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Elastic scattering of positrons from argon has been calculated for incident-positron energies of up
to 300 eV. The target atom is represented by a frozen core in a continuum relativistic Hartree-Fock
calculation with dipole- and quadrupole-polarization corrections. The cutoff parameter r, is fitted
to reproduce measured values of the scattering length. Scattering lengths near —4 a.u. give good
agreement of the calculations with recent measurements of total, differential, and momentum-
transfer cross sections below 3 eV. Relativistic and positron-polarization effects are found to be
much smaller than for electrons. The relativistic effects are dominated by the relativistic contrac-

tion of the target atom.

I. INTRODUCTION

From a theoretical point of view, the elastic scattering
of positrons on noble-gas atoms is one of the simplest
scattering problems and is therefore suitable for testing
different calculational methods. The absence of any ex-
change potential in the one-electron Hamiltonian for the
positron and, in comparison to electron scattering, the
change in sign of the electrostatic interaction but not of
the polarization terms permit a sensitive test of different
polarization potentials. Also, relativistic effects in posi-
tron scattering can be calculated and compared with the
unexpectedly significant ones found for electron scatter-
ing. 1?2

Experiments on positron-atom scattering have been re-
viewed recently by Charlton,? Raith,* Stein and Kauppi-
la,” and Kauppila and Stein.® The theoretical work on
this subject has been reviewed by McEachran,” Drach-
man,® and Schrader and Svetic.® Total cross sections of
e T-Ar scattering have been measured by several
groups.'®7!¢ At low energies, there is a significant
discrepancy between different experimental results,
reaching 30% at 2-3 eV. Kauppila et al.!’ have found a
shallow Ramsauer-Townsend minimum in the vicinity of
2 eV. This minimum had been predicted earlier by
Massey et al.!” in their semiempirical approach. Cole-
man and McNutt, ' using a time-of-flight technique, re-
ported the first differential elastic scattering cross sec-
tions for 2- to 9-eV positrons on argon for angles 20° to
60°. The first crossed-beam experiment with positrons
was recently performed by Hyder et al. 19 who measured
relative elastic differential cross sections for 100-, 200-,
and 300-eV positrons scattered at 30° to 135° from argon
atoms. The same group?® recently extended their mea-
surements to lower energies (6-40 eV).

Calculations of the e *-Ar elastic cross sections have
been published by Montgomery and LaBahn,?! McEach-
ran et al.,”> and McEachran and Stauffer®’ using
polarized-orbital approximations. Other approaches with
a model-potential or pseudopotential method have been
reported by Schrader,?* Datta er al.,?> and Nakanishi
and Schrader.?® Nahar and Wadera,?’ using a local-
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exchange approximation, have recently presented nonre-
lativistic calculations for positrons in the energy range
3-300 eV. Theirs is a semiempirical calculation in that
they employ an energy-dependent polarization potential
which is adjusted to each energy to reproduce the
electron-scattering cross sections.

The well-established features of polarization potentials
are their asymptotic forms. In this paper we study the
influence of the short-range behavior of the dipole-
and quadrupole-polarization potentials on the elastic-
scattering phase shifts as well as on total, momentum-
transfer, and differential cross sections. The short-range
behavior of the polarization potential is determined by a
cutoff parameter in the polarization function. The values
of this parameter are chosen to reproduce different
scattering lengths derived from the experimental
data.?® 730 Although we use relativistic Dirac-Fock wave
functions for the description of the argon atom and the
two-component Dirac wave function for the incident pos-
itron, we do not expect large relativistic effects for this
system. Nevertheless, we examine these effects and com-
pare with ones found for electron scattering in our previ-
ous papers. 13!

II. THEORY

A. Scattering equation

Consider the elastic scattering of a positron by a target
atom in its ground state. The scattered positron is

represented by a four-component Dirac spinor:32~*
1 P.(rQ,,, (T)
Ve O="N0 (o 3) | W
where
Q.= 3 (mlLiim—o,0)Y" " 7(®)x% ()
o=*1/2 3
is the angular momentum eigenfunction. Here

(jm|l,-;m —o,0) is a Clebsch-Gordan coefficient,
Y/" ~°(T) is a spherical harmonic, x9 is the spin eigen-
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function, P and Q are the large and small components of
the Dirac wave function, respectively, and

k==x(j+1) forI=j+ (3)

+1,
where j is the total angular momentum and / is the orbit-
al quantum number.

