PHYSICAL REVIEW A

VOLUME 40, NUMBER 7

OCTOBER 1, 1989

Potential scattering transitions in a strong chaotic non-Markovian radiation field

F. Morales
Dipartimento di Energetica ed Applicazioni di Fisica, viale delle Scienze, Parco d’Orleans,
90128 Palermo, Italy

R. Daniele and F. Trombetta
Istituto di Fisica dell’Universita, via Archirafi 36, 90123 Palermo, Italy

G. Ferrante
Istituto di Fisica Teorica dell’Universita, P.O. Box 50, 98166 Sant’Agata di Messina, Messina, Italy
(Received 16 May 1988)

The theory of the nonrelativistic potential scattering in the presence of a strong laser field is ex-
tended to consider a fluctuating radiation field, having a chaotic non-Markovian statistics. The sta-
tistical properties are assumed on the electric field and, carrying on a suitable approximation on the
characteristic time scales entering the process, the stochastic properties of the vector potential are
derived. As a consequence of the assumed non-Markovian statistics, the field spectrum is non-
Lorentzian, and its role on the temporal coherence of the field is discussed. Scattering linewidths
and line shapes, as well as coherence factors as functions of intensity, are calculated and discussed
in the context of recent experimental results obtained with multimode fields.

I. INTRODUCTION

Free-free transitions (also known as potential scatter-
ing) in the presence of a strong radiation field are among
the new processes widely studied in laser atomic physics,’
besides maintaining their fundamental importance within
nonrelativistic quantum electrodynamics. The presence
of the external radiation field when an electron is scat-
tered by a potential enlarges considerably the interest in
the process, in that several multiphoton channels are
open while the collision takes place. A fortunate cir-
cumstance is that the theoretical description of the pro-
cess may be accomplished very accurately, because under
the conditions of experimental interest the field may be
accounted for almost exactly, beyond any perturbative
scheme. These features have made the multiphoton free-
free transitions of particular interest not only from the
standpoint of atomic physics but also from that of quan-
tum optics and electronics, both experimentally’ and
theoretically.3

It is by now well known that very strong fields are nev-
er purely coherent and the fluctuations of the electromag-
netic field, space, and/or time inhomogeneities may affect
significantly the atomic processes, while the information
attainable by means of perturbative treatments of the
field are likely to be approximate and restricted to partic-
ular ranges of the parameters.* ® An understanding of
these circumstances has recently provided a renewed in-
terest in the processes in which the radiation field is ac-
counted for accurately, in order to study multiphoton
processes induced by strong fluctuating radiation fields
and to isolate where possible the specific role played by
the radiation field properties. Among these processes,
the multiphoton free-free transitions have a particular

place, because several models for the field fluctuations
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may be studied with great accuracy, without approxima-
tions as far as the statistical properties of the stochastic
field parameters are concerned. Thus two aspects have
been explored along the years: on the one hand, the
modification of the scattering process depending on the
properties of the field;’ on the other hand, the role played
by the field models in characterizing the multiphoton pro-
cesses.} 712

The consideration of the field fluctuation properties has
been carried on, introducing different models, mainly that
of the chaotic field®® (in which both amplitude and phase
of the field fluctuate), of the Gaussian-amplitude field* (in
which only the amplitude is fluctuating, with a Gaussian
distribution) and of the phase diffusion field'® (only the
phase fluctuates); the latter has also been investigated, re-
moving the assumption of the Markovian character of
the phase fluctuations,!! and it has been also shown that
the Markov property breaks down for strong fields, a
feature confirmed later in other contexts as well.!3

