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Possible rigid rotations in two-electron atoms
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The path-integral formulation of quantum mechanics has promoted the study of classical periodic
trajectories. In this spirit, the three-body Coulomb problem with a nucleus of infinite mass is con-
sidered in the special case of a rigid rotation. Using only Newton's fundamental law for a classical
atomic system, one can show that both electrons must be equidistant from the nucleus, and one ob-
tains the solutions previously derived by Klar [Phys. Rev. Lett. 57, 66 (1986); Z. Phys. D 3, 353
(1986); J. Opt. Soc. Am. 8 4, 788 (1987)]. Nevertheless, if one allows the charge at rest to be arbi-

trary, one finds that for Z less than unity unsymmetrical solutions may exist. The stability of each
of these configurations is considered. In each case an exponentially increasing solution is present,
but the unstable character is less marked in the unsymmetrical configuration. Possible conse-
quences for atomic systems are discussed.

I. INTRODUCTION

The remarkable successes of quantum mechanics in
modern physics have established it as the only valuable
tool in the interpretation of microscopic phenomena.
However, considerations from classical mechanics may
be really useful in various cases, especially concerning
states with some "classical character" such as the Ryd-
berg levels. ' Besides, it came to the physicist's attention
a few decades ago that some intrinsically quantal values
could be extracted from a classical-mechanics analysis
through the correspondence principle. Though its ap-
plicability range is a priori restricted, it has been shown
that a suitable choice of the classical trajectory parame-
ters gives correct values for a wide variety of matrix ele-
ments. Furthermore, the exact quantal computation of
certain matrix elements may be cumbersome, while their
corresponding semiclassical expression remains tract-
able. In addition, some years ago it was pointed out by
several authors ' that, using a path-integral formulation
of quantum mechanics, the spectrum for nonintegrable
systems can be derived through the analysis of periodic
orbits. Moreover, classical mechanics came back to the
foreground of modern physics quite recently in connec-
tion with the domain of chaos. ' This revival of
classical-mechanics studies suggests their application to
atomic spectroscopy and more explicitly to doubly excit-
ed states, which are now under active investigation. ' It
should be remembered that the pioneering work by Wan-
nier" on multiple ionization was based on a classical
analysis. In the same spirit, Klar' has recently demon-
strated that rigid configurations exist in two-electron
atoms. Several justifications can be found to this ap-
proach. One then has the ability to describe atomic sys-
tems with strongly correlated electrons. %'hile the three-
body problem is not separable in classical mechanics and
thus cannot lead to quantization via Bohr's correspon-
dence principle, the search for stable periodic orbits may
allow quantization using the approach of Gutzwiller. '
This description relates the doubly excited atom spectros-

copy to the more familiar molecular spectroscopy. Final-
ly the well-known Wannier configuration" appears as a
special case of such rigid configurations. Klar uses a top
description of the "solid" formed by the two electrons
and the nucleus, and the equations of motion are derived
through a six-variable Lagrangian formalism. In this pa-
per we would like to show that such a motion may be
studied in an alternative and perhaps simpler way using
the fundamental law of point dynamics. For atomic sys-
tems, our derivation explicitly establishes that the dis-
tance of both electrons to the nucleus is equal. This sym-
metry property arises from the explicit expression of the
Coulomb force, and from the fact that the nucleus charge
Z is at least equal to 1. We then show here that removing
this constraint leads to unsymmetrical solutions; a par-
tially screened nucleus charge could give a physical im-
age of this situation. Furthermore, a stability analysis of
such solutions provides pieces of information about the
spectrum of doubly excited states as well as a classical
picture for autoionization, which has been developed in
an alternate way by other authors. '