The effective one-electron Hamiltonian of the scattered
positron is

H=ca-p+Bmc’+Vgc(r)+V,(r) 4)

where the matrices a and 8 have their usual meaning**3’

and Vgc(r) is the relativistic frozen-core potential be-
tween the scattered positron and the electrons of the tar-
get. The model polarization potential V,(r) represents
the polarization of the target atom by the electric field of
the scattered positron. Formally, V, is the scattered-
positron—frozen-core (here the target atom) correlation
term which is the main correction to the frozen-core cal-
culations.®> We have taken a model potential in the form
1 agr? 1 (otq—6B)r4 5)

g 2 (P4 2 (PR30

where a, is the static dipole polarizability, a, is the static
quadrupole polarizability, and B is the coefficient of the
first-order dynamical correction to ay. For argon we
have used the values (in atomic units) a,;=10.77 and
a,=50.12 from Johnson and Kolb*® and the value
B=8.33 from Dalgarno et al.3’ Uncertainties in the
second-order corrections to the dipole polarizability
make it pointless to include either higher-order dipole
corrections or higher-order multipole polarizabilities
beyond the static contribution. The value r, may be
viewed as an effective size of the target atom; it serves as
a cutoff parameter which prevents divergence at r=0.

The scattering equation we solve is the radial Dirac-
Fock equation (compare Desclaux’®)

d K . 1

E;+—r_ P, (r)= |2¢c +?[E—VFC(r)—Vp(r)] Q.(r,
(6a)

4 Ko (=—LE Vel —V,(NP(r)  (6b)

dr r |TF c FC 4 K

where the speed of light ¢=137.036 a.u. and E is the en-
ergy of the incident electron. The frozen-core potential
for the positron is defined by

VFC - 2 a ».] Y (]7./ r) (N
where the index s refers to the scattered positron, Z is the
nuclear charge, and the sums are over all electrons of the
target atom. The radial function Y*is

r k k+1 [

7 fOF(q)q dg +r f, F(

Y G, jin= )g %" 'dgq

(8)

where

3663

F(q)=P}q)+Q}(q) . 9)

k and b* are standard angular coef-

The terms a
ficients. %33
Equation (6) is solved subject to the boundary condi-

tions
(0)=0,(0)=0 (10)

with the asymptotic forms at large r
P, (r)

r ~ j(kr)cos8F —n,(kr)sind;" , (11)
0.(r) £ 12 . '

= | a0 Ljy(kr)cosdi —ny(kr)sind;"]  (12)
where k =(2E +a?E?)'/? is the momentum of the in-

cident positron, I=[*1 for j =I+1, and 87 are the phase
shifts. For each [ value greater than zero there are two
equations corresponding to the two values of « [see Eq.
(3)]. In conformity with Walker®® we let 8; be the phase
shift for k=—1—1 and let 8, be that for k=1I. Here,
Jitkr) and n;(kr) are the spherical Bessel and Neumann
functions, respectively.

B. Elastic-scattering cross sections

We obtain the relativistic phase shifts 8; for /=0 to
=12 by comparing the numerical solution of our scatter-
ing equations (6) to the asymptotic analytic solutions for
the large component of the scattering wave function (11).
Nonrelativistic phase shifts for /=13 to 50 are estimated
by means of the effective formula given by Ali and
Fraser.** From the phase shifts we determine the two
scattering amplitudes*!*2

f(6)=—1—k§ (1 + Dlexp(2i8] )— 1]

+1[exp(2i8;, )—1]}P/(cosf)  (13)

and

g(0)=— 3 [exp(2i8] )—exp(2i8; )P} (cosd)  (14)
1

where P, and P} are the Legendre polynomials and the
Legendre associated functions, respectively, and 6 is the
scattering angle. The scattering amplitude f(8) is the
direct amplitude corresponding to the nonrelativistic am-
plitude, whereas g (0) is the spin-flip amplitude.