In this paper, we consider the effects of a chaotic non-
Markovian field on the multiphoton free-free transitions,
namely, we suppose that the field assisting the process
has both the amplitude and phase fluctuating, and the
stochastic process describing the amplitude is not a Mar-
kov process. Below we shall describe in detail the physi-
cal situations in which this feature actually applies. The
emphasis is on the role played by the Markov property;
as this property affects the spectrum of the field making
its wings fall more rapidly, we shall first study the scatter-
ing linewidths and line shapes as functions of the field
statistics; we discuss then the role of the Markov proper-
ty in modifying the probabilities of the various multipho-
ton channels. To this aim, we present an approach
which, assuming the stochastic properties on the electric
field, guarantees the stationarity also of the process which
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directly enters the average of interest, i.e., the vector po-
tential of the field. The scattering process is treated
within the first Born approximation (FBA) in the scatter-
ing static potential, while the field and its fluctuations are
treated exactly. A representation set of numerical calcu-
lations is presented, clearly showing the range of parame-
ters where the Markov property has to be removed in the
atomic process considered in this paper.

The paper is organized as follows. In Sec. II we briefly
review the field-assisted potential scattering theory, show-
ing how fluctuating fields, in particular, Gaussian and
non-Markovian, are included in the treatment; in Sec. III
we discuss the field statistical models, with particular em-
phasis on the Gaussian, Markovian, and stationary prop-
erties of the fluctuating quantities and on the general
(statistics-independent) non-Lorentzian features arising
by the non-Markovian character; further, we derive the
transition probabilities within the assumed non-
Markovian model for the field. In Sec. IV we present
some numerical results, displaying the role of the Markov
property in affecting the coherence properties of the field
and in modifying the scattering process. Section V con-
tains the final remarks.

II. FREE-FREE TRANSITIONS IN STRONG FIELDS

Let us consider an electron of mass m and charge —e
moving in the presence of a static, local and central po-
tential ¥ (r) and of a radiation field, taken in dipole ap-
proximation and described by its vector potential A(z).
Its Schrddinger equation is

2
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Assuming the potential V as the perturbation causing the
transition, as in conventional scattering theory, the un-
perturbed initial and final states are, then, solutions of
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given, for any A(t), by the nonrelativistic Volkov waves
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By (2.8) and (2.9), for every v (i.e., at any order in the
scattering potential) the field enters exactly, through the
initial, intermediate, and final Volkov waves. If the field
is fluctuating, A (¢) is a stochastic process and what is
physically meaningful is the average over all the possible
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labeled by 7k, the particle momentum averaged over the
field period or statistics, as required.

The exact S matrix for the transition from the initial
momentum 7k; to the final momentum 7k, is

2
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where Xk, is a Volkov wave and ;" is the exact solution

2.4)

of (2.1) for the incident channel, with standard causal
boundary conditions. Parentheses for the scalar product
indicate both space and time integrations. As

=X G VX (2.5)
G being the retarded Green function in the presence of
both Vand A(?), (2.4) yields
I i
Sﬁ:*z()(k/’ VXkl)_Z (2.6)
The first term in (2.6) gives the Born approximation to
the exact S matrix for the field-assisted potential scatter-
ing; the second term accounts for higher-order terms in
the scattering potential. In fact, expanding Gt in powers
of V as

Gt=G{ +GJVvGy + -,

<ka, VG ™+ VXr,) -

(2.7)

G being the retarded Green function in the absence of
V, one obtains the expansion

Sp=38i,

v=1

(2.8)

where the vth term contains v times ¥ and (v—1) times
the field-assisted propagator G . In the coordinate rep-
resentation, this latter one is given by

GJ(r,t;r',t'):—éV(t—t')fdk)(,t(r',t'))(k(r,t) ,
(2.9)

where U is the step function and ), are Volkov waves.
Explicitly, the first two orders of the expansion (2.8) are
given by

(2.10)
(2.11)
[
realizations of the transition probability
- 2
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Due to (2.8), (2.9), and (2.3), (2.12) requires the average of
exponentials of the form

<exp

If one assumes a chaotic model for the field, the electric
field amplitude is Gaussian and (2.13) depends on the
generating functional of the Gaussian process fA(t).

