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Extended thermodynamics of heat-conducting fluids is used to give explicit formulas for non-
equilibrium energy density of ideal gas expressed as functions of classical variables and the diffusive
entropy flux (a nonequilibrium variable). A Lagrangian density associated with the energy density is
used to obtain the components of energy-momentum tensor and corresponding conservation laws
on the basis of Hamilton’s principle of stationary action and Noether’s theorem. The heat flux ap-
pears naturally as a consequence of a free entropy transfer (independent of mass transfer) and a
momentum transport is associated with tangential stresses resulting from this entropy transfer. The
compatibility of the present description with the kinetic theory is shown. Hamilton’s principle is
extended so that the flux of entropy as well as the fluxes and densities of mass are varied indepen-
dently. The concept of thermal momentum as the derivative of the kinetic potential with respect to
the entropy flux is introduced; this quality plays a fundamental role in the extension of Gibbs’s
equation to describe a nonequilibrium fluid with heat flux.

I. INTRODUCTION

The hydrodynamic laws of conservation of energy and
momentum for fluids can be obtained either from kinetic
theory,' 7 by exploiting conservation of the collision in-
variants, or by using the hydrodynamic variational prin-
ciple of stationary action.>>% In the last case, the in-
tegrand of the action functional contains the so-called ki-
netic potential taken conventionally as the difference be-
tween the kinetic and static energy of the fluid. When
such a definition of L is used, the resulting conservation
equations for momentum and energy describe the so-
called Eulerian fluid in which the heat concept does not
appear (“perfect fluid”). This fact renders the variational
approach considerably more restrictive then the kinetic-
theory approach in which heat and viscosity appear natu-
rally. Starting from a thermodynamic standpoint we
know, however, that a disequilibrium distribution of
states (with heat) must have higher availability than the
equilibrium one. Therefore, we presume that the restric-
tive capability of the variational approach is connected
with too simplified a form of the kinetic part of L, or,
more specifically, with the neglect of some extra availabil-
ity term in the kinetic part of L. This term is connected
with the maximum work obtained during reversible re-
laxation of the (unconstrained) heat or entropy flux to-
ward isentropic equilibrium. (In most typical, purely ir-
reversible situations this availability is dissipated as the
“uncompensated’ heat). In this paper we show that if ex-
tra availability is taken into account in the action func-
tional then the conservation laws obtained from the sta-
tionary action principle contain heat flux and become
compatible with those obtained from the kinetic theory
to within the accuracy of the viscosity-related terms asso-
ciated with the fluid velocity gradient neglected here. (In
the presence of such terms the usual definition of the con-
ductive entropy flux is questionable!® and we will there-
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fore restrict ourselves to the pure heat-flow case where
the quality j,=q7 ' is well established.) Some small
viscosity-related terms associated with the gradients of j
or q rather than the gradients of u will survive.® It is in-
teresting to note that the proof of the compatibility men-
tioned above requires a rather unexpected reasoning
about the connection between the energy and entropy
representations of thermodynamics in the case of none-
quilibrium. By establishing this compatibility we arrive
at our three principal conclusions. The first is that
Hamilton’s principle can be extended to systems with
heat flow, provided that an appropriate Legendre trans-
formation is used to represent the passage from the non-
equilibrium energy to the kinetic potential L. This trans-
form involves not only the usual momentum of unit mass
u related to the mass flux J, but also a thermal momen-
tum variable related to the diffusive entropy flux j,.

Our second conclusion resolves the mystery of the so-
called “kinetic terms”’ that are in turn appearing and van-
ishing in various forms of extended thermodynamic
theory"*7 and which were thus occasionally criticized as
doubtful or simply invalid. It turns out that some kinetic
terms which appear in the entropy representation vanish
in the energy representation and conversely, and that this
effect is connected with the difference between the equi-
librium states which are associated with the two kinds of
information: the first is related to the energy representa-
tion, and the second to the entropy representation of a
nonequilibrium system. While this result seems to be of
importance for foundations of nonequilibrium thermo-
dynamics, its discussion here is restricted to those facts
which are necessary to accomplish the basic purpose of
this work, namely, to extend the field form of Hamilton’s
principle to fluids with heat flow and to show the compa-
tibility of the resulting nonrelativistic energy-momentum
tensor with the well-known outcomes of the kinetic
theory.
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Our third conclusion is that invariance of the station-
ary Lagrangian A and the components of the energy-
momentum tensor G/*, with respect to transformation of
thermodynamic variables, provides a powerful method to
identify unambiguous nonequilibrium temperatures, pres-
sures, and chemical potentials in A and G’*, which then
leads to an extended (nonequilibrium) Gibbs equation
with the “thermal momentum” i, =dL /dj, as the funda-
mental nonequilibrium variable.