The differential cross section for an unpolarized posi-
tron beam is

do

T =|fI*+I1gl*=1(0) . (15)

In addition, we have calculated the total cross section o,
and the momentum-transfer cross section o, given by

a,:%;[(1+1>sin2a,++lsin25,‘], (16)
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_4m (1+1)(1+2)
Tm =7 2 20+3

k* 4
I(1+1)
20+1

1+1
(21 +1)(21 +3)

sin?(8;" —8;%,))

+ sin®(8; —8;4,)

sin(8; =8, .| . (7n

C. The nonrelativistic limit

By eliminating the small component Q, from the Dirac
equation (6) one obtains a second-order differential equa-
tion for the large component P, which reduces to the
Schrodinger equation in the limit ¢ — . In the same
limit, the small component itself vanishes [see Eq. (6b)].
We calculate our nonrelativistic limits with the same
code for the coupled first-order equations (6) as in our rel-
atil\(')istic calculations, but with ¢ made very large (about
10°°).

III. RESULTS AND DISCUSSION

A. Polarization effects

The cutoff parameter r; in our model polarization po-
tential, Eq. (5), can be regarded as an effective target ra-
dius. It is chosen to reproduce the experimental scatter-
ing length for the e *-Ar system. Three different scatter-
ing lengths have been reported. The highest value,
—2.8a,, was obtained from the analysis of total cross-
section data by Tsai et al.** The value —3.5a, was
determined from the temperature and electric-field
dependence of the equilibrium positron-electron annihila-
tion rate by Hara and Fraser.** The scattering length
a=—4.4a, reported by Lee and Jones* was de-
rived from the effective-range parametrization of the
momentum-transfer cross section. We find three different
values of r, corresponding to the three scattering lengths
(see Table I).

It is interesting that the r, values given in Table I for
positron scattering are generally smaller than those ap-
propriate for electron scattering. 3! This difference, not-
ed earlier by Nakanishi and Schrader, is expected because
the exchange contribution to the two-electron part of the
polarization interaction®® (not included here) reduces the
electron-argon polarization strength relative to that of
the positron-argon interaction. The fact that Nahar and

TABLE 1. Cutoff parameters r, fit to different experimental
scattering lengths a.

a (units of ay) ro (units of ag)

—2.8* 1.393
—3.5° 1.212
—4.4° 1.070

2Reference 43.
"Reference 44.
‘Reference 45.
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FIG. 1. Total elastic scattering cross section. Theory: ——,
presents results; ——, Datta et al. (Ref. 25); — —. —.,
Schrader (Ref. 24); —-—-, Nakanishi and Schrader (Ref. 26);
— — —, McEachran et al. (Ref. 22). Experiment: X, Kauppi-
la et al. (Ref. 13); O, Coleman et al. (Ref. 14); ®, Sinapius et al.
(Ref. 15); V, Charlton et al. (Ref. 16).
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FIG. 2. Momentum-transfer cross section. Theory: ——,
present results; — — —, McEachran et al. (Ref. 22); — —. —. R
Montgomery and LaBahn (Ref. 21); —-—-, Nakanishi and
Schrader (Ref. 26). Experiment: the shaded area indicates the
results of Lee and Jones (Ref. 28).
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Experiment: @, Coleman and McNutt (Ref. 18).

Wadera?’ obtain good results with the same short-range
polarization potential for electrons and positrons may be
a fortuitous consequence of their local-exchange approxi-
mation.

The total cross sections corresponding to scattering
lengths —3.5a, and —4.4a, are shown in Fig. 1. The
curve corresponding to the scattering length —2.8a, of

Tsai et al.*’ is not shown because the values are unreal-
istically small and for energies greater than 2 eV lie below
the bottom of the figure (o, <27a3). Thus from our ap-
proach it appears that the scattering length is lower than
—2.8a,. On the other hand, the curves for scattering
lengths —3.5a, and —4.4a, lie on either side of the ex-
perimental values of Kauppila et al.!3 at energies <3 eV.

k=0.7 au.

