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Scattering of charged particles at high velocity from diatomic molecules is formulated in the
impact-parameter treatment using a Fourier transform of the amplitude in the quantum-mechanical
treatment. Probabilities and total cross sections are evaluated for electron capture for a fixed orien-
tation of the intermolecular axis. Total cross sections, integrated over projectile impact parameters,
for capture from H2 predict variations of a factor of 2 or more for various orientations of the molec-
ular axis. Capture from heteronuclear diatomic molecules is also considered.

I. INTRODUCTION

The impact-parameter treatment has been widely used
in atomic scattering to evaluate probabilities and cross
sections for various reactions including electron capture.
In comparison to the more rigorous quantum-mechanical
wave treatment where the projectile is treated as a wave
packet, in the impact-parameter treatment the projectile
is regarded more simply as a localized classical particle.
The impact-parameter treatment has the advantage that
the correct probability may not be larger than one, and
that multiple scattering (e.g., double electron capture)
can be evaluated in the independent particle approxima-
tion by simple multiplication of probabilities for each
scattering. In this paper we formulate impact-parameter
treatment for electron capture from simple diatomic mol-
ecules by taking a Fourier transform of the quantum-
mechanical wave amplitude. We give particular atten-
tion to interference terms. Probabilities and total cross
sections are evaluated as a function of the orientation of
the axis of the molecule for electron capture from dia-
tomic molecules at high collision velocities in the
impact-parameter representation.

Evaluation of total cross sections in the quantum-
mechanical wave treatment for electron capture from H2
by high-velocity protons was first done by Tuan and Ger-
juoy' in 1960, and later considered by Band and by Ray
and Saha. ' While it was recognized that the outgoing
waves produced interference patterns typical of scatter-
ing from two centers, these authors averaged over the
orientation of the molecule, thus averaging out the in-
terference pattern. Recently Deb, Jain, and McGuire
have reported calculations of differential cross sections at
forward scattering angles for fixed orientation of the
molecular axis which show explicitly the interference pat-
tern from the two atomic centers. All of the previous
theoretical work was done in the quantum-mechanical
wave treatment. In this paper we consider the impact-
parameter treatment of electron capture from molecules.
No experiments are presently available for these

differential cross sections, but using Coulomb explosion
techniques to determine the orientations of the inter-
molecular axis, it is now possible to observe total cross
sections for electron capture at fixed intermolecular
orientation. Here we present calculations for these ob-
servable total cross sections as well as the impact-
parameter dependences of these cross sections. We find
variations greater than a factor of 2 in the cross sections
as a function of the internuclear orientation.

In Sec. II we formulate scattering from diatomic mole-
cules in the impact-parameter treatment. In. Sec. III we
first use some simple linear combination of atomic orbital
(LCAO) wave functions and develop general expressions.
Then we apply these expressions and Weinbaum wave
function to calculate probabilities and cross sections for
electron capture at high velocities from H2 at fixed orien-
tation within the Brinkman-Kramers (BK) approxima-
tion. Generalization of our results to heteronuclear sys-
tems is done in Sec. III C. In Sec. IV we discuss various
aspects of our results. Atomic unit is used throughout
unless otherwise stated.

II. FORMULATION

Here we obtain the probability amplitude for particle
scattering at a fixed impact parameter B from a diatomic
molecule by Fourier transforming the T matrix for
quantum-mechanical wave scattering.

To establish an expression for molecular T matrix
(hereafter denoted as T~) of scattering from a diatomic
molecule, we will treat the diatomic molecule as a system
containing two effective atomic scatterers centered on
each nuclei. Using the well-known expansion ' to treat
multicenter scattering and ignoring rescattering between
the effective centers, one can express TM as

TM =( T, + T2 )+(T, Go T2+ T2GO T, )+
=- T)+ T2,

where T, (j = l, 2) stands for the individual T matrix for
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p)a p+ t e'pa p
1 2 (3)

with respect to the center of mass of the molecule. Here
T, (0)=t is the atomic T matrix for center j where the
projectile interacts with the effective atomic center with
no displacement. Thus the relative phase between T, and
T2 due to the internuclear displacement p is a-p, in-
dependent of the choice of origin of the coordinate sys-
tem. As a consequence the quantum waves scattering
from the diatomic molecule produce an interference pat-
tern characteristic of scattering from two centers.

each effective center. An effective atomic center in a mol-
ecule is not quite the same as an isolated free atom. It
will be shown that the T matrix for an isolated atom and
an atomic center in a molecule differ by an overall con-
stant. For high-velocity collisions we ignore vibration
and rotation of the molecule, which is effectively frozen
during the relatively quick collision.