The structure of the paper is as follows. In Secs. II and
III we use some known results from thermodynamics and
nonequilibrium statistical mechanics, see, e.g., Lebon,!
which allow one to evaluate nonequilibrium entropies
and energies off, but not far from Gibbs’s equilibrium sur-
face. The expressions obtained are functions of the classi-
cal state variables and nonequilibrium variables such as
heat flux. Next (Secs. IV and VI), by going to an extend-
ed kinetic potential L, we use these results to reach our
first objective, to construct a variational formalism
describing the reversible behavior of one-component
nonequilibrium fluids with heat flow, thereby extending
the well-known variational approach to the hydrodynam-
ics of equilibrium (Eulerian) fluids.> The construction of
the energy-momentum tensor and related balance equa-
tions (via Noether’s theorem, Sec. VII), allows us to con-
struct a bridge between an Eulerian fluid, for which the
heat concept is absent, and the fluid with heat flow, for
which the classical and extended nonequilibrium thermo-
dynamic descriptions hold, respectively, the sense of de
Groot and Mazur® and of Cattaneo.* The proof of the
relevancy of the thermal momentum variable, the Gibbs
equation, the compatibility of our results with those of ki-
netic theory, and the conclusions (Secs. VIII-X) end the
essential body of the paper. Having the balance equa-
tions for momentum and energy, we can pass to irreversi-
ble processes (Appendix) and ask about the kinetic equa-
tion describing the irreversibility of heat flow implied by
the positivity of the entropy generation. We show that
the resulting theory describing the irreversible heat con-
duction incorporates Cattaneo’s generalization* of
Fourier’s law into the context of the conservation laws,’
which we obtain by extending Salinger and Whitham’s
approach.’ The coefficients in the conduction equation
for the ideal gas are also those obtained from Kkinetic
theory.®” In view of this equivalence, the novelty of the
paper is partly methodological; we accomplish the exten-
sion of Hamilton’s approach to the nonequilibrium fluids
in the context of recent thermodynamic findings"”° and
formulate the theoretical argument as a field theory'®!!
to be able to use Noether’s theorem. The theorem allows
us to state and then solve the important problem of an ex-
act form of the energy-momentum tensor for a nonequili-
brium fluid with heat, which has been unsolved so far in
spite of many works done in extended nonequilibrium
thermodynamics.!> But beyond these, the work also
lends improved precision to the theory of nonequilibrium
temperatures, pressures, and Gibbs’s equation, as well as
to the theory of non-Fourier heat conduction,"*” giving
an interpretation of the extended thermodynamic force
for heat transfer in terms of the Lagrangian (see Appen-
dix). The duality of energy and entropy representations

of the thermodynamics and the notion of thermal
momentum are developed here for nonequilibrium pro-
cesses. It is believed that the method presented here will
provide a way to extend the well-known results of the Eu-
lerian fluid theory?>®!3!4 to other examples involving
nonequilibrium fluxes.

II. THERMODYNAMICS OF HEAT FLOW
WITHOUT LOCAL EQUILIBRIUM

We work in the framework of extended thermodynam-
ics of fluids."*” Consider a one-component fluid con-
ducting heat at state A, Fig. 1, off but near the Gibbs
surface(BDC) when the local equilibrium assumption is
inapplicable. The energy of an element of a particular
fluid, moving with the moving frame of reference is the
nonequilibrium internal energy. This internal energy de-
pends not only on the usual state variables (wherever they
have meaning), but also on nonequilibrium variables such
as heat flux or diffusive entropy flux. Here we select the
diffusive entropy flux j,, as the nonequilibrium variable of
choice. It is treated as an unconstrained internal variable
which relaxes to equilibrium. The nonequilibrium energy
density pe of the fluid or its specific energy € is a function
of the fluid density g, specific entropy 5, and diffusive en-
tropy flux j,, the relaxing variable. The equilibrium
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FIG. 1. Three various equilibrium states at the points B, C,
and D corresponding to the energy, entropy, and free-energy
representations, respectively, for the definite nonequilibrium
state, point 4. An observer, knowing p and & (from an experi-
ment or a computation), formulates his thermodynamic descrip-
tion of the state 4 in terms of the equilibrium parameters at C
for the arbitrary set of nonequilibrium variables (here j; or q).
However, one who knows g and 5 (e.g., from distribution func-
tion f corresponding to A) bases his equation on the equilibri-
um properties at B. When point 4 moves, the background equi-
librium states (B, C, and D) vary in time. The conventional pic-
ture of motion in terms of Hamilton’s principle corresponds to
following the behavior of B and its nonequilibrium variables,
whereas the kinetic-theory view corresponds to tracking with C
and its variables. The transition from one view to the other is
achieved by using Eqgs. (93)-(96).
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internal energy density pe of a stable system is the
minimum of pé with respect to unconstrained relaxing j;
at constant g and 5. As g=0 !, the specific volume, the
minimum of pé (or € itself) with respect to j, occurs at
constant specific entropy § and volume ¥ which are the
proper variables at which the energy attains extremum at
equilibrium, as known from classical thermodynamics.’
Since j, is a diffusive flux, the minimum occurs at j, =0.

In the absence of an external magnetic field the rota-
tion of the system does not change the form of the none-
quilibrium function (3,5, j,) which depends then only on
the length of the vector j,; compare the kinetic-theory
expression, e.g., (24) below. The following is the McLau-
rin expansion of & with respect to j; in the vicinity of
equilibrium (j, =0):

é(f,ﬁ,js)Ze(f,ﬁ,0)+%(a2?/ajf)fyﬁjf-f-O(i,p’,jx) , (D
where
é(3,p,0)=e(5,p) (2)

is the equilibrium function of specific energy well known
in thermostatics. Since (3¢ /9j, )ﬁ,f =0 at equilibrium, the
first-order term disappears from the expansion (1), and
the first nonvanishing nonequilibrium term is the term
quadratic with respect to j,. This notion pertains, of
course, to any variable that vanishes at equilibrium. It
has to be remembered that the second derivative
(8%2 /3j2) in Eq. (1) is determined at constant 5 and g and
hence it depends on these quantities as parameters. The
same constraints apply also to the third- and higher-order
terms.

Consequently, with j; as the only independent variable
pertaining to nonequilibrium behavior, and not too far
from equilibrium (i.e., not in the basin of a limit cycle, for
example), the specific internal energy of a nonequilibrium
state can be expressed as

e(3,p,j,)=e(3,p)+Ae(3,p,]),) , (3)
where
Ae=1(d% /3j2)ji +0(5,p,],) (4)

is the nonequilibrium correction to the internal energy;
for sufficiently small j,, Ag can always be approximated
by its jf term.