II. BASIC FORMALISM

Rotating rigid solutions for the classical N-body prob-
lem have been recently investigated by Gerver' in the
case of N particles with equal masses and charges of
equal absolute values, with N ranging from 3 to 5. Our
present aim is to search for solutions to the three-body
problem in classical mechanics where the distances ~r, ~

and r2~ from each electron to the nucleus and their mu-
tual distance

~ r, 2 ~
are time independent. In this work,

the nucleus is assumed to be at rest at the origin of the
coordinates. If the attractive force acting on electron n is
written —

cp, r, , and if the repulsive force on electron 1

(2) is —P(r, 2 )r, 2 [+P(r,~)r, 2), the classical equations of
motion are

(la)
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d r2 = —Pr, —
(&p

—P)r
dt2

For the Coulomb interaction one has

(lb)
ly verifies that

CI Sl CI I Sl I CI CI I Sl Slt CI S/I

Sl CI t 0 (9a)
Z

0'n
rn

3

(2a)

(2b)

CI2 SI2 Cl I 2 SI t2 0 (9b)

The four vectors C', C", S', and S" are orthogonal. In
the three-dimensional space, one of them must be of null
length, and because of (9b), only one frequency is present:

(Q —p, +P)r, (Q) —Pr2(Q) =0,
—Pri(Q)+(Q —p2+P)r2(Q) =0 .

(4a)

(4b)

The secular equation is even with respect to 0 and is
written as

(S —Q )(S —2P —Q ) —D =0,
where

(5)

Atomic units are used throughout. Since all distances are
kept fixed, the basic differential system (1) is linear with
time-independent coefficients. Its general solution is a
linear combination of exponentials. The nature of system
(1) ensures that scalar variables are coupled pair by pair
(u being any of the three fixed rectangular axes, r, u is

only coupled to r2. u). This system is simpler than true
solid-motion equations, where the various angular
motions are coupled.

Since (1) is a second-order system, the general solution
is a combination of four exponentials. Due to time-
reversal invariance, if e' ' is a solution, e ' 'is a solution
too. Writing

r„(t)=r„(Q)e' ' (n =1,2),
where r„(Q) is taken as a time independen-t, possibly corn
plex value, system (1) transforms into

r, (t) =r', (t) =C'cosQ't +S'sinQ't, (10)

(Q') —y, +Q
(C'cosQ't +S'sinQ't), (11)

and a similar expression for r2'(t). Inspection of formulas
(10) and (11) immediately shows that r, (t) and r2(t) fol-
low a uniform circular motion at the same frequency and
are colinear. Then, one demonstrates very simply that
these vectors must be opposite. Clearly, both electrons
cannot be on the same side of the nucleus because they
repel each other and because y(r) is a decreasing func-
tion. Alternatively, if the electrons are on both sides of
the nucleus, writing the equilibrium equation for each
electron gives

—ri2$= —rip, +Q ri = —r2y2+Q r2 . (12)

Assuming here that rp(r) is a decreasing function [the
Coulomb force (2a) fulfills this condition], the quantity—re(r)+Q r is thus monotonically increasing and Eq.
(12) implies

with ~C'~=iS'i and C' S'=0; an alternate expression
holds when changing primes to double primes. Using Eq.
(4a) one gets

(Q') —yi+P
r2(t) =r2(t) = r', (t)

S =
—,
'

( 0', +0 2 ),

Its solutions are

0'Q2 S y+(D 2+ y2)1/2

(6a)

(6b)

(7)

r[ =r2

In the "nondegenerate" case, the position vectors of both
electrons r, and r2 are opposite and undergo a uniform
circular motion. This is the rotor (or Wannier)
configuration.

IV. SOLUTION IN THE DEGENERATE CASE

Since P never cancels [see definition (2b)], Q' and Q" are
always distinct. The only possible "degeneracy" occurs
when one of the roots cancels. This case is explicitly
studied below.

Let us now consider the "degenerate" case where the
frequency Q" cancels [Q' never cancels since from (7)
this quantity is always greater than (pi+f2)/2]. From
Eq. (7) and definition (6) one derives the degeneracy con-
dition

III. SOLUTION IN THE NONDEGENERATE CASE
1 1

(14)
Assuming nondegeneracy, the general solution of (1)

may be written as

r, (t) =C'cosQ't +S'sinQ't +C"cosQ"t +S"sinQ"t, (8)

An analysis completely similar to the one for the "nonde-
generate" case shows that

where the constant vectors C', C", S', and S" are real.
We now express the condition that ~ri(t)~ must be time
independent Expanding the sq. uare of expression (8) and
cancelling each coefficient at nonzero frequency, one easi-

r, (t) =%+9' .