Thus it is given by

.
iSa, [, dr, A(r,) > . (2.13)

exp
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which depends only on the A(¢) first-order correlation
function related to the field spectrum. We remark that
only the Gaussian character of the electric field has been
exploited, and not the Markov property of the fluctuating
quantities. The removal of this latter assumption is usu-
ally described in terms of a departure of the field spec-
trum from the Lorentzian shape resulting by the simplest
Markovian models. To study this feature, in Sec. III we
will work out a non-Markovian Gaussian model for the
field fluctuations, that can be included in the above treat-
ment for the laser-assisted scattering.

III. A NON-MARKOVIAN FIELD MODEL
AND THE SCATTERING TRANSITION PROBABILITY

The first-order transition probability, averaged over
the field fluctuations, using the first-order S-matrix ele-
ment (2.10) and the Volkov waves (2.3), is found as

: T T
SplPy=1i dt ‘explio (1 —t’
(IS5 1%) TLan—T f‘rdtexp[ta)f,(t t")]

XF(t,t)|V(A)?, (3.1
where
o =(es—¢;) /A, ey=ﬁ2ki/2m, y=i,f, (3.2)
and
Fie,0)=(exp [iay, ['dran) ). (3.3)
V(a)=(1/%) [ drV(rexpliA-r) (3.4)
af,:ﬁeL-A, e =AW/AW), A=k,—k,. (3.5

For simplicity, we assumed a linear polarization for the
field. In this first-order treatment of the scattering poten-
tial, the fluctuating field enters only the exponential (3.3),
and so far has been treated exactly, whatever its statistics
may be. For a chaotic field, using Egs. (2.13) and (2.14),
we have

F(t,t')=exp

—taj; [Var [Tdr (A a@))
(3.6

An expansion of the exponential and use of the proper-
ty for a Gaussian process,

3683

(A(T)A(Ty) -+ A7)

=S(A(T)A(r)) - (Alr _DA(r)) , (3.
P

P denoting the index permutation operator, shows that
instead of (3.6) we may, for a stationary process A (?),
compute the following average:

Fit,)=exp [—af [ ar [T drCam am)

=F(|t—t']) . (3.8)

This feature permits one to define a transition probability
per unit time independent of time and then a cross sec-
tion, and physically corresponds to the fact that the sta-
tistical properties of the assisting field do not change dur-
ing the atomic process. Thus, in the present treatment,
the stationarity of A4 (¢) is a crucial requirement in order

“to proceed further.

Writing the electric field and the vector potential as
E(t)=[&(t)exp(—iwt)+c.c.]/2, (3.9a)
A(t)=[A(t)exp(—iwt)+c.c.]1/2, (3.9b)

6(t) and A(t) being the respective complex amplitudes
and o the central frequency, by the relation E(t)
=(—1/c)d A /dt it follows that the amplitudes are relat-
ed by

A=iwA(t)—cb(2) . (3.10)
The A (t)-correlation function is then found as
(A A1)
=Re{(A(A*(t'))exp[—iw(t—1")]} . (3.11)

Generally speaking, the observable fluctuating quantity
is the field intensity, so that the statistical properties
should be assumed on the electric field amplitude. Never-
theless, the statistical properties are often assumed direct-
ly on A (¢) too, because the quantities to be averaged con-
tain A (¢) instead of E (¢), as in our treatment. Between
the complex amplitudes of the vector potential and of the
electric field, defined in Egs. (3.9), the following relation-
ship holds:

2
(6(1)E* (1)) = % (A1) A*(1"))
+ L 8t
c? ot o’
2 | & (ADA*(1)) . (3.12)
c2|ot o T
We observe that the well-known relation |&]?

=w?|A|?/c? between &(¢) and A (¢) is strictly valid only
when they are time-independent; this is true, in particu-
lar, for nonfluctuating fields. Besides, from the statistical
standpoint, only the Gaussian property of &(¢) is shared
by A(?), and not, in general, its stationarity or the Mar-
kovian character.