From Eq. (3) the following general equation for the
perfect differential of € is deduced:

de=d(e +A2)=(de /35 +3AZ /33)ds
+(de /3p)+3Az /3p)dp+(3AE /dj,-d j,)
=[TG,p)+AT,p,j,)]ds +p 2 [P(p,5)
+AP(p,5,j,))dp+a,(5,p,j,)-dj - (5)

Equation (5) defines the corrections AT and Ag which
should be added to T(5,3) and P(p5,5) to obtain the prop-
er values of the derivatives 3¢ /35 and d¢ /9p, Eqgs. (8) and
(9). In the so-called energy representation of thermo-
dynamics,!® the space spanned by ¥ and p takes on j as
an extra variable. For a given nonequilibrium state 4,

the equilibrium state corresponds in this representation
to the point B in Fig. 1. Other reference equilibrium
states can be used depending on the basic thermodynam-
ics variables used; see, e.g., points C and D in Fig. 1 for
isoenergetic (€=const) and isothermal equilibrium. They
correspond, respectively, with using the entropy and free
energy as potentials, i.e., with the entropy and free-
energy representations. Where the choice of definition is
important and not explicit, the subscript notation will be
used to distinguish the reference equilibrium quantities;
i.e., symbols, T, P (), etc., will be used or the variables
of definite representations will be specified. Where there
is no ambiguity, the tilde on symbols T, P, etc., will be
sufficient to describe conventional thermodynamic vari-
ables for a nonequilibrium state and bare symbols for the
equilibrium state. From Eq. (5) one obtains the quantities

TG,p,j,)=TG,p)+ATG,5,§,) , (6)
P(3,p,j,)=P(3,p)+AP(3,5,j,) - )

These are customarily called ‘“nonequilibrium tempera-
tures and pressures.” However, they are limited in the
sense that they are only measures of partial derivatives of
the energy with particular variables chosen to be held
constant in the particular frame of variables which in-
cludes g and 3, namely,

T(3,p,j)=(32/05),; , ®)
P(5,p,j,)=p %32 /3p), ; = — (32 /3D, ; . ©)

The last quantity defined above in Eq. (5) is the vector
variable a(5,p,j,) adjoint with respect to the entropy
flux j, such that

a,(5,p,4,)=(3A2/3j,), , . (10a)

We will also use the entropy flux adjoint based on the en-
ergy of unit volume Age,

i,(5,5,j,)=(3Ape /3j;) (10b)

5,0
which has the dimension of momentum per unit entropy
and is more important than a,. The significance of a;
and i, will be shown later (Sec. VIII). Restricted to the
quadratic approximation of A¢ in Eq. (4) (the case of
small flux j,) on the basis of Egs. (3) and (6)-(9), the
“nonequilibrium corrections” AT and AP caused by the
presence of the flux j; are

AT =L(3’Az /0j235)%9j2 , (11)
AP =(p?/2)(d°Ae /dj0p)™j? , (12)

i.e., they are homogeneous quadratic functions of the flux
J;- The entropy flux adjoint i, is then

i, =(3%Ape /3j2)j, . (13)

In Egs. (11)—(13) the equilibrium superscript means that
the corresponding derivatives are evaluated at j =0.
Therefore, the coefficients of j, in Egs. (11)-(13) depend
on the classical variables (5,p) exclusively, so long as the
expansion (4) with the expansion about equilibrium is
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applicable. The reason we consider the energy represen-
tation is that it is the most natural representation for the
extension of Hamilton’s principle that we are going to in-
vestigate. If, however, the thermodynamic space is
spanned by the @, p, and g-vector variables, one naturally
uses the entropy representation.'>!> By considering the
expansion of the entropy around an isoenergetic equilibri-
um with respect to unconstrained flux q (or j,) one can
obtain the formalism analogous to that presented here in
energy representation. The corresponding formulas are
omitted. It is important to realize that for a single none-
quilibrium state of the system the use of the entropy rep-
resentation and energy representation establish two
different equilibrium states located on the Gibbs surface,
Fig. 1. This of course, is because of the difference in what
is held constant. The distance between these two equilib-
rium states (B and C, Fig. 1), understood, e.g., as the
Weinhold distance'®!” or equivalent probability dis-
tance,'® increases with the distance of the state 4 from
the Gibbs surface. This distance can be measured in
terms of the modulus of the flux j; or in terms of the
module of the excesses AZ= AB or A= AC. When the
curvature of the Gibbs surface can be neglected, corre-
sponding to the near-equilibrium situation, the two
excesses are linked by

Ae=—TAs . (14)

Both equilibrium temperatures pertaining to the points B
or C or nonequilibrium temperature T at A4 are accept-
able in Eq. (14) in the near-equilibrium case. In this case,
any conventional variable (P, T, etc.) can be replaced by
its equilibrium values (P, T, etc.) in the multiplicative
coefficients of any relationship [consider, e.g., Eq. (22)].