In (15a), % is a rotating vector at frequency Q'

%=C'cosQ't +S'sinQ't

(15a)

(15b)
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and 9' is a time-independent vector. The invariance of
~r&(t)~ ensures that

—2/3
2/3

0'1+ 0'2

C' S'=0,
C' —S' =0

A V=0.

(15c)

(15d)

(15e)

Z
0'10'2

- 2/3 4/3 4/3
V'2 0'1

O'Z V'1

X[(q )q2) (V2
—

0 ))
Relation (4a) allows us to derive the components r2(fl')
and r2(Q" =0). Using the degeneracy condition (14), one
readily obtains If we define the ratio

(22)

(16)

f2

1/3

(23)

The relative position r12 is thus
after some elementary algebra, Eq. (22) transforms into

0'2
r» ——r2 —r, = —1 % — 1+ 9'.

0'2
(17)

( 1+„3)2/3 —Z2/3 1+ 2+ 2r
1+r +r (24)

Using relations (15a), (15e), (16), and (17) one can ex-
press r&, r2, and r&2 as functions of A and V:

2/3
Zr2=

1
=A +9' (18a)

r2=
2

Z
2 2

0'2 &2 0'&
&2

0'2
(18b)

2 22, 2/3 V2 01 ~2 01 V2
r12=@ (18c)

(19)

Two cases must be distinguished here. If the attractive
forces are such that

Since r is essentially positive, one clearly has from (24)

(25)

Inequalities (25) cannot be satisfied for atomic systems in
which Z is at least equal to 1. Thus for Z ~ 1, relation
(13) holds and Klar's solutions are the only ones possible.
Nevertheless, it is worth noting that (24) may be fulfilled
for r different from 1 in systems such that Z is less than
unity. This remark applies for classical charged systems
with moving particles of charge +Z, and a fixed particle
of charge —Z2 with Z2 less than Z, . It could possibly
apply to atomic systems with a nucleus partially screened
by inner electrons.

The relation between Z and r as stated by (24) is plot-
ted in Fig. 1. It proves that when

one deduces from (16)

r2(r) =% —9',

and from (14) and (18c),
2
1

(4z)'" '

(20a)

(20b)

1&Z & t(3) /2 0 459 (26)

Eq. (25) for r admits a real solution between 0 and 1. An
example of such an unsymmetrical configuration is illus-
trated by Fig. 2, in the case Z =

—,'. When Z tends to the
minimum value stated in (26), the ratio r tends to unity;
r, (t) and r2(t) are then symmetrical with respect to the

1— 1
r1(4Z)2/3

(20c)

This is Klar's solution. ' The positions r, and r2 are
symmetrical with respect to a plane perpendicular to the
rotation axis X

A second case needs further consideration. If the
quantities y, and y2 are no longer equal, one can solve
the system (18a), (18b) with respect to % and 9' and ob-
tain

- 0.5—

4/3 4/3
~2 z2/3 2 &2

V'1 4 4
%2 V'1

Z
0'10'2

2/3 8/3 8/3

4 4

Introducing the values (21) in (18c) we get

(21a)

(21b)
FICx. 1. Ratio of the electronic distances from the nucleus as

a function of the fixed charge Z in the unsymmetrical
configuration.
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characteristic exponents. '

The linearized equation of motion for particle 1 in the
rotating frame is

3r, (5r, r, )
—5r, 3r,2(5r, 2 r i2) —5ri2

—20X5r, —QX(QX5r, ), (27)

where r& is the unperturbed position for particle 1, as
determined above, and r, 2 is the difference r2 —

r&, r, and
r &2 are the unit vectors in these directions. The linear
equation (27) together with the corresponding equation
for 5r2 can be projected on three axes in the rotating
frame. Let i and k be the unit vectors parallel to the ro-
tating direction A and to the fixed direction V, respec-
tively, and let j be k X i. One writes for each electron and
for their relative position their unperturbed coordinates
in this rotating frame:

r „=cos&„i+sin8„k (n =1,2),
r, =cosei+sinek .