For scattering from two centers illustrated in Fig. 1, it
is convenient to place the origin of all coordinates at the
center of mass of the system. Then the atomic centers
are displaced from the center of mass by (1 —p)p and—pp for center 1 and center 2, respectively, where
(M=M) /(M) +M&). It is well known that displacing the
origin of the coordinates by a distance d corresponds
09, 10

T.(d) =e ™dT)(0),
with a=Kf —K, . Consequently, we have

T)r —= T(+ T2 = T)(0)e '' " ' + T~(0)e'" 'e

Kf =(M+rn)y(

Now we find the corresponding probability amplitude
for scattering by a particle with a straight-line trajectory
R =B+vt passing through the center of mass of the mol-
ecule at t =0 and B=0. The probability amplitude a ( B)
is, in general, related to the T matrix by a Fourier trans-
formation, "' namely,

a(B)=—f e ' Td a (4)

where a~ is perpendicular to the projectile velocity v tak-
en to define the z axis of the system. Thus taking and us-
ing Eq. (3) and Eq. (4) we have a general expression for
the probability amplitude, namely,

Phase difference

=(Kf-K, )p =& p

FIG. l. Illustration of quantum-mechanical wave treatment
for a diatomic molecule. On the left is the incident plane wave
with wave vector K;; on the right are the scattered waves from
center 1 and center 2 with wave vector Kf.

ia& B —i(1 —p)(a& p&+a p, ) ip(a& p&+a, p, )

U

—i(1 —p)a p ipa p
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e 't1d a&+ e t2d a~
U

—i(1 —p)a p ipa p=e ' 'a)[B—(1—p)p)]+e ' 'a2(B+pp) )

—i(1—p)a p=(a)+aze' )e ' '—:aI+aze'

—i(1—p)a p
where 6=n,p„and e ' ' is an overall phase
dependent on the choice of origin of the coordinate sys-
tem. This overall phase may be ignored in the evaluation
of physical observables such as laM l

. Then the net prob-
ability for scattering from a diatomic molecule is given by Zp

a = a(l) a(2)

a(l) a(2)

I'I = laMI = la) I
+ la21 +2 Re(a)a2e' ) .

This is of the form of a vector sum, i.e., aM=a, +a2
where I'M=laMl . Note that 8—(1 —p)p) =0 and
B+@pe=0 correspond to trajectories passing through
centers 1 and 2, respectively. Also the phase difference 5
is independent of the choice of origin of the coordinates,
i.e., independent of p.

In the impact parameter treatment illustrated in Fig.
2, the probabiIity amplitude aM is the sum of an arnpli-
tude a) from center 1 at position (1 —p)p relative to the

= P Q
Z Z

FIG. 2. Illustration of impact-parameter picture for a dia-

tomic molecule. p is the molecular axis vector that defines

orientation of the molecule. CM denotes center of mass of atom

1 and atom 2. Z~ is the charge of the projectile, B is the impact
parameter. a (1) and a (2) are amplitudes from center 1 and

center 2, and a is the total probability amplitude.
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center of mass, plus an amplitude a2 from center 2 at
—pp. The amplitudes a, and a2 have a phase difference
5=+,p, arising from the separation of the two centers.
For heavy projectiles, i.e., M ))1, such as we consider in
this paper, one has to order (1/M ), a;„=Kf—K;, the
minimum momentum transfer. For electron capture, us-
ing overall energy conservation, ' one can obtain
a;„=Kf—K; = v /2 AE—/v =—a„where b,E =Ef E;.—

III. CALCULATIONS

In this section we evaluate 1s-1s cross sections for elec-
tron capture from diatomic molecules at high collision
velocities. First we consider homonuclear molecules, in
particular, H2. Then we consider heteronuclear mole-
cules. In this section we shall apply the simple
Brinkman-Kramers approximation, ' ' i.e., t —= V .