III. NONEQUILIBRIUM ENERGY CORRECTION
FROM THE KINETIC THEORY

It is essential to recognize that the entropy representa-
tion is natural for the formalism of the kinetic theory® in
which, by definition, the internal energy comprises the
only contribution except that of macroscopic motion
u?/2 and external field. Hence, the specific energy of an
ideal gas or fluid with heat is equal to the specific energy
at equilibrium C in Fig. 1. The only temperatures and
pressures that appear in the expressions of kinetic theory
are T ¢ and P(,. From this formalism one determines
the nonequilibrium corrections AS or A in terms of the
nonequilibrium density distribution function f. Here, for
the reader’s convenience, we recapitulate the results of
several authors (Grad,® Lebon,! Jou and Casas
Vazquez,”!? and others) for dilute gas of rigid spheres in
the relaxation-time approximation of the Boltzmann
equation. The molecular velocity distribution function f,
out of equilibrium but close to it, is given in the form

FC)=F(C)X1+4,) , (15)

where f is the local equilibrium (Maxwell-Boltzmann)
distribution pertaining to the entropy representation
equilibrium (point C, Fig. 1). f and f are scalars, but
functions of the peculiar velocity C=c—u, and ¢, is a
function of the deviation from equilibrium. This devia-

tion is expressed in terms of the VT in the Chapman-
Enskog method and in terms of the heat flux q in Grad’s
method. Using (15) in the definition of entropy, one in-
tegrates the expression f Inf over all of the space of the
molecular velocity c,

ps=—k [ fInfdec. (16)

Proceeding with development of 3 up to second order in
,, one obtains®

ps=ps+ps'V+ps?, a7
with local equilibrium entropy

ps=—k [ fInfdc (18)
and nonequilibrium correction

ps'V=—k [ f¢,Inf de=0.

This proves again that one deals with the entropy repre-
sentation where the entropy is maximum at equilibrium.
In the energy representation the analogous equation is

peV= [ ¢ ,fmcdc, (19b)

which corresponds to reaching the minimum energy if

(19a)

pe(”=0. The second-order correction to the entropy
density (entropy representation) is

ps@=pas=—1k [ foldc . (20)
Hence

Ae=(kT/2)p [ fldc . 21)

Since the state is close to the equilibrium surface, the
multiplicative factors containing conventional thermo-
dynamic variables can always be evaluated at arbitrary
equilibrium points (B, C, or D in Fig. 1). However, in the
formulas such as Egs. (15), (22), and (23) they were evalu-
ated (in the kinetic theory) for the case of the isoenergetic
equilibrium (point C, Fig. 1). The function ¢,, obtained
in Grad’s method when the system’s disequilibrium is
maintained by a (vector) heat flux q, is®’

¢,=2(m /Pk*T*)(1/2mC*~5/2kT)C-q , (22)

where m is the mass of a molecule. From Egs. (20), (21),
and (22) one obtains for the entropy deviation

AS= —(m /5pPkT?)q’ (23)

and for the energy deviation, Eq. (14), in terms of the en-
tropy flux (j,=qT ! to the accuracy of the thirteenth
moment of the velocity®):

Az =L(m?/kpE=1p % . (24)
We have now abandoned the entropy representation.
When passing from Eq. (23) to (24) the state equation
P =pkTm ~!is used and the constant g is defined as

g =2mTp/5Pk =2m?*/5k?* . (25)

The pressure in Egs. (22) and (25) is the ideal-gas pres-
sure, given by the definition used in the kinetic theory.
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Equation (24), with constant g defined by Eq. (25), is the
characteristic feature of the ideal monoatomic gas (dilute
Boltzmann gas composed of hard spheres). For arbitrary
fluids (polyatomic gases, dense monoatomic gases, and
liquids) one can retain the form of the last expression in
Eq. (24) by using the generalized definition of g obtained
by comparing Egs. (4) and (24),

g(p,5)=p*(3% /3j2) . (26)

In the ideal-gas case the derivative 3% /3j2=2(m*/k?p?)
from Eq. (24) and the definition (25) is immediately
recovered given the definition (26). Sieniutycz’s!® hy-
pothesis about the equality of the kinetic and static none-
quilibrium energy corrections in a thermal shock wave
front can be used to compute (3%2/dj?)* for arbitrary
fluids as T /pc,G and hence g as Tp/c,G where G is the
shear modulus. For the ideal gas, the shear modulus is
just the pressure P (a result known by Maxwell) and
c¢p =5k /2m, which allows one to recover definition (25)
from the expression g=Tp/cpG and supports the hy-
pothesis mentioned above. However, for the purpose of
this paper, the use of the implicit dependence of g on the
basic variables (p,5) will be enough, i.e., the function
g(p,5) will be used when passing to arbitrary fluids.
Equation (24) shows that if the coordinates 3, § (or D), and
j; are used, then (with accuracy to second-order terms)
the nonequilibrium energy correction of an ideal gas does
not depend explicitly on entropy 5. Therefore, the non-
equilibrium corrections AT and AP in the energy repre-
sentation, Egs. (8) and (9), are, respectively,

AT(3,p,j,)=0 27
and
AP(3,p,j,)=p (302 /3p), ; =—gp i - (28)

The entropy flux adjoints a; and j,;, Eq. (10), are, respec-
tively,

a, = (32 /dj,); ,=¢p i (29a)

and

i,=gp lj,=gsv, . (29b)
The entropy diffusion velocity v, =j, /ps was introduced
in Eq. (29b). One could also introduce there the product
kgs, which has the dimension of mass. For the ideal gas
this product is m,=2(m?k ~'), which is a measure of
heat inertia. Equations (27)-(29) can also be obtained
from Eqgs. (11)-(13). From Egs. (6), (7), (27), and (28) one
has for an ideal gas in energy representation

T(s,p,i)=T(5,p) (30)
and
P(3,p,j,)=P(3,p)—gp ~'j? (31

in the sense of definitions (8) and (9). Note that e5=e in
this representation (Fig. 1, points 4 and B).