To gain more insight into the statistical relationship
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between the electric field and the vector potential for fluc-
tuating fields, let us regard Eq. (3.10) as a complex
Langevin equation for A(¢), driven by the “noise” &(¢)
and let us assume the statistical properties on the “physi-
cal” field E (t); then, we derive the statistical properties
of A(t) through Egs. (3.10) and (3.11). Within the sim-
plest Markovian model for a chaotic field, the complex
amplitude 6(¢) is assumed to be an Ornstein-Uhlenbeck
process, i.e., it fulfills

E=—b&()+F 1), (3.13)

F(t) being a complex, Gaussian, zero-mean and white-
noise

(FHOF*(e))=2b{|E|*)8(t—1") , (3.14)

where the meanings of b and (|&|?) will be clear in the
following. By solving (3.13), (3.14), and (3.10), the A (¢1)-
correlation function is found as

(ADA*"))=[(|E1*)c2 /(0*+b?)]
X {2btyexplio(t —1t')]
+[(w—ib)/(®+b?)]

Xexp(—blt—t']}, (3.15)

where t;=min(¢,t’). Thus it turns out that, even for a
simple Markovian chaotic field, A4 (¢) is a nonstationary
process.

The problem of the propagation of the statistical prop-
erties from E (¢) to A (t) has been in the past either ig-
nored [assuming the statistical properties directly on
A (t)] or circumvented by dropping the nonstationary
term in (3.15), invoking, for b <<w, its smallness;’ or even
assuming ab initio a time-independent correlation func-
tion for A (). The task of getting a stationary A (¢)
may be trivially accomplished by assuming that &(¢) is 8
correlated; then A(¢) would be an Ornstein-Uhlenbeck
process, i.e., Markovian and stationary. Here, our in-
terest is in the inclusion of non-Markovian features of the
electric field but retaining a stationary A (z); we show
now that, by assuming a slow variation of A (), it is pos-
sible to account for both these features.

Let us assume that the driving force F(¢) in Eq. (3.13)
is not & correlated, but that it itself fulfills the Langevin
equation'®

F=—BH 1)+ f(1), (3.16)
where
() f*(0))=2bB{|E*)(b+B)S(t—1") . (3.17)

Equations (3.16) and (3.17) permit to account for the
nonvanishing correlation time 8! of ¥, and this is cru-
cial when the times occurring in the atomic process be-
come eventually so small as to be comparable with
B LILIZIS If B, 0, the process (3.16) and (3.17) be-
comes the white noise described by (3.14) and the field
spectrum is Lorentzian; instead, (3.16) and (3.17) describe
Lorentzian-like field spectra, having a cutoff at 3. By
Eqgs. (3.10), (3.13), and (3.16), the following third-order
differential equation for A (¢) is obtained

F. MORALES, R. DANIELE, F. TROMBETTA, AND G. FERRANTE

13

A+(b+B—iw)A+[bB—iolb+B)IA
—iwbBA(t)+cf(t)=0 .

Roughly, the scale of the A(t) variation is b~ ! (see
below); thus for B~w and b <<w one may see that the
third and the second derivative terms are of the order b3
and b2B, respectively, while the first derivative is of order
B?b. Then, in the regime at hand, we may simplify (3.18)
as

(3.18)

A=—TA)+G(¢), (3.19)
where
r=ibBo/[io(b+B)—bB] (3.20)

and G(t) is a complex, Gaussian, zero-mean process,
whose correlation function is found as

2c¢26B(b +B)(|E]?)
(bB)?*+w?(b+B)

(G(G(t")) = 8(t—rt') . (3.21)

Thus, A(¢) is now an Ornstein-Uhlenbeck process, with a
complex damping term I'. The A (¢)-correlation function
is then found as

(ADA*())y=2(]A|*)exp(—T|t—1']), (3.22)

(A= |6]?) /207 . (3.23)