A. Homonuclear molecules

For homonuclear molecules, since by symmetry,
t, = t2 = t for gerade state, t, =—t2 = t for ungerade state,
and p, = —,', we have from Eq. (3)

drogenic wave functions. Since the two atoms are identi-
cal we have itj and P (u and v) with the same form of func-
tion. The eff'ective charge carried by molecular l( and p
(ionic u and v) has been written as ZM (Z,.) in Eq. (10).
We point out that b, M (b, , ) is an overlap integral of the
molecular (or ionic) wave function.

In the development above we have introduced two T
matrices, the molecular matrix TM and the effective
atomic matrix t. A further relationship holds for t and its
atomic limit t~ which describes scattering from a free
atom. Following a similar procedure to Tuan and Ger-
juoy, ' it is straightforward to show

( q/b
I TM I ql. ) =NMN, (b, ,M+y—,M )

(
—(a (p/2)+ (a.(p/2) )& e

iK, R
with the initial wave function 4, =e ' 4M and the

iKf R'
final wave function Vb =e 4, u &, in which 4~ and
(Ii; are defined in Eqs. (8) and (9), u '„ is the Is bound-state
hydrogenic electronic wave function on the projectile.
Here 6;M and g,M are overlap integrals between ionic and
molecular wave functions given by

? t (e 'a (p/2)+e(a (p/2)
) g,.M = f u ~, (r)p„(r)dr

(12)

and

4, =N;—[u „(1)+v„(2)],
with

NM=1/[2(1+6 )]'

~M f V), (r)'(t'). (r)«
=(1+ZMp+ ,'ZMp ) exp( ZMp—), —

N, =1/[2(1+3;)]'—
5, ,

= f u*„(r)v„(r)dr

= (1+Z,p+ —,'Z, 'p') exp( —Z;p),

(9)

(10)

where NM and ¹ are normalization constants for the
molecular and ionic wave functions; g, (t, u, and v are hy-

where + ( —) stands for gerade (ungerade).
The wave function of diatomic molecule can generally

be obtained by LCAO (Refs. 15—17) or other methods (cf.
Secs. IIIB and III C). However, the complete LCAO
wave functions may not be necessary when computations
involve high-velocity collisions in which only inner-shell
orbitals are important. Therefore we begin by represent-
ing the molecular wave function by a simple product of
1s hydrogenic wave functions centered at each scatterer.
The spherical symmetry of 1s wave functions on each
center allows the simplest algebra without 1osing the
basic physics of the process. Similarly, the ionic wave
function can be expressed as a sum of 1s hydrogenic wave
functions centered on each scatterer. Thus we have for
the simplest symmetrized molecular wave function 4~
and ionic wave function 4;

+M =NM [el, (1)01,(2)+01,(2)01.(1)]

=8(Z, Z )'"/(Z, +Z )',

f u 1 (Ir —pl)f(, (r)dr

8(Z;Z ) —z p
[Z;(pv —4ZM )e

pv

+ZM(pv+4Z;)e '
] .

(13)

t =NMN, (b(M y(M)tw
—=NMN;NMt„=N, t~ . —(14)

The effective atomic matrix t differs from its atomic
limit t„by an overall constant N,—. Since
TM=t(e ' 'p +e' 'p

) and t =N, tz, it is —primarily
N,

+—that determines the difference between the molecular
and twice the atomic total cross sections. By the
definition above, N,—is a constant combing the molecular
wave function (NM), the ionic wave function (N, ) and
their overlap (N,M), which depends on the form of the
wave functions. The above expression for the overlap
factor N;M, derived for wave functions given by Eqs. (8)
and (9), may be generalized (cf. Sec. III B).

The reflection symmetry properties of a homonuclear
diatomic molecule may be used to determine N,—under
two interesting limits, i.e., the separated atom limit
(p ~ ao ) and the united atom limit (p ~0), without
specific calculations. For the limit as p~ ~, the total
normalization constant for gerade N,+ and ungerade N,
are the same. Namely, when p ~~, we have NM
=N,+ =N, =(—')' N+ =1, and N,+ =N,

%e now use the simple BK approximation' ' ampli-
tude tz

In Eq. (11) we have replaced the BK amplitude I, of
Tuan and Gerjuoy' by the more general matrix t~.

