with the results of Jensen.
He performed both an analytical resonance overlap cal-
culation and a numerical simulation of the interaction in
the absence of the static field. Our results agree very well
with his analytical results as they utilize the same
method. His analytical and our numerical results agree
very well with his numerica1 simulation except in the re-
gion with initial electron quantum number much smaller
than those in the m = 1 nonlinear resonance where there
is a discrepancy of approximately a factor of 2.

A number of interesting features present themselves in
Fig. 2. Distinct plateaus are evident in all of the curves.
This is due to the nature of the overlap of the nonlinear
resonances, the criterion we use for the threshold of
chaos. Each nonlinear resonance covers a certain extent
in action, which expands when the ac field is increased
and contracts when the ac field is decreased. When adja-
cent resonances overlap, the threshold of chaos is passed
for that region of action. Each plateau in the threshold
of chaos curve is simply the extent of a nonlinear reso-
nance at the threshold of chaos, where it first overlaps
with its neighbor.

As an example, let us examine the curve for a zero dc
electric field. The first resonance is centered at I =60
(I —36=24). The center of a resonance does not change
with ac field, only the width. Near the center of the reso-

nance, the chaos threshold is simply the threshold for the
overlap of the first and second resonances. If the electron
starts at an action enough smaller than the center of the
first resonance, however, then the initial action of the
electron will be outside the first resonance when the first
and second resonances overlap. Chaos will occur within
the first and second resonances, but the electron, being
outside of that region, will not feel it. The ac field must
increase further to make that first resonance reach out to
the initial position of the electron. Thus, the chaos
threshold becomes larger, and continues to increase as
the initial action gets smaller and smaller, as the first res-
onance has to extend further and further to reach the ini-
tial action of the electron. Thus, the chaos threshold
rises as the initial action is decreased for the region below
the first resonance. As the initial action of the electron is
increased above the center of the first resonance, the
threshold remains determined by the overlap of the first
and second resonances for a time, then the electron rises
above the first resonance. The second and third reso-
nances are already overlapping, and for a short time the
chaos threshold is determined by how far the second res-
onance has to reach to find the initial action of the elec-
tron. The chaos threshold continues to decrease as the
initial action increases, until the initial action is close
enough to the center of the second resonance that the
threshold is determined only by the threshold of overlap
of the second and third levels. The second plateau occurs
here, and more and more plateaus occur as the initial ac-
tion is increased. Note that the width of each plateau in
action gives the width of that particular nonlinear reso-
nance (first plateau means first resonance, etc. ) at its
threshold of chaos. When measured in units of A, it gives
the number of quantum states contained within that reso-
nance at the threshold of chaos, which we will examine in
more detail later.

Another feature worth discussing is the effect of the dc
field on the number of nonlinear resonances and the ion-
ization threshold of the electron. We note that there are
two drastically different regimes in Fig. 2, that of clamp-
ing field and unclamping dc field, and the boundary be-
tween them at zero dc field. In the unclamping region at
the lower left, thresholds for the system with Ed, = —240,
—200, —160, —120, —80, —40, and —20 V/cm are
plotted. These thresholds drop with increasing initial ac-
tion. This occurs because the resonances get much closer
to each other as the action increases, making it much
easier for them to overlap, and lowering the threshold.
Although the resonances also get smaller as the action in-
creases, the effect of getting closer predominates. Be-
cause the thresholds drop as the action increases, all the
way up to ionization, the chaos threshold is also an ion-
ization threshold. Once the ac field has crossed the
threshold of chaos for the initial action, it has crossed the
threshold of chaos for all greater actions, and the system
moves irregularly in the action, eventually reaching a
large enough action to ionize. The above considerations
also apply to the case of zero dc field. However, an im-
portant qualitative difference between the unclamping
and zero-field cases can be observed in Fig. 2. While the
zero-field curve drops off in a linear fashion on the log-log
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plot, while going through many higher and higher m res-
onances, the unclamping curves curve sharply downward
as the action increases, approaching vertical lines, with
the resonances piling up. This occurs because the action
can go to infinity for the zero-field case, while in the un-
clamping case, there is a maximum action. Any value of
the action above this maximum is not defined. Above
this maximum action, the system ionizes classically due
to the dc field even in the absence of an ac field (the ac
field ionization threshold goes to zero). One would ex-
pect the chaos threshold to go to zero at this point, ap-
proaching a vertical line on the log-log plot, and it does.
For example, the Ed, = —20 V/cm curve goes to zero at
I =76.5, very close to where it meets the x axis in Fig. 2.