The nonequilibrium temperatures and pressures were
considered by Jou and Casas Vazquez’ in the entropy

representation. They defined nonequilibrium corrections
to equilibrium quantities in terms of the partial deriva-
tives of the function 's’(?,ﬁ",q) with respect to € and
p ! taken at constant q rather than constant j,. In this
section of our work, “nonequilibrium” 7T and P are
defined in terms of the partial derivatives of the none-
quilibrium energy &(5,5 ~ !, j,) with respect to ¥ and p (or
p ~!=0) taken at constant j,. Furthermore, the refer-
ence (equilibrium) states are not equivalent in the two
representations. When this distinction is kept in mind
the two results become consistent, although in either case
there is no guarantee that q or j, are natural variables of
the Gibbs’s equation; see Sec. VIII for an explanation of
this important point. As Eq. (30) indicates, T of Eq. (30)
is equal to the equilibrium temperature 7'(5,3), which is
both the measure of mean kinetic energy of an equilibri-
um and the derivative of energy with respect to the entro-
py. This equality occurs because we chose the entropy
flux j;, not the heat flux q, as the nonequilibrium variable
in energy function @. If one differentiates the nonequili-
brium entropy 5 with respect to the energy holding q con-
stant, then one obtains the reciprocal of the nonequilibri-
um temperature of Jou and Casas Vazques’ T, which
differs from the reciprocal of the corresponding equilibri-
um temperature 7 by a term quadratic in q. In general,
the nonequilibrium temperatures are not the measures of
mean kinetic energy (understood as the fifth moment of
the both nonequilibrium and equilibrium density func-
tions®®). The nonequilibrium temperatures and pressures
discussed in this section and Sec. IV should be under-
stood as no less and no more than definitive partial
derivatives of the nonequilibrium energy [or measures of
these derivatives as, e.g., Eq. (9)] computed for definite
variables. The same pertains to the corrections AT and
AP. They are generated here for the purpose of collect-
ing definite partial derivatives to be used in variational
computations, but the question of the proper (natural) set
of nonequilibrium variables in 2 is still open. We return
to this question in Sec. VIII.

In what follows, we will always describe the nonequili-
brium states in terms of the equilibrium quantities of
definite representation and nonequilibrium fluxes (j,, or
q). Such a description is representation dependent and
thus needs careful handling; however, it allows one to ex-
ploit the well-known functions of the classical equilibri-
um thermodynamics.

IV. NONEQUILIBRIUM ENERGY EQUATIONS
AND THE KINETIC POTENTIAL

We are now prepared to obtain the two basic quantities
that will be used to characterize the moving nonequilibri-
um gas, the total volumetric energy E, and the corre-
sponding Kkinetic potential L, and to give the explicit for-
mulas for the perfect derivatives of these quantities.
Next, the formulas will be exploited to accomplish the
main goal of this paper, determining the components of
the energy-momentum tensor and the corresponding con-
servation laws for the system considered.

If our nonequilibrium fluid moves with the hydro-
dynamic velocity u (mass flux J=pu) in the weak exter-
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nal scalar field ¥(x,?), the total volumetric energy E of
the fluid is, in the energy representation,

E=pe(3,p)+1p 'git+1p ' F+pp(x,1) . (32)

The first two terms on the right describe, respectively, the
densities of the internal energy at equilibrium and the
nonequilibrium component of the internal energy. The
last two terms express, respectively, the density of the ki-
netic energy and potential energy. In the entropy repre-
sentation the total energy (32) becomes (Fig. 1)

E=pe+1p 'F+pyix,t), (33)

which is just the usual energy formula used in the none-
quilibrium thermodynamics and kinetic theory. Compar-
ison of two representations reveals an effect of appear-
ance or disappearance of various kinetic terms when
passing from one to another representation. Further,
only the energy representation is used for the purpose of
construction of Hamilton’s principle. The perfect
differential of E, Eq. (32) has the form

dE=pTds+(Pp ~'+e—1lgp 2} —Ltul+y)dp
+p "'gj,-dj, +u-dI—pF-dx+py,dt , (34)

where u=Js, F=—Vy (the external force), and
Y, =03y /dt. Equation (34) has a somewhat unusual form
because the variables typical of the Eulerian fluid theory
(with the extra variable j,) are used to express the total
differential of the volumetric energy. When the more
popular variables p5,5,u=1J/p are used and the velocity
of the entropy diffusion v, = j; /p5 is introduced, then Eq.
(34) takes the more conventional form

dE=(T +gsv})d(ps)+(u+¢+u?/2+gpvi)dp
+g3j,-dv,+J-du—pF-dx+pi,dt , (35)

where p=(dpe /dp),; is the equilibrium chemical poten-
tial. Finally, the perfect differential of the specific total
energy € =E /p, the counterpart of (5), is

d(E /p)=Tds—(P—gVijt)dV+gVsv,-dj,
+u-du—F-dx+,dt , (36)

which agrees with Eqgs. (29)-(31). We purposely have
given the several equivalent energy equations (34)-(36)
because it is instructive to observe how the typical energy
derivatives (3E /33, o0F /9p, etc.) depend on the irreversi-
ble flux j, in the system. We have indicated the care re-
quired to specify what is held constant in taking deriva-
tives of E and how the choice affects what one may use as
a nonequilibrium temperature. But surely the physics
must dictate which derivative should be used in any par-
ticular case, not the niceties of the form. Because of this
sensitivity, we operate with isoentropic equilibrium tem-
perature T(p,5) and pressure P(p,5) and the definite

corrections (for definite variables used) as the functions of
v2 or j? and do not yet use any nonequilibrium tempera-
tures or pressures. However, we will return to the ques-
tion of the definition of T and P in Sec. VIII.

