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Laser Doppler velocimetry experiment with a water flow to measure
the Fourier transform of the time-interval probability:

Comparison between experimental and theoretical results
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In this paper a laser Doppler velocimetry (LDV) experiment with a water flow is performed to
show that the experimental results for the Fourier transform of the two-photon time-interval proba-
bility QF(v) agree with the theoretical results derived in previous papers. The conclusions of these
papers can therefore be applied to a real LDV experiment. It is concluded that by using this tech-
nique for small scattered intensities the velocities can be obtained with much more accuracy than by
measuring the autocorrelation function g' '(~). The values of the intensity and of the Doppler fre-
quencies that can be used are discussed.

INTRODUCTION

When carrying out a laser Doppler velocimetry (LDV)
experiment in the low-scattered-intensity limit, one usual-
ly measures the intensity autocorrelation function' gI '(r)
from which the velocity distribution function is obtained.
Recently, a technique consisting of measuring the
Fourier transform QF(v) of the two-photon time-interval
probability was proposed in order to apply it to LDV ex-
periments where a small signal was obtained. Later, '"
more detailed studies of this technique were made. A
theoretical model was obtained and verified by computer-
and optical-simulation methods. It was found that, for
small signals, QF(v) has a very simple mathematical ex-
pression and it is able to improve greatly the errors in-
volved in the velocity determination.

The aim of this paper is to measure QF(v) in a LDV
experiment with a water flow to verify that the theoreti-
cal model studied previously works well in a real experi-
ment, in order to generalize the results obtained from
computer- and optical-simulation methods.

EXPERIMENTAL SETUP

A 10 mW He-Ne laser beam (TEMoo mode) was used
to produce an interference-fringe system at the point P
where the velocity of the fluid was measured. Mirrors
M, and Mz were used to reduce the length of the setup
that was mounted on a steel-honeycomb optical table.
The pieces placed between M& and Mz were used to
change the Gaussian intensity profile of the laser beam
into another with an approximately constant intensity by
using the holographic method of Quintanilla. The mi-
croscope objective Oi and collimator C& were used to ex-
pand the diameter of the laser beam in order to filter it
with the holographic filter H. Another system (Cz, Oz)
was then used to reduce the diameter of the laser beam
that passed through a spatial filter (SF) to eliminate
diffracted light. A beam splitter (BS) and an optical sys-
tem (Lt ) were used to produce the interference fringes,
with a fringe spacing equal to 2.47 pm. Light scattered

LASER

In LDV experiments, lasers operating in the TEMOO
mode are used whose intensity varies with the distance to
the axis of the beam as a Gaussian function. Frequently,
severe difficulties are encountered when LDV techniques
are used to measure velocities in a turbulent flow because
of the Gaussian character of the intensity profile of the
laser beam. This laser beam can be transformed into
another one whose intensity does not change with the dis-
tance to the axis, by using a holographic filter, to avoid
the difficulties explained above. The theoretical model
for QF(v) was obtained supposing that a differential LDV
system was used with a device that changes the Gaussian
intensity profile of the laser beam into another one with a
constant intensity to simplify the results. In our experi-
mental setup these conditions were taken into account as
it is shown in Fig. 1.

C)

Ls L2

pew():: p 0

02 D, F

Flow

L) BS

C2

SF
2

FIG. 1. Experimental setup: Ml, M2, mirrors; O&, Oz, micro-
scope objectives; C&, C&, collimating lenses; H, holographic
filter; SF, spatial filter; BS, beam splitter; L& Lp L3 L4, lenses;
F, filter; and Dl, D„diaphragms.

40 362 1989 The American Physical Society



LASER DOPPLER VELOCIMETRY EXPERIMENT WITH A. . . 363

from seeded particles passing through the fringes was fo-
cused on a pinhole (Dz) by a zoom-lens system (L2 and
L3 lenses). The light passing through D2 was sent to the
detection system (Fig. 2) by means of lens L4. The filter
F and diaphragm D] were used to adjust the value of the
scattered intensity.

The detection system is schematized in Fig. 2 and con-
sists of the photomultiplier (PM}, amplifier-discriminator
(AD), time-interval meter (TI, controlled by the comput-
er, corn), and a frequency meter (FM) to measure the sig-
nal photocount rate.

EXPERIMENT

To perform the experiment a water flow from a tap was
introduced into a glass pipe with a 30-mm diameter, the
distance from the tap to the interference fringes being
larger than 4 m. The frequency of the LDV signal was
always near 40 kHz. Therefore, to avoid signal perturba-
tion by dark noise, we could not use photocount rates
smaller than 0.2 photopulses in a period of the signal.
Therefore we made measurements of Qz(v) for three
values of the mean number n of photopulses in a period:
0.2, 0.5, and 0.75.