In contrast, for clamping fields the threshold curves,
plotted at the upper right in Fig. 3 for Ed, =10, 20, 40,
100, 300, and 1000 V/cm, reach a minimum and then
start increasing with increasing action. This minimum
marks the boundary between two regimes, a regime in
which the Coulomb field dominates over the external dc
field, and a regime in which the external dc field dom-
inates over the Coulomb field. When the Coulomb field
dominates, the situation is similar to the case of zero dc
field. When the dc field dominates, the nonlinear reso-
nances get further apart as the action rises, and so the
threshold rises. Although the resonances also get larger,
the effect of getting farther apart predominates.

The width of the lowest plateau in the clamping field
case is a special case. This lowest plateau marks the tran-
sition region between the Coulomb field domination and
external field domination. It actually spans the width of
two nonlinear resonances in action, these two being the
first nonlinear resonances that overlap. Because these
two overlap with each other before they overlap with ei-
ther of their other neighbors, the chaos threshold is the
same within both of them. In every other case, when a
resonance first overlaps with a neighbor, that neighbor
has already overlapped with its other neighbor. The dc
field also influences the chaos threshold and the width of
the thresholds in action. We observe significant varia-
tions from curve to curve within each regime. As the un-
clamping field is increased, the thresholds decrease more
sharply, and the plateaus get narrower and start at lower
action (red shift). The narrowing of the plateaus gets
very extreme at strong unclamping fields, where the elec-
tron is quite close to the classical dc ionization threshold.
In these cases, the number of quantum states contained in
a single nonlinear resonance gets very small (((1). The
effect of quantum-mechanical tunneling also becomes im-
portant. We will discuss both of these effects in detail
later. This is due to the nonlinear resonances getting
closer and closer to each other as the unclamping field is
increased. As the clamping field gets stronger, it dom-
inates the Coulomb field at lower action, causing the
chaos threshold to stop decreasing and start increasing
sooner, until the clamping field is reached at which the
first plateau is the lowest. The widths and heights of the
plateaus also increase as the clamping field is increased
and the resonances get further apart.

It is interesting to inspect the nature of the results with
regard to the degree of mixing of the n quantum number

that is caused by the external dc field. The threshold
curves diverge the most at the lower right of Fig. 2,
showing a drastic dependence on the dc field curve there,
in contrast to the upper left, where the curves are similar.
This strong effect of the dc field on classical chaos occurs
in the region of strong n mixing, where the Stark shift
due to the external dc field is much larger than the energy
spacing between levels of adjacent n. There are some in-
teresting consequences to this strong dependence on the
dc field, which we will discuss in more depth in relation
to the number of quantum states contained by a given
nonlinear resonance. Previous experiments have all been
performed in the region of weak n mixing, where the
Stark shift is on the order of or smaller than the spacing
between levels of adjacent n. In Fig. 3 this region covers
a diagonal path along the threshold curve for E„,=0, a
very narrow path for larger actions which widens out
somewhat for smaller actions. For example, the Stark
shift is equal to the energy difference between adjacent
levels for n =40 (action=40 A') and Ed, =+34 V/cm,
n =60 and +4.5 V/cm and n =90 and +0.59 V/cm.
The strong n mixing case would occur for each specific
case when Ed, becomes much larger than each of these
values, respectively.

Finally, we note that Fig. 2 describes the specific case
in which the external frequency is 30.5 GH. We have
performed the calculations for other frequencies and the
results are similar. In fact, the curves in Fig. 2 are
universal, because of the scaling properties of the classi-
cal differential equation from which they are derived. If
0=30.5 GHz is changed to O', Fig. 3 scales are as fol-
lows: I'=(0'/0) ' I, F,', =(0'/0) F„, Fd, =(0'/
0) Fd, . For a description of surface state electrons or
hydrogen-like ions, Fig. 3 can also be scaled with Z:
0'=0, I'=(Z'/Z) I, F'=(Z'/Z)' F.

It is clear from this figure that the effect of electric field
is nontrivial. ' For example in the case of interaction of
n =66 with 30 GHz, we find that a presence of 10 V/cm
lowers the threshold of chaos by 30% in agreement with
other recent results. ' On the other hand, the presence of
20 V/cm would lower the threshold more dramatically.
Such nontrivial response is directly associated with field
emission (ionization) effects.