(28a)

(28b)

FIG. 2. Example of an unsymmetrical configuration in the
case Z =

—,'. The ratio r, /r2 is here equal to (2' —1)' '=0.745,
and the squared rotation frequency is Q = (2' —1 ) /r i

= 1/r &.

The rotation axis is parallel to X Coulombic and centrifugal
forces are indicated for each electron.

5r„(t)=5r„(co)e'"', (29a)

with

In the case considered by Klar, 8„ is + arcsin [(4Z) ' ']
[see (20b)] and 6 is tt/2. In—the Wannier configuration,
the above formulas apply with 0, =0, t92=0=~. If we
are looking at harmonic oscillations, 5r] and 6r2 vary as

5r„(co ) =x„i +y„j+z„k . (29b)

plane containing the nucleus and orthogonal to X Then
if Z increases, the dissymmetry gets higher and higher.
In the limit of Z close to unity, the ratio r tends to zero;
one electron then moves in a plane almost containing the
nucleus, while the other describes a small circle around
the angular momentum axis (the V direction) far from the
nucleus. We then have a picture of an atom with weakly
correlated electrons. Of course when (26) is fulfilled, the
symmetrical geometry characterized by (13) and (20) is
also possible. When varying r from 0 to 1, one therefore
has classical solutions varying continuously from un-
symmetrical to symmetrical motion, or in other words
from a situation of independent electrons to a situation of
strongly correlated electrons. Besides, the presence of
several equilibrium states may increase the stability of the
system, as is discussed below.

V. STABILITY ANALYSIS

A. General

Once the classical rotation motions have been charac-
terized, one has to analyze their stability properties. Us-
ing traditional methods of classical mechanics, ' we con-
sider small perturbations around the derived solutions,
linearize the equations of motion, and look at the charac-
teristic frequencies. For Hamiltonian systems, this
method is equivalent to the analysis of Liapunov's

The amplitudes 5r„(co) of this displacement obey the ma-
trix equation

5ri(co)+5r2(co)
(30)

B. Stability of the Wannier configuration

In the Wannier case, the characteristic frequencies can
be found easily. Expressing the squared frequencies in
units of II (II is the angular frequency of rotation), one
obtains the six solutions

co] =0 (31a)

(31b)

The 6X6 matrix JM is expressed in Table I versus the
above-defined angles O„and 6 and versus the quantities
y„and P. In Eq. (30) a six-component vector is built with
the sum and the difference 5r, (co)+5rz(co) to benefit from
the symmetry in the exchange of the electrons. One has
to search for the co values cancelling the determinant of
A, and to analyze the corresponding motions; generally
speaking, this determinant is a polynomial of sixth degree
in co . We will now study separately each of the above-
distinguished cases: the Wannier configuration, and the
Klar solution in the symmetrical and unsymmetrical
cases.
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TABLE I. Matrix elements of A, , involved in the stability analysis of rotating rigid configurations.

X„(n = 1,2) being a quantity relative to electron n, one defines (X)=(X, +X2)/2, bX—:(Xz —X, )/2.

M P
P M+N

co'+ a 2i b co

M = —2ibco A@2+c
d 0

0
co +e

fog
P= 0 A 0

0 D
N= 0 C 0

D 0 F.

a =0' —(p(1 —3cos'8))
b=A
c =0' —(q )
d =3(psin8cos0)
e = —(y(1 —3sin 0))

f= —6 [cp( 1 —3 cos'0) ]

h = —hcp

g = 3b(y sinOcosO)

j = —A[g(1 —3 sin'8)]

3 =2/(1 —3 cos'0)

C =2/
D = —6P sin8 cosO

E =2/(1 —3 sin'6)

CO 4 (31c)

(31d)

y, = —
y2 = —

—,'an't +b,
z] =z2=0,

(32b)

(32c)

A)6 = 1 — ——(9g —8g) '1
(31e)

where

Z
Z ——'

4

(31f)

x) — x2 =a (32a)

These squared frequencies are plotted in Fig. 3 versus the
parameter Z (which is the only variable in the present
formalism).