The most fundamental quantity from the viewpoint of
purposes of this work is not energy density E but the so-
called kinetic potential L. In Eulerian fluid mechanics
the classical kinetic potential L is the Legendre transfor-
mation of the energy density with respect to the density
of momentum (Fu=1J in the nonrelativistic case). This re-
sult comes, of course, from the mechanics of material
points. However, in the case of a nonequilibrium fluid
described by Eq. (33), the situation is more involved be-
cause the energy may change not only by the motion of
mass (the J flux) but also by the motion of entropy (the j;
flux). Consequently, one has to decide whether to use the
conventional Legendre transform with J only, or to
choose an extended (double) Legendre transform, using
both J and j; or J and i, etc. These two are

L°=(3E /33)-Y—E(p,5,3,]5) » (37

L =(3E /3Y)-3+(3E /3j),-i, — E(p,5,3,];)

=(3E /3¥)-J+(3E /3a,)-a,— E(p,3,7,],)

=(3E /3))-Y+(dE /98i,)-i, — E(p,3,3,i,) . (38)

Due to the linearity of relationship linking j,, a, and i,
the three forms of Eq. (38) yield the same result, Eq. (41).
The unambiguous answer is the latter, L, Eq. (38), as will
be shown in the following sections. The introduction of
the entropy flow terms into (38) is of course an ansatz.
However, we will show that only the extended kinetic po-
tential, Eq. (38), allows one to recover the proper energy
formula, Eq. (32), from the approach through Hamilton’s
principle. Furthermore, Eq. (38) suggests how to general-
ize L if any other independent, nonequilibrium variable is
introduced, in addition to or instead of j,; for instance,
electric current j, and mass diffusion fluxes j;
(i=1,2,...,n) in the multicomponent case.

V. THE APPROACH THROUGH
HAMILTON’S PRINCIPLE

After the Legendre transformation is performed one
may express the kinetic potential L so obtained in terms
of arbitrary variables, i.e., the use of velocities is not
necessary and fluxes J and j; still can be used. The basic
role of the kinetic potential is in its use in Hamilton’s
principle, where, by Noether’s theorem, all components
of the energy-momentum tensor G’* are obtained and the
energy E is recovered in its correct form, Eq. (32), as the
component G* of the G’*. The procedure is illustrated
by the following scheme in which the question marks
designate the originally unknown quantities:
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(39)

where the kinetic potential L can be obtained from either
Eq. (37) or Eq. (38). The energy-momentum tensor that
is sought contains four kinds of quantities. One is the
purely spatial part T% which is the stress tensor (the neg-
ative of T is the pressure tensor). Second are the terms
G*=T"?, the components of the momentum density vec-
tor (J=pu in the classical case), and the third QP the
components of the energy flux vector. When a proper
Legendre transformation is used we expect to recover, as
the component G*, the same energy E as that with
which we started. Therefore, the roles of the complex en-
ergy formulas and complex energy equations such as Egs.
(32) and (34) lie, inter alia, in their provision of all the
components of energy-momentum tensor according to
the scheme (39); using this tensor, we can write down the
balance equations for energy and momentum. With the
energy given by (32), the two Legendre transformations
(37) and (38) yield

L°=15"'1—15"'gjl—pe(p,5)—pi(x,t) (40)
and
L=1p 'P+1p 'gi—pe(p,5)—pix,1), (41)

differing only in the sign of the second term.

According to Hamilton’s principle, the four-
dimensional integral of L taken over the space-time must
be stationary under the constraints resulting from the en-
tropy and mass balances and reversibility of the process.
The last condition is restrictive in the sense that it cannot
allow one to obtain the kinetic equations linking thermo-
dynamic fluxes and forces when irreversible terms are
present. Only truncated forms of these equations
(without irreversible, time-unsymmetrical terms) can be
obtained. One should then additionally exploit the
second law of thermodynamics in order to determine the
class of irreversible terms which are not excluded by this
law. Since, however, the balance equations for energy
and momentum are the same for reversible and irreversi-
ble behavior, one can use Hamilton’s principle to deter-
mine the proper form of the conservation laws, the task
of the present work for the fluid with heat flow. Such
conservation laws, expressed in terms of the four-
divergences of the energy-momentum tensor (constructed
from the kinetic potential L), serve for both reversible
and irreversible processes.

The notion of the thermodynamic reversibility as-
sumed in this work should be explained. Of course, it
corresponds to entropy conservation, i.e., to vanishing

entropy production o =2X ~'j? where X is the heat con-
PY P Js

ductivity. (The entropy production expression for heat
flux is in the form which is identical in classical and ex-
tended thermodynamics.) However, the vanishing of o
can be attained in two limiting cases, through vanishing
diffusive flux (j, =0 or q=0) or through infinite heat con-
ductivity, i.e., taking A—> . The first case is that of the
Eulerian fluid for which, by assumption, no heat ex-
change occurs between the individual fluid particles, so
that j,=q=0 even if AT is finite. (This corresponds to
vanishing of both heat flow and heat conductivity, with j?
tending to zero faster than A, allowing o to go to zero.)
This case is of no interest to us since it removes the heat
and entropy fluxes, truncates our equations, and elimi-
nates the entropy effects which are just what concern us.
Therefore, we are interested in the second limiting case of
reversibility, i.e., reversibility approached by excellent
heat conductivity, a “heat superconductor.” It is similar
to that occurring in so-called collisionless plasmas where
ideal motion of electric charges can occur. An example
of a heat superconductor would be liquid helium or any
fluid or crystal with purely harmonic interactions be-
tween neighboring molecules. However, it should be
remembered that this reversibility is no more than just a
theoretical limit at which we can derive exact conserva-
tion laws from Hamilton’s principle. Any real system for
which we want to apply our tensor G/* need not neces-
sarily be reversible, but only conform to the energy equa-
tions (32) or (34).