We now discuss the question of the number of states
trapped in the nonlinear resonances and the dependence
of this number on the magnitude and the sign of the
external dc field. There are good theoretical reasons to
believe that the number of quantum states trapped in the
first nonlinear resonance determines whether the system
is in the classical or purely quantum limit, at least in the
low-frequency region (below the first resonance). The
system is expected to behave classically when the number
of states trapped is )&1, and nonclassically when the
number of states trapped is «1. With this in mind, we
plot in Fig. 3 the number of states trapped in the first res-
onance for a clamping dc field, and in Fig. 4 the same for
an unclamping field. These quantities can be read off the
Fig. 2 graph; they are simply the widths of the first non-
linear resonances for the different dc fields. The action
measured in units of A is equal to the principal quantum
number n in the Wilson-Sommerfeld semiclassical theory
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FIG. 4. Number of states trapped in the m = 1 resonance as a
function of negative dc electric field.

of quantum mechanics; it is approximately equal for large
n in the Wentzel-Kramers-Brillouin (WKB) approxima-
tion. ' Thus the width of a resonance is a good approxi-
mation for the number of states trapped. It is clear that
the unclamping field allows one to go from the classica1
limit to the uniquely quantum limit. The graphs show
that this limit can be reached with easily available mi-
crowave frequencies and dc fields. Another advantage of
the unclamping dc field system is that, by reducing the in-
herent frequency of the one-dimensional (1D) system, it
may allow one to more easily reach the regime in which
the externally imposed microwave frequency is greater
than the inherent system frequency. Uniquely quantum
effects which do not occur in the low-frequency regime
have been predicted for this high-frequency regime by a
quantum-mechanical numerical simulation of the sys-
tem, including the quenching of classical chaos by the
quantum system. It appears that the dc field allows one
to quickly and easily examine the system for various
values of the number of trapped states, down to the quan-
tum regime, and helps one to reach a new regime in the
frequency as well. Note that if the hypothesis of the
quantum quenching of chaos is true, then the application
of the unclamping field, a field trying to rip the electron
away from the atom or surface, might actually be a stabil-
izing factor because it brings the system into the quan-
tum regime, a surprising result.

The unclamping field has many advantages as an ex-
perimental method to study quantum chaos. There is,
however, an important experimental limitation. We are
detecting the presence of chaos by measuring either the
onset of ionization or enhanced linewidths in the spec-
trum. If the dc field is too high, then the atoms will ion-
ize by quantum-mechanical tunneling before they ionize
by classical chaos, obscuring both the enhanced line
widths and the chaos-produced ions. We have done some
estimations to see if there are dc fields which reach the
quantum regime without producing enough tunneling to
obscure the observation of chaos effects.

The width of a state due to tunneling (or, equivalently,
the inverse of the tunneling lifetime) is determined by the
tunneling integral ~, given by

br= I &2( V E)dx . —
a

Parameters a and b are the inner and outer boundaries of
the classically forbidden region. The tunneling integral ~
is simply the imaginary part of the wave function's accu-
mulated phase in the classically forbidden approximation
region. ' In the WKB approximation (which will be
sufficiently accurate for our purposes provided n )) 1 and
~&1), the width of a state due to tunneling I depends
only on ~ and the energy separation between adjacent
states (inverse of the density of states). It is closely ap-
proximated by (full width at half-maximum)

dn 1

dE 2

for ~) 1.' ' This expresses I as a fraction of the state
spacing or, equivalently, the characteristic period of the
system divided by the tunneling lifetime. When &=1.5,
the system on average goes through 40 cycles before ion-
izing by tunneling, and that number increases very rapid-
ly as ~ increases. Since one would generally expect, in
usual experimental situations involving this type of sys-
tem, a system ionizing by chaos to do it within about 40
cycles, then when ~= 1.5 one would expect the chaos
lifetime to be similar to or shorter than the tunneling life-
time, and so the observed effects of chaos (including ion-
ization and widening of line widths) would be at least as
strong as those of tunneling if the tunneling signal is ob-
servable. The ~) 1.5 limitation on observing chaos is a
conservative one. The criterion makes the most conser-
vative estimate of the effect of classical chaos on the
quantum spectrum; chaos broadens the lines, which it
must do if it creates ionization within a certain period of
time. Of course, chaos is likely also to have other effects
on the spectrum, ' ' in which case chaos would be even
easier to detect.