Letting in Eq. (3.20) w and 8 much larger than b, the sta-
tionary part of (3.15) is recovered.
From Eq. (3.11), using (3.22), one finds

(A A1)

=(|A?|Yexp(—y|t—t'|)cos[Q(t—1t")], (3.24)
where
y=Rel=b[B(b+B)*]/[(bB}+wXb+B)?],  (3.25
Q=o[(b+B)w?*1/[(bB)?+w(b+B)*] . (3.26)

Thus, in this non-Markovian chaotic model for the field,
the finite correlation time B! of the force F(t) driving
the electric field affects both the correlation time y ! of
A(t) and the central frequency ). When o and BB are
much larger than b, one has y =b and QA =w; the non-
Markovian features are instead expected to emerge for
b =f3, when, for instance, y =b /2. In the calculations we
shall also consider the region S~ b, just to get some quali-
tative information on the behavior of our approximation
in the full non-Markovian regime.

Using now the stationary correlations function (3.24) in
the average (3.6), we find (¢ denoting now |t —¢'])

F(t)=exp{—(A%/2)[cospy+ 7t
—exp(—yt)cos(Qt —¢y)]} , (3.27)

where
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(161%) 172 required amount of algebraic manipulations, the follow-
A= | el /7 €A, ing doubly differential transition probability is arrived at:
mo | (y2+Q?) !
(3.28)
2 2
@o=arctan —3&2 "W =3 "W , (3.29)
Performing now the time integration in (3.1), after the where
J
dw A2 _ ® S,k cos(ngy) —e,sin(ngg)
e v =) A 2 2 .
dads, | # exp( 5 cos@y)| V(A)] kéoka(k /2) 5 el , (3.30

where v=n| and

. (x/z)v+2k
Lo )= or

S, =Hy(v+2k+A%/2), (3.31)

€,=¢g;—¢g,—nfiQd .

The scattering line in the nth channel, given in Eq.
(3.30), is a superposition of line shapes, each one centered
at the final energy €,=¢; +n#Q and having a bandwidth
roughly equal to 8,,. Each line shape is weighted by
foi(A2/2); for weak fields f,, will give the main contri-
bution, and for Markovian narrow bandwidth fields the
scattering line becomes a Lorentzian of bandwidth v#ib,
as expected on the basis of the lowest-order perturbation
theory; generally, the bandwidth also depends on the field
intensity through A. It is also easy to see that Eq. (3.30)
describes asymmetric sub-Lorentzians, due to the pres-
ence of €, also in the numerator of the line shape.

The Markovian limit of (3.29) is readily obtained by
the replacements y —b and Q—w, and yields the result
already found in Ref. 9; the vanishing bandwidth limit,
b—0, (in which, of course, any non-Markovian feature
disappears) is also easily obtained and yields

aw |"7° _
a0de, =2#exp(—A3/2)1,(A3/2)| P (A))?

X8(e, —¢, —n#o) , (3.32)

where I, is the Bessel function of imaginary argument
and A, is obtained by A in Eq. (3.28) setting ¥ =0 and
Q=w. Equation (3.32) reproduces a well-known result.?
The expressions (3.29) and (3.30) have been numerically
evaluated for several values of the parameters entering it
and in Sec. IV we present a representative set of results.
The simple equation (3.32) has been used frequently in
the recent past to get information on the effects of a
chaotic field on multiphoton free-free transitions. With
due modifications, the same simple zero-bandwidth field
model has been widely used in other multiphoton elemen-
tary processes as well. Now, the exact equations (3.29)

and (3.30) offer the possibility to assess the limit of validi-
ty of Eq. (3.32) when the very strong fields come into
play, and such information may be of use for other con-
texts as well. We hope to report on this aspect of the
problem in the near future.

IV. NUMERICAL CALCULATIONS
AND DISCUSSIONS

The numerical calculations of the transition rates re-
ported below are aimed at showing how the cutoff in the
laser spectrum modifies the scattering line shapes and
widths, and the probability of the various multiphoton
channels with respect to the coherent field case. The cal-
culations are performed assuming as scattering potential
a screened Coulomb potential of unitary charge and
screening radius 7o =50a,, a, being the Bohr radius. The
electron initial energy is £, =100 eV.