Comparing Eq. (11) with Eq. (7) we have
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—2m(zz
(Z +az)' (15)

TBK N+rBK(e —t'a (piz}+et'a (plz})
M t A (16)

By Eq. (5), the corresponding probability amplitude tzM

is found as

BK TBK ' l d2aM Me CXj

in Eqs. (11) and (7), where Z is the charge of the projec-
tile, ZT is the effective charge of the nuclei in the mole-
cule, also denoted as ZM, to obtain

BK 2 PBK B d2 (24)

BK
~M

2
=O1+O2+O12 (25)

where o. , and u2 are due to individual centers and o. , 2 is
due to the interference. The integrals for (7 } z in Eq. (24)
can be computed analytically to give the BK cross sec-
tion, i.e.,

The factor of 2 comes from the indistinguishability of the
two electrons. When substituting Eq. (23) into (24), o.

M

can be written as

where

=N —(tz e '''+iz e ''')—ia p ia p
1 2 7 (17)

2 m(zpZT)

5u (Zz. +a, )

1 ia B
a =— t e d a1

1 ia Ba= — t ed'2 J

with

B+=B+pq/2 .

(18)

(19)

while o. ,2 is computed numerically.
For the limit as p~ Oo, the interference term o. ,2 ap-

proach zero for both gerade and ungerade. Meanwhile,
from Eq. (10), the individual terms cTi and c72 summed
over gerade and ungerade give

g o, = g crz=(Nt ) (T„+(N, ) cr„

=2( —') o = —'cT

These integrals can be done analytically, namely,

x Kz(x )

a}= ——(Z ZT)P (Z2+a2)2

2 x+Kz(x+ )

zP (zz +a2 )2

(20)

x(z'+ ')'" (21)

where Pz} and t)}t are the azimuthal directions of B and p.
Thus

2 (Z Zz. )

(Z2+ 2)2

X[x Kz(x )e ' ' +x+Kz(x+ )e ' ' ] . (22)

The probability as a function of impact parameter is
given by

where K2 is the Bessel function of the third kind and
second order and

x+ = ~BJ(Z2+az)'~z
1/2

1B + + Bpcos—(P —P )
4 2 8 p

The above development provides a method to calculate
electron capture from homonuclear diatomic molecules
using a simple, but generalizable, molecular wave func-
tion. For H2 a somewhat better wave function is the
Weinbaum wave function, also used by Tuan and Ger-
juoy and other authors. ' Specifically, we choose

@M =NM [Wi, (1)ei.(2)+el. (2)4'l. (1)

+c[/„(1)y„(2)+y„(1)y„(2)]I (26)

and ionic wave function

Ct, =N;+—[u „(1)+u„(1)], (27)

where the normalization constant N, is given by Eq. (10)—
and NM is given by

thus the total cross section oM in Eq. (24) yields 2cT „,
twice the atomic cross section. For two electrons' in the
limit as p~0, again Nt+~ —,', but cos(a,p, )~1 and the
ungerade contribution vanishes, i.e., N, ~0, ZM ~2ZM
so that o.M ~ =2o.U~. Here o. ~ denotes the cross sec-BK

p~o
tion for an isolated atom, and o U~ is the 1s-1s cross sec-
tion per electron for the atom with the united nuclear
charge.

B. Application to H2

p K(B)= ~tz
NM = 1/I 2[( 1+c )(1+b M )+4cb M ] )

' (28)

(ZpZT )'
=(Nt ) (Z'+az)4

X [x Kz(x )+x+Kz(x+ )

+2x x+Kz(x )Kz(x+ ) cos(a,p, )] (23)

The Weinbaum wave function above differs the previ-
ous simple LCAO wave function in Eq. (8) by a bond-
ing' ' term characterized by c&0. The overlap con-
stant N, M in this case is found' to be slightly different
from that in Eq. (14), namely,

The total single-capture cross section o-M is N, =(b, , y, )(1 ) . .— (29)
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The form of Eqs. (7) and (14) is not changed. If we take
the bonding term c ~0, then X,M reduces to the simpler
form in Eq. (14). For H2 at equilibrium, we use p=1.4,
ZM =1.193, c =0.256, and Z, =1.4.