Scatt. length = - 3.5 a4
Scatt. length = —4.4 qq

DIFFERENTIAL CROSS SECTION (units of mad)
N
T

k=0.8 a.u.

Scatt. length =-3.5 a4
Scatt. length = -4.4 a,

SCATTERING ANGLE (deg)

FIG. 4. As for Fig. 3 but with k<=0.7 and 0.8 a.u.
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The main difference in these results is that the curve cor-
responding to —4.4a, drops down at higher energies
whereas that corresponding to —3.5a, exhibits a very
shallow Ramsauer-Townsend minimum. Another theo-
retical calculation which displays this minimum is that of
Datta er al.,”> who also used a scattering length of
—3.5a,. The unpredicted rise in the cross section above
k=0.8 a.u. is associated with positronium formation, the
threshold for which lies just below 9 eV.

In Fig. 2 we compare our calculated momentum-
transfer cross sections with other theoretical results and
with the limited data of Lee and Jones,?® derived from
their measured annihilation rates. Figure 3 shows our
differential cross sections for both —3.5a, and —4.4q,
scattering lengths at k=0.4 and 0.5 a.u. together with
other theoretical results and the experimental data of
Coleman and McNutt.'® At k=0.4 a.u., both theoretical
curves are within the range of the experimental data, but
a scattering length of about —4.0a, would give the best
fit. At k=0.5 a.u., the curve with a = —3.5a,, fits better
at low angles (< 30°), whereas the curve with a = —4.4a,,
is in better agreement at higher angles (40° to 65°). It
may be seen that none of the theoretical curves shows
good agreement with experiment at all scattering angles.
At k=0.7 a.u. (see Fig. 4), the curve corresponding to
a =—4.4a, is in very good agreement with experiment,
but at k=0.8 a.u. (Fig. 4), none of the theoretical curves
can reproduce the experimental data of Coleman and
McNutt!® for scattering angles of 30 to 40 °.

Figure 5 shows the relative elastic differential cross sec-
tion at 20 eV. The measurements of Smith er al.?° have
been normalized at =75° to the calculations of Nahar
and Wadera?’ and of McEachran and Stauffer.?> We
have normalized our results for a = —3.5a, to the others
at 75° by moving our curve up by 0.19a3. Only the ad-
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FIG. 6. Differential cross section at 45°. Theory: ,
present results; — — —, McEachran and Stauffer (Ref. 23);
—-—-—-, Nahar and Wadera (Ref. 27). Experiment: ®, Smith
et al. (Ref. 20).

justed model-potential calculations of Nahar and
Wadera?’ agree with experiment at small angles. The rel-
ative differential cross sections from 6 to 40 eV are shown
in Fig. 6 for 6=45°. Our theoretical results and the ex-
perimental data of Smith et al.?® are normalized to the
results of McEachran and Stauffer?’ at 40 eV. Again, the
best agreement with the measurements is achieved by the
semiempirical curve of Nahar and Wadera.?’” Because
Nahar and Wadera have adjusted the short-range part of
their polarization potential to fit electron-scattering cross
sections at each energy, their curves may include effects
of inelastic excitation channels on the elastic-scattering
process (the first excitation threshold lies at 11.55 eV).

B. Relativistic effects

The spin polarization we calculate for positrons scat-
tered on argon is three orders of magnitude smaller than
for electrons.’! The small size of this relativistic effect is
reflected in the miniscule difference between ‘‘spin-up”
8, and “spin-down” 8, phase shifts (see Table II).
Hasenburg*® has explained the smallness by showing that
the positrons hardly penetrate the region where spin-
orbit effects are significant.

TABLE II. The polarization phase-shift difference §; —8;
for elastic scattering of positrons on argon.

8 —8;(107° rad)

FIG. 5. Differential cross section at 20 eV. Theory: ——,
present result; — — —, McEachran and Stauffer (Ref. 23);
—.—-—-, Nahar and Wadera (Ref. 27). Experiment: &, Smith
et al. (Ref. 20).