The first set of calculations concerns the ratio R of the
scattering linewidth (#I) to the field spectrum bandwith
(#b, taken equal to 10~ * eV) as a function of the field in-
tensity I, for several values of the cutoff 8 and of the
number n of exchanged photons (Fig. 1). For B>>b
(Lorentzian limit) and weak field the perturbative result
of n! is recovered; increasing the field strength, A in-
creases and, for strong fields, it becomes roughly indepen-
dent of n. In this range, it is proportional to I, as already
found in Ref. 10 also for a phase diffusion model for the
field; the same conclusion is arrived at by looking at the
expression 8., in (3.31) for the linewidth of each sub-
Lorentzian. For B~b (non-Lorentzian limit) and weak
fields, I' is considerably smaller than in the Lorentzian
case; increasing the field intensity again yields an in-
dependence of n, leaving only a linear dependence on the
intensity; further, the strong field linear behavior pro-
duces decreasing I when f3 is decreased. Thus, as far as
the scattering linewidths are concerned, the main role of
[ is to decrease them with respect to the Lorentzian case,
at relatively low intensity. At higher intensities, the
linewidths in the two models become almost the same.
However, further increasing the intensity shows a trend
towards a prevailing of the non-Lorentzian linewidths
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[Fig. 1)]. w1 i

A second set of calculations concerns the so-called a0 =28J2(Ao(n)| P (A(n))]?, 4.3)
coherence factor; this is defined by n

_ @w/dQ)y @l
Xn (dW/dQ)fIOh ’ . )
where
aw |*_ s, [ aw
aa |, =J dQde, “2)

with a=¢; +n#fiQ—#Q/2 and B=¢; +n#Q+#Q/2, the
integrand given by (3.30). The denominator in Eq. (4.1) is
the by now familiar result of the differential probability
per unit time for the same process, within the first Born
approximation in the presence of a purely coherent field'®
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FIG. 1. (a) Ratio R of the scattering linewidth to the field
spectrum bandwidth as a function of the field intensity (in
W/cm?) for n =1 and 5 exchanged photons (numbers on the
curves) and different values of the cutoff parameter #3=1 eV
and #3=10"* eV. Electron energy ¢; =100 eV. Field photon
energy fio=1 eV, bandwidth #%b=10"* eV. Sold curve, n=5
and #3=1 eV, dashed curve, n =1 and #B3=1 eV; dotted curve,
n=1 and #B=10"* eV; dot-dashed curve, n =5 and #B=10""*
eV. (b) Details of (a). Notation of the curves the same as in (a).

where J,, denotes the Bessel function of the first kind and
the electron final wave vector is derived from the energy
€, =¢; Tn#Q.

The ratio (4.1) has been analyzed for vanishing field
spectrum bandwidths,? showing that for weak fields
X,=n!, while for intense fields it strongly oscillates,
averaging to V'm. In Refs. 4, 5, and 17, an accurate
analysis of the intermediate domains has yielded that
when Ay(n)=n, one has instead x, <<1, i.e., the chaotic
field may strongly damp the n-photon process. This im-
portant new result may be understood considering that at
n = A, the n-photon process is particularly (say, resonant-
ly) favored within the coherent field model. The con-
sideration of a fluctuating field, implying operations of
averaging, introduces into the physical process mecha-
nisms which give a smoother redistribution of the proba-
bilities among different multiphoton channels; and it
takes place at the expense of the channels which in the

AIY) 2 ' 13 T e 15

10 10 10 10 10

INTENSITY (W/em®)