25
xl(5

20

H+H,
I MeV

ep =0

C. Heteronuclear diatomic molecules

For heteronuclear diatomic molecules we again choose
a simple LCAO wave function with only s wave contribu-
tions. Now we use 1 and 2 to denote the electrons, and A
and B to denote the two different atomic nuclei. The
molecular wave function is given by'

0M NM[auMA(1)+buMB(1)l[auMA(2)+buMB(2)]

CQ I5
CL

IO

0
0.0 0.4 0.8 l.2

I l I l I I I

I.6 2.0 2,4 2.8

where

NM=[(a +b )+2a b (1+25M)

+4ab(a~+b )g ]

Here b, M
= f uM„(1)u M~(1)dr, and, for example,

(30)

(31)

IMPACT PARAMETER B(aa)

FIG. 3. Capture probability P (B) as a function of impact pa-
rameter B. When 6I =0, the beam passes through the molecular
axis, therefore P(B) is independent of P .

(Z„a)
uMA, B exp( ZA, B

7T

The ionic wave function is given by

P; =N;[a'u;„(2)+b'u;z(2)], (32)

with N, =[(a') +(b') +2a'b'b, , ] ' and b, ,= f u;*„u;~dr. Using these wave functions, it is straight-
forward to show that to an overall phase

TM Tg + T+e (33)

where it is convenient to choose the origin at the center
of mass of the molecule. The mathematical evaluation of
prabability amplitudes is now similar to the homonuclear
case, which is recovered as a~b and a'~b', corre-
sponding to c = 1 in Eq. (26).

Although the algebra is quite similar for the homonu-
clear and heteronuclear cases, the identification of final
states and counting of electrons is a little different. If
A WB in molecule AB, then A +B is a different final state
than AB +. Thus T„differs from Tz. At the same time
gerade and ungerade labels no longer apply since there is
no reflection symmetry. We also note that for most dia-
tomic molecules there are four electrons in the ground
state, twice as many as in H2. Hence, except for two-
electron systems like Hz, oM ~ 2(o „+o~) where

p —+O, oo

o.„~ is a 1s atomic cross section per electron for center
A and B.

l2
xI0

IO

Cl
&8

H +Ha

I MeY

$=45'I

and 5 for fixed orientations of the molecular axis at 8
and P =0', 45', and 90 . The P dependence depends on

In these graphs, the scattering plane has been
fixed at Pz =0 and taken as the reference plane for both
angles. The orientation dependence can usually be ex-
plained by the following physical picture. The most
probable beam position for electron capture is the posi-
tion closest to the most densely populated charge cloud,
e.g. , near the nuclei. For the case of (t) =0, the molecule
lies on the scattereing plane. Therefore the impact pa-
rameter at which the probability maximizes yields the
value s =pt/2=(p/2) sin8, which is the perpendicular
distance between the incident beam and the center of the
H2 molecule. Figures 3, 4, and 5 show that the peaks
usually occur at this distance s. In Fig. 4 for 0 =45, the

P =0', 45 curves are shifted somewhat because of the

IV. RESULTS AND DISCUSSION

A. Results for H&

l. Orientation dependence ofP (B)

0
Go 0.4

~ I I I

O.B I.2 I.6 2.0 24 2.8

IMPACT PARAMETER B(o.u)

Capture probabilities P (B) as a function of impact pa-
rameter B, for capture from a target gerade ground state
to a 1s projectile ground state, are shown in Figs. 3, 4,

FIG. 4. Capture probability P (B) as a function of impact pa-
rameter B when 9 =45 ' and P is varied. We note when

P =90', P(B) (not shown) is very small but peaked at B =0.
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BIO~~

20

I8

I6
CQ

CL l4

l2

10

H +H~

I MeV

Hp
=90'

II

IO

~~ IO—

10
O
lA

7Io

lo

H +H~

5 MeV

0 I I

OO 04 0.8 1.2 I.6 2.0
I I I

24 28 10
0 40

I

I20 I60

~MPACT PARAMETER 8 (o.u.)

FICx. 5. Capture probability P(B}as a function of impact pa-
rameter B when 0~=90' and P~ is varied.

near zero probability at the zero impact parameter. The
zero probability is caused by the particular phase value
that contributes to destructive interference at 8 =0. The
phase is close to m when E =1 MeV, 8 =45, and P =0
since a,p, -=(v/2)pcos8 =3.13. One may expect similar
destructive interference at zero impact parameter when-
ever the phase equals (2n +1)m (n =0, 1,2, . . . ).