I 30 eV 100 eV 300 eV
1 2.87 8.02 20.86
2 1.28 6.14 17.51
3 0.10 342 12.78
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TABLE III. Relativistic contributions to phase shifts. A comparison of electron (e ~) and positron
(e ™) scattering from argon. The numbers in square brackets represent powers of 10.

e -Ar? et-Ar
E (eV) =0 =1 =2 =0 =1 1=2
1.0 6.59[—3]  —543[—4]  —8[—8] 129[—3]  891[—5]  —1.84[—6]
5.0 8.69[—3]  —198[—3]  —9.94[—4]  1.63[—3]  5.70[—4] 4.78[—5]
10.0 9.44[—3]  —254[—3] —7.70[—3]  1.85[—3]  9.55[—4] 1.93[—4]
20.0 1.02[—2]  —275[—3]  —947[—3]  2.13[—3]  1.40[—3] 5.29[ —4]
40.0 1.09[—2]  —256[—3]  —658[—2]  2.39[—3]  1.82[—3] 1.62[ —3]

*Reference 1.

Other relativistic effects of low-energy positron scatter-
ing on heavy atoms, like Xe, Hg, Rn, and Ra, have been
studied theoretically by Sin Fai Lam* and Jaskolski.*?
Both direct and indirect relativistic effects play important
roles for electron scattering from heavy atoms, but only
indirect relativistic effects are important for positron
scattering. These effects are caused by the change in the
electron distribution of the target due to direct relativis-
tic effects on the innermost orbitals and to the self-
consistency of the other electrons with these orbitals.
The direct relativistic effect on the positron is much
smaller than on an electron because the amplitude of the
positron wave function close to the nucleus, where direct
effects are most important, is greatly suppressed by the
repulsive character of the Coulomb interaction between
the positron and the nucleus. In Table III we compare
the difference between the relativistic and nonrelativistic
phase shifts for electron and positron scattering from ar-
gon. In the energy range examined (1-40 eV), the relativ-
istic effects in positron scattering are at least three times
smaller than those for electron scattering.

In additional calculations we have isolated the relativ-
istic effects on the scattering wave function from those on
the target atom by solving the scattering equations (6) in
the nonrelativistic limit (¢ — o ) with a relativistic target
and in the proper relativistic limit with a nonrelativistic
target (see Sec. IIC). The direct effect on the scattering
wave function causes a very small reduction in the
scattering phase shift (for example, a reduction of 1073
rad at 20 eV) due to the change in the expansion of the
wave function at the origin (» =0).* Relativistic effects
on the target cause an overall contraction of the argon
orbitals and hence a more effective screening of the nu-
clear charge. These increase the phase shifts, and the in-
crease, although quite small, is much larger than the de-
crease caused by the direct effect on the wave function

(for example, at 20 eV, it is about 100 times larger). The
net effect for positrons, unlike s-wave scattering of elec-
trons, is thus dominated by the indirect effect on the tar-
get for all partial waves (see Table III).

IV. CONCLUSIONS

The scattering of low-energy positrons by argon has
been investigated in a fully relativistic approach with an
added model polarization potential. Our results for the
total elastic, momentum-transfer, and differential cross
sections are in good agreement with existing experimen-
tal and theoretical data. The adjustment of the size pa-
rameter r, of the model potential to the scattering
lengths determined from experiments indicates that while
the lengths —3.5a, of Hara and Fraser** and —4.4a, of
Lee and Jones® give reasonable results within our
theoretical approach, the value —2.8a, of Tsai et al.*’
appears distinctly too high. The s- and p-wave shifts are
sensitive to the short-range behavior of the polarization
function.

Relativistic effects play a much smaller role in positron
scattering than in electron scattering, evidently as a result
of the repulsive Coulombic interaction between the posi-
tron and the nucleus. In particular, the spin-polarization
effects of positron scattering are extremely small. The
most pronounced relativistic effect is the small phase-
shift increase associated with the relativistic contraction
of the target orbitals.
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