FIG. 2. Coherence factor y, as a function of the field intensi-
ty (in W/cm?) for n =2 photons exchanged and different values
of the field bandwidth b. The scattering angle is 6=45° and the
cutoff parameter #8=1 eV. Solid curve, #ib=10"* eV; dotted
curve, #ib =103 eV; dashed curve, #ib =102 eV. Other param-
eters as in Fig. 1. (b) As in (a) but with n=35 photons ex-
changed.
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FIG. 3. Coherence factor y, as a function of the field intensi-
ty (in W/cm?) as n=2 and 5 photons exchanged and different
values of the cutoff parameter #8=1 eV and iB=10"*eV. The
scattering angle is 6=45° and the field bandwidth #ib=10"*eV.
Other parameters as in Fig. 1. Solid curve, n =2 and #iB=10"%,
dashed curve, n =2 and #i3=1 eV, dot-dashed curve, n =5 and
#B=10"*; double dot-dashed curve, n =5 and #fif=1eV. Other
parameters as in Fig. 1.

coherent field model have the greatest probabilities, yield-
ing then y, <<1. Very recently,’ this result has received
an experimental confirmation in a two-photon free-free
transition and appears to qualify itself as a feature in-
dependent of the particular elementary process con-
sidered. Here, we generalize the above result to include
(i) a finite spectrum bandwidth, and (ii) a non-Lorentzian
spectrum shape.

The results for the coherence factor in the Lorentzian
limit (8>>b) and for n =2 and 5 are presented in Fig. 2,
each one for two values of b. For weak fields, the n! be-
havior is recovered and it is weakly affected by b; increas-

DDCS (Wale?sr)

FINAL ENERGY (eV)

FIG. 4. Double differential cross section DDCS (in units of
mage " sr™') as a function of the electron final energy (in eV)
and different values of the field intensity 7 and cutoff parameter
#iB. Solid curve, I=5X10" W/cm? and #8=1 eV; dashed
curve, I=5X 10" W/cm? and #8=10"* eV; dot-dashed curve,
I=5X10"” W/cm? and #8=1 eV; dotted curve, I=5X 10"
W/cm? and #8=10"*eV. Other parameters as in Fig. 1.

POTENTIAL SCATTERING TRANSITIONS IN A STRONG ...

3687

ing the field strength, a minimum appears (y, <<1) and it
becomes deeper the larger b is; namely, the b =0 result
underestimates the smoothing action produced by the
chaotic field in the Ag=n regime. Increasing further the
field strength, an oscillation regime begins, again with the
curves corresponding to larger b showing lower values;
the mean value of the oscillations, equal to V7 for van-
ishing b, is now seen to be inversely proportional to b. Of
course, for large b the field is more incoherent compared
to the b =0 case and this enhances the averaging role of
the fluctuating field.

The role of the cutoff B in the coherence factor is ana-
lyzed in Fig. 3; the n! weak-field result is recovered, as
well as the minimum occurring for A,=n and the strong-
field oscillatory behavior; only for strong fields may a
difference between the curves with S=1 and 10™% be
seen. This suggests that the coherence of the field is
affected by memory effects of the stochastic parameters
only for high intensities.

The last set of calculations concerns complete (i.e.,
summed over all the multiphoton channels) doubly
differential (DDCS) and total (TCS) cross sections, re-
spectively defined by

do_|[_m_ ||k |aw s
dQ |27 | |k, |dQ ’ '
- da

o= 477dQ aq | 4.5)

In Fig. 4 we present DDCS as functions of the electron
final energy. The curves are peaked at the conservation
of energy corresponding to different numbers of ex-
changed (emitted or absorbed) photons; at a fixed field
bandwidth (#ib=10"* eV), Fig. 4 displays the role of #8
(=1 and 10™* eV) and of the field intensity (/=102
W/cm? and 10'* W/cm?). The main role of decreasing 8
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FIG. 5. Total cross sections TCS (in ma3) as a function of the
electron final energy (in eV), for the cutoff parameter =1 eV
and different values of the field intensity I. Solid curve, 7=10""
W/cm?; dashed curve, I=10'2 W/cm?. Other parameters as in
Fig. 1.
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(and thus of increasing the non-Markovian features) is to
lower the wings, as expected; the role of increasing the in-
tensity is instead to decrease and widely broaden the lines
as many multiphoton channels open and, as seen above,
the linewidths rapidly increase with intensity. For high
field strengths, the multiphoton peaks become less and
less distinguishable.