To compare these experimental results with the
theoretical ones we must take into account that the
theoretical model was derived for a flow with a constant
velocity, whereas in a real experiment a velocity distribu-
tion is obtained because of velocity unstabilities and small
turbuluences. On the other hand, light other than that
scattered from seeded particles is also detected and con-
tributes to a background in the signal that was not con-
sidered in the theoretical model.

Let us consider a LDV experiment where a laser beam
with a constant intensity profile is used. Let us suppose
that the fluid has a constant velocity and there is not
background. When a seeded particle passes through the
interference fringes the scattered intensity can be written
as

I(t}=I,[1+M cos[2vrv, (t —tp)+P;]) (tp ~ t ~ tp+b ),

the mean intensity of the signal in the interval (tp tp+6).
The frequency of the signal is related to the velocity Vby

v, = V/d, (2)

I(t)=I', (4)

and the values of Q~(v) can be calculated from the ex-
pression that corresponds to Q~~'(v„v) for M=O and
Is =I& [see Eqs. (1) and (4)]. In this case where only a
background is detected with an intensity I~, Q~ '(v) will
denote the function Q~(v) and only the peak around v=0
appears.

Finally, we shall consider the usual case where the
detected photopulses are obtained from two different
sources: the LDV signal due to a velocity distribution
and the background due to the stray light. In this case
Qz(v) must be a linear expansion of the Fourier trans-
form of the time-interval probability corresponding to the
signal Qz'(v) and to the background Qz '( v):

d being the distance between two consecutive maxima in
the interference fringes. In this particular case,
Q&"(v„v) denotes the function Qz(v), where the frequen-
cy (v, ) corresponds to a signal (s) with no background.
When QF'(v„v) is studied as a function of v, it is found
that it passes through two narrow peaks. The higher one
occurs for v around zero and the smaller one for v
around v, . This later peak can then be used to determine
v, and, therefore, V.

Let us now consider the case where there is a velocity
distribution and no background. Since there corresponds
a Doppler frequency to each velocity [Eq. (2)] the veloci-
ty distribution originates a frequency distributions P(v, ).
If P(v, ) is a normalized function and we mean by Q~"(v)
the function Q~(v) in this case, it is obvious that

Q~"(v)= f P(v, )Q~"(v„v)dv, .
0

In this case the smaller peak consists of a superposition of
the peaks that correspond to the different values of v, ~

If we now consider a case where there is no Doppler
signal and only a background is detected, we have

where M is a visibility factor, v, is the frequency of the
signal, P; is the phase of the signal in the beginning of the
fringes, b is the time the particle takes to cross the fringe
system from the instant t0 to the instant t0+ 5, and I, is
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FICx. 2. Detection system: PM, photomultiplier; AD,
amplifier discriminator; FM, frequency meter; TI, time-interval
meter; and comp, computer.

QF ( v ) =a, QF'( v ) +a~ QF '( v ) .

Since in this paper we want to show that the experi-
mental results agree with the theoretical ones in a LDV
experiment, we measured Qt;(v) for six diff'erent cases
and we tried to fit Eq. (5) to these results. to do this we
evaluated Q~"(v) from Eq. (3) and the expression for
Q~"(v„v} obtained in Ref. 3. To evaluate QF (v) we

used the expression for Q~"(v„v) with a modulation fac-
tor equal to zero. The numerical results obtained from
these fittings are shown in Table I. Figures 3 and 4 show,
as an example, the graphical results for n =0.2.

It is worth mentioning that in the theoretical model it
was supposed that the intensity was constant across the
laser beam, whereas the laser beam obtained from the
holographic filter (cases 1 —3) has a central area where the
intensity is approximately constant and decreases
smoothly towards the edge of the beam. In spite of that
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TABLE I. Results of the fitting between experiment and theory. In cases 1, 2, and 3, QF(v) was mea-
sured with the holographic filter (rectangular intensity profile) and in cases 4, 5, and 6 QF(v) was mea-
sured without it (Gaussian intensity profile). In this table n~ is the mean number of photopulses in the
mean period of the signal (1/v, ); I, and I& are the signal and background intensities, M is the visibility
factor of the signal [Eq. (I)], and a, and as give us the proportion of signal and background in QF(v)
[Eq. (5)).