If in Eq. (32) the constant g, Eq. (25), is used, then the
case considered would pertain to the kinetic theory of the
nonequilibrium dilute ideal gas. One may wish to consid-
er the effects caused by its generalization to the form (26)
when g depends on g and 3 since such a form is appropri-
ate for real gases and fluids. It turns out that the ideal
gas case is quite special and many substantial properties
of the method used and the system considered are lost or
masked if one restricts oneself to the case of constant g.
Therefore, the general case of an arbitrary function
g (3,p) will be analyzed below.

Hamilton’s principle in the Eulerian (field) representa-
tion of the fluid motion is used here. The constraints re-
sulting form the conservation of mass and entropy are
taken into account by using the method of Lagrange mul-
tipliers. Hence the following expressions,

B(x,t)(3p/3t +V-1)=0, (42)
n(x,0)[9p5 /3t +V-(J5+j,)]=0, 43)

are added to the kinetic potential L in the action integral.
Here 3 and 7 are the field functions describing the La-
grangian multipliers associated with the mass and entro-
py conservation. The sum J35+ j, in Eq. (43) is the total
entropy flux composed of the convective part J5=pus
and the diffusive part j,. As is well known, the diffusive
part j, is related to heat flux, but we make no assumption
about the outcomes of our search for an energy-
momentum tensor G’*. Thus, in this approach, the en-
tropy flux is a more fundamental quantity than the heat
flux q. The relativistic invariance of the total entropy
and the existence of a well-defined relativistic four-vector
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of the entropy, contrasted with the absence of such prop-
erties for the heat flux, support our approach.

In addition to the constraints associated with Egs. (42)
and (43) one more constraint should be taken into ac-
count. This is the so-called Lin constraint? preserving
the identity of each definite fluid particle. It results in the
constancy of the Lagrangian coordinate  a(x,t) of this
particle (da /dt =0) along the path. Scalar a can be used
in the case of our displacement-free model.> Hence the
expression

A(x,t)(pda /0t +J-Va)=0, (44)

with the new Lagrangian multiplier A(x,?) is added to the
kinetic potential L. As a result, the action functional is
obtained

a=[ [ [ [{Lp53,5,50+B3p/3t+V-T)
+7[3p3 /0t + V- (jJ5 +j,)]
+Mpda /3t +3-Va)|dVde ,  (45)

which, however, leads to components of the energy-
momentum tensor G/¥ containing the Lagrangian multi-
pliers explicitly. In order to make A’ and the corre-
sponding G/* physical (without the multipliers) the ex-
pressions (42) and (43) in Eq. (45) are transformed, in the
known way, by using the divergence theorem and reject-
ing four-divergences obtained.?! This procedure does not
affect the stationary conditions of the action and yields

A=[ [ [ [Aava:
:ffff{L(ﬁ’§,1,js,X,t)—(ﬁGB/&r—kJ-VB)
—[pson /0t +(I5+j,)-Vn]
+AMpda/dt +3-Va)ldVdt .  (46)

In the case in which j, =0 in L and in the 7 term of Eq.
(46), our functional goes over into the Eulerian fluid func-
tional, which is the basic quantity serving to construct
the variational theory of this fluid. Many results have
been obtained in this case, but we will not discuss them
here, referring the reader to Refs. 8, 13, and 14, and, in
particular, to the review® where many further references
can be found. It can be shown that the physical meeting
of the Lagrangian multipliers remains the same as in the
case of the Eulerian fluid,'>!'*2! namely, B is the velocity
potential when the flow is irrotational and at the same
time the Lagrangian action of a fluid particle that has the
initial velocity A. The convective derivative of 7 is just a
nonequilibrium temperature T [compare Egs. (50), (54),
and (77)].

VI. STATIONARITY CONDITIONS
OF THE ACTION

The Euler equations of the functional (46) with respect
to the field variables 3,1 allow one to recover conserva-

tion laws for mass, entropy, and identity of fluid particles.
The stationarity conditions of A with respect to the vari-
ables J, g, j,, and S are

for d): 0L /9Y—VB—35Vn+AVa=0, (47)
for 8p: OL /9p—03f/dt —307 /3t +Ada /3t =0, (48)
for 9j,: OL /9j,—Vn=0, (49)
for d5: AL /05 —padn /3t —J-Vy=0 . (50)

These equations are valid for any arbitrary function L
(J,p,3s,5). For the two kinetic potentials L we want to
compare, Egs. (40) and (41), the derivatives 9dL /dJ,
dL /353, etc., are

AL /3Y=p 'J=u, (51)
AL /3p=—[h +u?/2+¢F Lgs 2v*+ 1(dg /3p)p 'i21,

$T2

(52)
AL /dj,= Fgsv, , (53)
AL /pos=—[T(p,5)+1p ~*(3g /33),j:] . (54)

In the above equations and the following text, upper signs
always pertain to L of Eq. (40), and lower signs to L of
Eq. (41).