Finally, in Fig. 5 we present the TCS as functions of
the electron final energy, for #3=1 and two field intensi-
ties. The elastic channel (n =0) is largely the most prob-
able, even for an intensity of 5X 10'> W/cm?; increasing
the photon multiplicity, a smooth, uniform decreasing of
the cross sections is seen, with the absorption and emis-
sion channels roughly of the same orders. The cutoff in
the spectrum only slightly affects the cross sections,
mostly their shapes.

V. CONCLUDING REMARKS

We have extended the theory for potential scattering in
the presence of a strong laser, considering the case of a
chaotic non-Markovian field. In potential scattering, the
field can be included nonperturbatively, whatever its time
dependence (deterministic or stochastic), so that this pro-
cess is able to provide general information on the role of
the field statistical properties in highly nonlinear domains
of the radiation-matter interaction.

Developing a slowly varying approximation for the
amplitude of the field vector potential, we have been able
to include the non-Markovian character of the field fluc-
tuations, maintaining the stationarity of the stochastic
process involved; as a consequence, the spectrum of the
assisting field results in being non-Lorentzian, close to
many experimental laser outputs.

Several numerical results have been presented, general-
izing what is already known from the Markovian treat-
ments and making also a contact with recent experimen-
tal results.? Scattering line shapes and widths have been
presented for several field intensities and a number of ex-
changed photons, showing that, particularly for strong
fields, the non-Markovian features of the field may play
an important role; this result confirms a similar finding
obtained within a phase diffusion model of the field!! and
qualifies as a general feature of strong field situations,
largely independent of the particular physical process
considered.

A study has also been presented of the coherence fac-
tors (ratios of the chaotic field probabilities to the
coherent ones); it has been shown that the damping pro-
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duced by a chaotic field with respect to the coherent one
for particular intermediate intensity domains, recently
confirmed experimentally,? is further enhanced by a non-
Markovian field, due to the increased loss of time coher-
ence. In this sense, it is believed that an understanding of
field fluctuation effects in the laser-assisted potential
scattering requires an accurate statistical description of
the field properties.

The cross sections of the process are weakly affected by
the non-Lorentzian spectrum of the assisting field, as ex-
pected for a process in which transitions near the spec-
trum wings are not particularly important. For strong
enough fields, the main role is played by the intensity,
which tends to widely broaden and to smear out the mul-
tiphoton peaks; the cutoff in the spectrum lowers the
wings, generally making the peaks more distinguishable
(the single multiphoton scattering events).

A new set of experiments in multiphoton free-free tran-
sitions has been recently started, and it poses a challenge
to the theory, pointing towards new, more refined
theoretical approaches. It is now clear that a description
of the dynamics of the elementary process as accurate as
that of the field statistical properties is required, this be-
ing at moment beyond the reach of lowest-order
perturbation-theory methods. Even for not very strong
fields, the parameters of the process may be such as to
enhance nonperturbatively features arising from the field
stochasticity, so that the forthcoming theoretical treat-
ments, in order to compare themselves with the experi-
ments, should take into account ab initio as much as pos-
sible of the actual stochastic properties of the field. How-
ever, our results show also that if one is neither interested
in the line shape and widths of the scattering line nor in
witnessing the statistical properties of the field, a zero-
bandwidth treatment of the chaotic field is probably
sufficient to extract the main information on the role the
intensity fluctuations have on scattering parameters like
total and (to a lesser extent) differential cross sections.
This last statement needs, however, to be checked with
detailed comparisons in the various domains of the pro-
cess parameters.
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