The first three frequencies can be easily interpreted in
terms of Keplerian motion. The zero frequency corre-
sponds to a symmetrical motion in the z, =0 plane. One
obtains explicitly

x& =y& =x2=y& =0, (33a)

z] z2 ~ (33b)

This motion is simply obtained from the unperturbed one
by tilting the angular momentum (or the plane of motion)
by a small angle. The presence of the frequency equal to
1 only refers to the space isotropy.

The second possible motion at frequency co= 1 devel-
ops in the z„=O plane and preserves the condition

where a and b are constants. This solution is obtained
through a spatial dilatation. If all distances are multi-
plied by (1+a/ r, ~), according to the third Kepler law,
the rotation frequency experiences a relative variation
60/0 equal to —3a/2~r, ~, and in the rotating frame the
particles acquire a tangential backward linear velocity
equal to 3aO/2.

The frequency co = I is degenerated. Analyzing the
sytem (30) in this case, one first finds a motion along the
rotation axis:

r, (t)+r (t)2=0 .

One finds explicitly,

2ix& y2= —2ix, .

(34)

(35)

FIG. 3. Plot of the squared frequencies co in the Wannier
configuration as a function of the nuclear charge Z (in units of
the squared rotation frequency 0 ). Frequency co=1 is degen-
erated. One of the eigenvalues is negative, corresponding to an
exponential solution exp(+

~
co

~
t).

G-oing back to the laboratory frame, the electrons move
on weakly eccentric elliptical orbits. As stated by (34),
these ellipses are symmetrical with respect to the nu-
cleus. '

Up to now, we have analyzed motions obeying condi-
tion (34) and which are pure duplications of single-
electron motions. The second group of frequency is far
diferent. The frequency co4 stands for an oscillation of
both electrons in the angular momentum direction. This
symmetric bending of the "molecule" (z, =z~ in this
mode) corresponds to the smaller of the two frequencies
greater than unity in Fig. 3. The presence of such an os-
cillation is related to the stability of Wannier states
versus angular deformations.

The last two modes ~& and co~ correspond to unsymme-
trical motions in the z, =0 plane:
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X) =X2 (36a)

yi =y2 (36b)

(one has to remember that the Wannier equilibrium
configuration is r&= —rz). Frequency co& is the largest in
the list (31) and corresponds to an unsymmetrical vibra-
tion, combining bending and stretching coupled by the
Coriolis force. In the rotating frame, 6r„(t) moves on a
small elliptic trajectory.

Finally, one can easily check that the last quantity co& is
negative whatever the nuclear charge. This means that
one can achieve an exponentially increasing (or decreas-
ing) motion. For example, in the helium atom (Z =2),
one obtains the relation y, = —2. 36x&. For positive x,
electron 1 escapes from the nucleus, and its angular fre-
quency is smaller than Q. Conversely, electron 2 comes
closer to the nucleus with increasing angular velocity.
The atom then autoionizes. As was already known, we
verify that the Wannier solution is unstable versus radial
deformations. In this decay mode, relations (36) prove
that the interelectronic distance ~r, z~ is conserved, as far
as the small-deformation equation (30) holds. The adia-
batic behavior of ~r, z~ is the basis of the molecular
descriptions of two-electron atoms, e.g. , as developed by
Feagin and Briggs. '

C;

FIG. 4. Squared eigenfrequencies co /0 in the symmetrical
Klar configuration, as a function of Z. For Z larger than
2( —', )' ', m', and co6 are complex and conjugated. Their real part

( ——,') is plotted in the solid line, and the absolute value of their

imaginary part is plotted in the dashed line.

C. Stability of the Klar configuration

Q)i —0

M & =2+(4 3 cos2g)l/2

(37a)

(37b)

1 i
co„co6=——+—(24cos 9—9)'i',

(37c)

(37d)

where the angle 0 is the half aperture between electrons;
according to (20b) and (28a), it is determined by

The Klar solution may be studied in the same frame-
work. Cancelling the determinant of matrix A, leads to
the following set of squared frequencies:

yi= y2

z] Z2 ~

(38b)

(38c)

Putting aside the frequency co4 associated with the rota-
tional invariance, one verifies in Fig. 4 that at least one of
the squared frequencies A@5, co6 is negative or complex; the
corresponding motion is unbounded (exponential or oscil-
lating with exponentially increasing amplitude). As the
Wannier solution, this second solution is unstable. In a
similar way, the decay mode preserves the ~r, 2~ value up
to first order in the displacement 6r, confirming the adia-
batic character of the interelectronic distance. '

O=arcsin[(4Z) '
] . (37e)

D. Stability of the unsymmetrical configuration

(37f)

This set of squared frequencies is plotted versus Z in Fig.
4.