Case n

0.2
0.5
0.75

I, (photopulses/s)

7500
18 750
26 000

0.75
0.70
0.70

v, (Hz)

40 100
41 630
40 800

I~ (photopulses/s)

24 000
60 000
87 000

0.2
0.5
0.75

7500
18 750
20 250

0.78
0.78
0.70

41 750
41 550
41 350

24 000
60 000
87 000

it can be observed (Fig. 3) that there is a good agreement
between experimental and theoretical results. It was
found that the velocity of the water flow was not con-
stant, so a frequency distribution P(v, ) appeared because
of velocity instabilities and possible turbulences. In all
three cases P( v, ) was found to be Lorentzian shaped hav-

ing a width [full width at half maximum (FWHM)] ap-
proximately equal to 4 KHz. Therefore the results for
P(v, ) were independent of the photocount rate as expect-
ed. It can also be observed (cases 1 —3 in Table I) that the

variations of I, /Iz, M, v„and a,. /az with n are negligi-
ble if one takes into account that the water flow was not
perfectly stable (see values of v, in Table I). From the
theoretical model, noise in QF(v) can be calculated. In
the example of Fig. 3(b) [detail of the peak from which
P(v, ) can be obtained) 10 samples of the time interval
were used to obtain QF(v). This is equivalent to a data
accumulation time of 12 sec. From the theoretical mod-
el it is obtained that noise is of the order of 0.04 times
the value of QF at the maximum of the peak, that is in
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FIG. 3. Experimental (dotted line) and theoretical (solid line)
results for case 1 in Table I: (a) curve with the two expected
peaks and (b) a detail of the smail peak, from which P(v, ) can
be obtained.

FIG. 4. Experimental (dotted line) and theoretical (solid line)
results for case 4 in Table I: (a) curve with the two expected
peaks and (b) a detail of the small peak, from which P(v, ) can
be obtained.
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good agreement with Fig. 3(b). So it is obvious that the
theoretical model for QF(v) works well in a real experi-
ment.

Measurements in cases 4—6 in Table I were carried out
once the pieces placed between mirrors M, and M2 (Fig.
1) were removed in order to use the laser beam with its
own Gaussian intensity profile. In Fig. 4 it can be ob-
served that in spite of the substantial difference between
Gaussian and rectangular profiles, there is a good agree-
ment between experimental and theoretical results. On
the other hand (cases 4—6 in Table I) the values of I, /I~,
M, v„and a, /a~ are approximately equal to the ones ob-
tained when using the holographic filter. The same
occurs with the distribution P(v, } and noise in QF.
Therefore the theoretical model derived for rectangular
intensity profiles seems to be applicable to LDV experi-
ments where laser beams with an ordinary Gaussian
profile are used.

CONCLUSIONS

From the above results we can conclude that the
theoretical model for QF(v) works well in a real experi-
ment. Therefore, the conclusions previously derived
from this model agree with the results of a real LDV ex-
periment.

In particular, we note that for small intensities the ve-
locities in a Sow can be obtained from QF(v) with a much
smaller error than the velocity distribution obtained
from g' '(~) (that error can be divided by a factor ranging
from approximately 10 to 100, if QF(v) is measured).
Therefore in those experiments where high-power lasers
are used to obtain enough signal to derive a velocity dis-
tribution from g' '(r) with a small error, a lower laser
power can be used if the velocity distribution is obtained
from measuring QF(v). On the other hand, the measure-
ment of QF(v) allows us to improve those LDV experi-
ments where a very small signal is obtained when using
high-power laser beams.

Furthermore, the signal for a constant velocity is very
simple when the scattered intensity is small. In this case
QF"(v„v) consists of two peaks centered at v=O and
v= v, . For values3 of I, /v, ~ 0.2 and I, b, ~ 4 [see Eq. (1)]
these peaks are Lorentzian shaped. For values of
I, /v, ~ 0. 1 and I,b ~ 2, the values of v, can be directly
obtained from the maximum of the peak around v, with a
systematic error smaller than 0.1%. Therefore, for small
intensities, v, can be obtained from QF' (v„v) in a much
simpler way than from g' '(~).

As in all LDV processing techniques there is an upper
limit for the velocities that can be measured from Q~(v).
We have found that when measuring QF(v) with a
photon-counting system having a cutoff frequency v„ the
frequency v, of a periodic signal can be obtained from
QF(v) with an error smaller than 0.1% for v, ~ 0. lv, and
smaller than 1% for v, ~ 0.4v, . Since, at present,
photon —counting systems with v, = 1 GHz are available,
frequencies up to 100 MHz (0.1% error) that corresponds
to a velocity near of the sound velocity or up to 400 MHz
(1% error} can be measured. Therefore, QF(v) allows us
to measure high velocities.

When the velocity of the Auid varies with time the
values of the Fourier transform of the time-interval prob-
ability are related to the frequency distribution by Eq. (3).
Since for small intensities QF"( v„v) is Lorentzian
shaped Qz"(v) is a convolution integral from which
P(v, ) can be obtained. At present we are studying the
problem of obtaining the velocity distribution from
P(v, ).
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