We calculated ~ as a function of the unclamping dc
field for the three frequencies 7, 30.5, and 70 6Hz, with
initial electron energy at the bottom of the m =1 and 2
resonances at the threshold of global chaos. It is plotted
in Fig. 5. We used a parabolic approximation to the po-
tential at the top of the barrier being tunneled through.
Comparison with numerical integration showed this par-
abolic approximation, best for small ~, to give ~ within
5% even for the largest ~, and within 1% for the region
of interest. The rn = 1 criterion gives a direct comparison
between ionization by chaos and ionization by tunneling
directly from the initial state. The I =2 criterion is
more conservative, because if the electron area tunnels
from m =2, it must have first experienced chaos to reach
m =2. Thus, a11 ionization would have some chaos com-
ponent, if ~) 1.5 from the m =2 resonance with an ac
field of strength equal to the threshold of chaos. The tun-
neling integral ~, like 0, Fo, and F„scales as a function
of frequency, as it is entirely classical except for a factor
of h; the scaling law is given in the caption of Fig. 5.

Of course, the question in which we are interested is
not how high a dc field can be reached without tunneling
obscuring the results, but rather how a few trapped states
can be reached without tunneling becoming a problem.
With that in mind, we combine Figs. 4 and 5 and plot in
Fig. 6 the tunneling integral ~ as a function of the num-
ber of states trapped in the I = 1 resonance at the
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FIG. 5. Tunneling integral ~ as a function of negative dc
electric field, for states at the bottom of the m =1 resonance
(open symbols) and the bottom of the m =2 resonance (filled
symbols) for three ac field frequencies at the threshold of classi-
cal chaos. Scaling: ~' =(0'/0) ' '~ at constant Z, and
~'=(Z'/Z) '~ at constant A. Below &=1.5, ionization by
chaos would be obscured by ionization by tunneling.

threshold of chaos. Comparing with tunneling from the
initial state, one clearly reaches the quantum regime at
~=1.5, with about 0.45 states trapped at 30.5 GHz. The
m =2 criterion puts one in the very beginning of the
quantum regime at r=1.5, with about 2 states trapped at
30.5 GHz. Note that the number of states trapped at
~= 1.5 is fairly insensitive to frequency.

If one is trying to obtain an ionization spectrum, in-
stead of just looking at ionization by chaos, then there is
also a maximum ~ criterion. For a typical experimental
setup, the atom must ionize by tunneling within a few mi-
croseconds in order to be detected. This criterion gives a
maximum r of about 4.5 for detection at 7 GHz (the r
criterion, calculated from above, is slightly larger for the
other frequencies plotted). This maximum r criterion, as
well as the minimum, is plotted in Fig. 6. Although the
band of observable spectra is fairly narrow in ~, it spans a
wide range in the number of states trapped. If one looks
at the spectrum low in the first resonance, one can go

0.01 ~ ~ ~ ~ ~ I

0.05 0.1 1.0

NL)rr)ber of States Trapped

I

1 0.0

down to about 0.5 states trapped, and if one looks high in
the first resonance, one can see the spectrum for as many
as five states trapped. Since agreement with classical
chaos predictions has been observed for as few as 20
states trapped, " one would expect five states to show at
least some classical chaos character. Thus, the spectrum
measurement would span the region from the clearly
quantum mechanical to the classical.

In conclusion, we find the unclamping field to be a
promising technique for bringing the system, be it selec-
tively excited hydrogen atom or surface state electron,
from the classical regime to the uniquely quantum re-
gime. Ionization by classical chaos can compete favor-
ably with ionization by tunneling in usual experimental
situations, and tunneling allows very sensitive measure-
ments of the quantum spectrum.

FIG. 6. Tunneling integral ~ as a function of the number of
states trapped in the m =1 nonlinear resonance, from the bot-
tom of the rn = 1 (open symbols) and m =2 (closed symbols) res-
onances at the threshold of classical chaos. The triangles are 7
GHz, the squares 30.5 GHz, and the circles 70 GHz. The dot-
ted lines delineate the area within which resonant ionization
spectroscopy is possible without chaos being obscured by tun-
neling. Notice that it stretches from fewer than one state
trapped to more than one state trapped.
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