One equally checks here that 0 and 1 are eigenfrequen-
cies, corresponding respectively to the transformation
property of Klar's solution versus space dilatation and
rotation. The first group of three frequencies of (37) cor-
responds to motions symmetric with respect to the z=O
plane. Frequencies cu2 and cu3 depict two vibration
modes. The last three frequencies in the set (37) are asso-
ciated with motions such that

X )
— X2 (38a)

For small values of cosO, the frequencies co~ 6 become
both real

cu co = ——'+ —'(9 —24cos 0)' if Z 2( —') =0.506 .

Finally, the squared characteristic frequencies associat-
ed with Klar's unsymmetrical configuration are plotted in
Fig. 5 versus Z in their range of existence. In this case, a
numerical computation of the determinant given in Table
I is necessary. Several conclusions arise from this graph.
On the one hand, one checks that for Z equal to its
minimal value given by (26), the solution branches to the
one obtained in the symmetrical case (37). On the other
hand, if Z tends to unity, one electron is far away from
the nucleus and the eigenfrequencies tend to 0 and 1

(twofold and fourfold degenerate), which characterize the
single-electron atom. Since this unsymmetrical
configuration has invariance properties under spatial dila-
tation and rotation, the eigenfrequencies 0 and 1 (nonde-
generate) are still present for each value of Z. In Fig. 5,
one verifies that whatever Z is, one squared frequency is
negative and two other ones are complex. Therefore, one



3S04 MICHEL POIRIER 40

VI. CONCLUSION

CV

3

FIG. 5. Squared eigenfrequencies m /Q in the unsymmetri-
cal Klar configuration, as a function of Z. For Z larger than
Z;„=0.469 78, two roots are complex conjugated. As in Fig. 4,
the solid line is their real part and the dashed line the abso1ute
value of their imaginary part.

can find exponentially increasing motions with or without
oscillations. In this sense, this unsymmetrical solution is
not that di6'erent from Klar's symmetrical solution. Nev-
ertheless, for Z close to unity, the negative squared fre-
quency is very small (varying as —r ), and the imaginary
part of the complex roots is small too (varying as r ).
Thus the instability character is less marked for un-
symmetrical solutions than for symmetrical ones. This
tends to prove that weakly correlated systems are less un-
stable.

The existence of rigid rotating configurations in classi-
cal mechanics may be established within a v'ery tractable
formalism. It can be generalized to a higher number of
electrons. '" For the three-body problem, we have ob-
tained the two known solutions and predicted a new one
if the nuclear charge is arbitrarily allowed to be less than
unity. One can easily apply the present formalism to a
screened potential intermediate between —1/r and 0 and
one will certainly obtain unsymmetrical solutions, as
those described here. If more than two electrons are
present, one will probably find a series of other unsymme-
trical configurations. It has been shown that all of these
two-electron rigid configurations are unstable from the
point of view of classical mechanics. Quantities
equivalent to the Liapunov characteristic exponents have
been expressed analytically except in the unsymmetrical
case; in the latter case, invariance properties allow a
direct determination of two characteristic frequencies (0
and 1) and the other frequencies have been numerically
computed. For Z close to unity, it has been shown that
the unsymmetrical configuration is almost stable. The
present analysis is not sufficient to obtain a complete
spectrum of doubly excited atoms, since consideration of
all periodic orbits would be necessary: this has been
done in some cases considered in the literature. Never-
theless, it would be interesting to seek in the doubly-
excited-atom spectra for Bohr frequencies corresponding
to the vibration modes analyzed here. As demonstrated
by recent results on atomic magnetism, ' the contribu-
tion of classical mechanics to the quantum spectrum
analysis may be quite significant.
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