Although for P =0' all cases shown seem to be well
explained by electrons located at separate centers, some
cases for P WO are more complicated since the electrons
actually are not well localized at the two centers. Since

plane and (t» plane no longer coincide, the dependence
on P sometimes becomes stronger than on 0 . TheseP'
figures suggest a competition between the two angles. At
0 =90, for example, the identification of an isolated
center becomes impossible.

2. Orientation dependence of cross sections

ORIENTAT(ON ANGLE He (dag)

FIG. 6. Single-capture cross sections summed over P as a
function of 0 . The cross section is symmetric about 0 =90'.
At 5 MeV there is almost an order of magnitude difference be-

tween 0 =0 and 40 ' (0 ( 140 '. These differences fluctuate with

energy of the projectile. Minimums at 6I =0 occur when

6=a,p, =(2n +1)m (n =0, 1,2, 3, . . .).

range of orientational angles. The orientation depen-
dence is caused by the phase term 5=+,p„which con-
tributes to all the patterns in these figures. The value of
phase at different orientational angles will determine
whether interference is constructive or destructive. The
phase 6 is obviously zero for any projectile energy at
|9 =90'. Therefore, at 0 =90', interference is always
constructive. It is also possible to find other angles that
yield phase values equal to 2nm, thus contributing con-
structively. At 0 =0, the phase acquires different values
for different energies. For instance, for 1-MeV projec-
tiles, the phase is approximately 1.4m at 0 =0 and for 2
MeV the phase is about 2m at 0 =0. At 5 MeV, the
phase is roughly 3a, so that a minimum occurs at 0 =0.

Knowing there is an orientation dependence in the
probability one may anticipate that an orientation depen-
dence in the cross section exists as well. Figures 6 and 7
document the orientation dependence which results from
the interference between amplitudes from each of the two
centers. In these figures, cross sections have been
summed over Ps keeping 8 fixed. Since the cross sec-
tions depend on Ptt

—P, summing over Ps removes the
dependence on P .

In Fig. 6 the single capture cross section for p+H2
collision is illustrated for impact energies of 1, 2, and 5

MeV. The ungerade cross sections, typically a few per-
cent of the gerade cross sections, are not shown. The
orientation dependence at these different energies varies
drastically. At 1 MeV, the peak of the oscillation is

about factor of 2 larger than the valley. However, the 2
MeV graph shows relatively small oscillations with the
orientational angles. The cross sections at 5 MeV have
the biggest difference between the maxima and minima,
although the cross section tends to be fiat over a broad

IO

(9

Ol O
C3

IO

O
ED

C

O
cps IO

b

Hq

IMeY amu

IO
I I I I I

4Q 80 I20

DRIENTATION ANGLE Hr (deg}

I

I60

FIG. 7. Single-capture cross sections summed over P as a
function of Op for proton and a particles colliding with Hz at the
same incident velocity. The interference effect decreases some-
vvhat as the projectile charge increases.
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Such a minimum occurs at any energy where
a,p, =(2n + 1)m. The total cross sections, obtained by
summing over all orientations, are found to be in good
agreement with results of quantum-mechanical wave
treatment.

In Fig. 7 we show the cross section versus 0 for pro-
jectiles of different charge state Z . Specifically, we
present result for H+ and He + at same incident velocity.
The 0 dependence in our calculations is approximately
independent of Z at a fixed collision velocity U because
the phase 5=e,p, is independent of Z when
b,E/v ((v/2.

B. Discussion

While the impact-parameter treatment and the
quantum-mechanical wave treatment give the same phys-
ical observables such as cross sections, the conceptual
pictures differ, as may be seen by comparing Figs. 1 and
2. For a symmetric molecule such as H2 in the wave pic-
ture the net fiux at a scattering angle is simply the Aux
from either center modified by a factor of
~2cos[a (p/2)] . In the impact-parameter picture the
net probability is the sum of the probability for scattering
from each center plus an interference term proportional
to cos(a,p, ). In both cases, if the separation between the
two atomic centers become large, i.e., p~ ~, then the in-
terference terms average to zero, and total cross sections
are sum of the cross sections from each center.

A central result of this paper is that the probability
amplitudes a

&
and az from each center differ by a phase

o,',p, due to the displacement p of the two centers. This
result has very recently been verified by Lin and Shingal'
by combining a translation factor e'" ~ with the difference
in the transit time of the projectile. The overall phase
term 6 could depend on any energy change AE or a time
change ht, or both. In our development 6 arises from en-
ergy considerations in a time-independent picture while
Lin and Shingal obtain the same phase from time depen-
dence on an energy invariant picture. The Lin-Shingal
derviation entirely avoids reference to the amplitude in
the wave picture.

We have invoked several approximations in this paper.
First we have ignored rescattering terms in Eq. (1) and
used TM = T~+ T2. Within the first Born approximation
this is correct. If higher Born terms are significant, e.g. ,
if collision velocities are near or below 25 KeV/amu for
Hz, then these rescattering terms may also become non-
negligible. Here, for simplicity, we have used the first
Born Brinkman-Kramers approximation. It is well
known that the total cross sections are a factor of 3 or
more too large in the BK approximation. Use of a
boundary corrected first Born approximation would
probably give more accurate total cross sections. The
cos(a,p, ) interference terms, which determine the orien-
tation dependence of our cross sections, are independent
of the approximation used for T

&
and T2 in Eq. (1).

Hence we do not expect the orientation dependence of
our results to change if different approximations are used
for T, and T2, unless those approximations introduce a

phase difference between T, and T2.
The molecular wave functions have also been approxi-

mated in our calculations. We have only included the
simplest s wave terms in our development. It is, however,
well known that more exact LCAO wave functions con-
tain' ' non-s-wave contributions. These contributions
may alter the form of Eq. (11) when a more exact T ma-
trix containing various partial waves is Fourier
transformed.

We have also ignored effects due to the internuclear
trajectory in our development. Such an effect could be
included by incorporating an internuclear phase
5z = f V~dz, following, for example, the earlier work of
Rogers and McGuire. We expect these nuclear phase
contributions to become very small at high collision ve-
locities since 5~= f V~dt =1/u f V~dz How. ever, it

may be that these terms are non-negligible compared to
the AE/v terms originating from o, That is, the 5&
phase terms could be significant in excitation and ioniza-
tion.

One motivation for evaluating P(B) is that P(B) may
normally be used to find cross sections for double cap-
ture. Within the independent electron approximation,
ignoring electron symmetry, the probability for capturing
two electrons is P, P2, where P, and P2 are the probabili-
ties for capture of electron 1 and 2, respectively. Howev-
er, for indistinguishable electrons as in H2, there is
difficulty. Following Eq. (6) let aM =(a, +a2e' ) be the
probability amplitude for single capture of either elec-
tron. Then the probability for capturing both electron is

laM I'1aM I'= [la, I'+ la, I' Re(a. a,e')]' .

As ph oo, the interference term 2Re(a, aze' ) can be
dropped, but

~ a, ~
and

~
a 2 ~

remain finite. Hence we ob-
tain a finite probability for double electron capture in a
single collision from well-isolated atomic hydrogen
atoms. This present a difficulty since the probability for
double capture should decrease as p becomes large, e.g. ,
as ~a& ~ ~a2~ and not ~a& ~

or ~a2~ . Our conclusion is

that the independent electon approximation for double
capture in the symmetric diatomic molecule H2 needs
further study incorporating the identical nature of the
electrons.

The orientation dependence of total cross sections for
scattering from diatomic molecules of a given orientation
depends on a;„, the minimum value of the momentum
transfer of the projectile. For ionization, one may
follow a similar development with a;„=hE /U =
(I + 1/2k ), where —,'k is the kinetic energy of the eject-
ed electron and I is the ionization energy. Most of the
ionization cross sections sum over all ejected electron en-
ergies. If a;~, ))1, e.g. , (1+1/2k )p, /u ))1, then the
interference terms tend to average out and there could be
little orientation dependence for ionization. For capture
and excitation a;„ is fixed and the interference and
orientation effects may be more distinct than ionization.
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V. SUMMARY an interference of scattering amplitudes from the atomic
centers of the molecule.

We have formulated the probability amplitude for
scattering from diatomic molecules at high collision ve-
locities ignoring rescattering between the atomic centers.
Probabilities and cross sections have been evaluated for
fixed orientation of the molecular axis. For electron cap-
ture from H2 by protons at about 1 MeV the cross section
varies by more than a factor of 2 for different orientations
of the molecular axis. The orientation dependence,
which could be observed experimentally, is described by
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