VII. APPLICATION OF THE NOETHER
THEOREM

The conservation laws and the components of the
energy-momentum tensor can be obtained either by
transforming the stationary conditions or from the
Noether theorem. The second method, although more
formal than the first one, is, as a rule, easier than the first
and is especially recommended if the construction of con-
servation laws is the primary goal and stationarity condi-
tions are of less interest. Since this is the case here, we
will use the formula for the energy-momentum tensor G /%
resulting from the first Noether theorem. It gives the
conditions for invariance of the action 4 with respect to
the translations in space and time in the form of the van-
ishing four-divergence of the tensor G’* and defines the
structure of this tensor, Eq. (56). For the general action
functional

A= [ [ [ [Aax),0a/0%,)dVdr, (55

where a=(a,,a,,...,q;,...,a,) is the vector of field
variables and X=(x,x,,x;,#) is the enlarged vector of
the independent variables, i.e., space-time coordinates,
the Noether theorem yields the following expression for

G/* (c.f., Refs. 10 and 11):
G/*=3(da, /3% /)[dA /3(da, /3% )] — A . (56)
1

The four-divergence of the above quantity should vanish
identically in the case of absence of external fields (i.e.,
when A does not contain x and ¢ explicitly). This means
that the conservation laws hold for G/*.

The presence of external fields, such as, e.g., our scalar
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field ¥(x,¢), results in the explicit dependence of A on X,
and then the condition of the vanishing four-divergence
of G’* should be replaced by the relationship

S (3G* /3% ¥)+3A /3% /=0 (j,k=1,2,3,4), (57)
k

which constitutes the concise formulation of balance
equations for the momentum (j =1,2,3) and the energy
(j =4). For an arbitrary Lagrangian the tensor G/*, Eq.
(56) is, in general, unsymmetrical. The physical con-
siderations which can be found, e.g., in field theory11
variational calculus,!® show that the G/* should be sym-
metric at least with respect to this spatial part if micropo-
lar effects are excluded (the case considered here). In rel-
ativistic theories the symmetry of the whole tensor G’* is
required.!! We will show that the structure of the La-
grangian A in Eq. (46) is physical in the sense that it leads
to the G/¥ tensor without Lagrangian multipliers and that
the spatial part of G/, i.e., the stress tensor T, is sym-
metric.

From the general equations (58) and (59) the com-
ponents of G/ tensor are now evaluated. For the action
A, Eq. (46), the following partial derivatives are comput-
ed:

3A/3(3B/3t)=—p , (58)
AN/B(VB)=—T, (59)
dA /3(3dn/3t)=—p5 , (60)
dA/3(Vy)=—(Is+j,) , 61)
dA/3(da/dt)=pA , (62)
AA/d(Va)=TA . (63)

Equations (58)-(63) are independent of the form of the
kinetic potential L. Next, the general equation (56) is

used. For the stress tensor one obtains (a,=1,2,3)
G%=T%=—(3B/3x*)Jg— (9 /0x*NJ g8+ jp)
+(8a/0x )M g — Adj . (64)

To evaluate the stationary A appearing in Eq. (64) the
stationarity conditions (47)~(50) are used in the integrand
of Eq. (46). For arbitrary L(p,J,j,,5,x) we obtain the
Lagrangian

A=L—p(3L /3p)—J-(L /3Y)— j,-(3L /3j,) .  (65)

With the kinetic potentials (40) and (41) associated with
the classical and extended Legendre transforms, Eqgs. (65)

and (51)-(53) yield
A=1pT'PF 15 gjl—ple+d)+ph+1ip T
+py F 1pgs 2V +1(3g /3p), i}
—p J4pgs V2, (66)

where the upper signs pertain to Eq. (40) and lower signs
to Eq. (41). Since h =e+p5 ~'P, Eq. (66) yields

=P(p,5)t %Bg/ap)gjs . (67)

Contrary to the corrections such as in Eq. (28) which de-
pend on the variable used (j,, q, a,, etc.), when
differentiating @ with respect to p (or ) the expression
(67) is invariant with respect to change of variables—the
result of the invariance of the variational problems. This
suggests that the stationarity Lagrangian is equal to a
nonequilibrium pressure. Later we will show that the
lower sign result is indeed the nonequilibrium pressure at
point A, Fig. 1, obtained when differentiating the none-
quilibrium energy € versus U and keeping constant the en-
tropy 5 and the thermal momentum i; (the “natural”
variables of ). Equation (67) is a generalization of the re-
sult known for the equilibrium Eulerian fluid without
heat in both Newtonian® and relativistic!>'* cases where
A=P. So far it is impossible to conclude which kinetic
potential, Eq. (40) or Eq. (41), is the proper one. Using
stationarity conditions (47)-(49), derivative expressions
(51)-(53) and Eq. (67) in Eq. (64) yields the stationary
stress tensor 7% in the form (a,8=1,2,3)

=T%=

—(3L /3J ) 3— (AL /3j)j,5— ASH

= —puuptpgs Vv,
—[P(p,5)+1(3g /3p),j2185 - (68)
Equations (40) and (41) lead also to the same vector of the

momentum density G% =TI for which one obtains
(@=1,2,3)

—G%=—T%=(3B/3x%)p+ (37 /3x *)ps — (3a /3x *)pA

=(3L /3T )p=pu” . (69)

Thus momentum density is equal, as usual, to the mass
flux J. In energy representation, the equation of momen-
tum balance resulting from the general formula, Eq. (57)
taken for j=1,2,3, k =1,2,3,4 and Eqgs. (68) and (69), is,
in vector notation,

dpu/dt=V-{puu+1[P+1(3g /3p)j:]
Fgps2v,v,} —pF(x,t)=0 . (70)
In comparison with Eulerian fluid, the diffusion of heat
or entropy results in the appearance of stresses which can
exist even if the fluid is at rest (J=0). This effect is also
predicted by Grad’s® analysis of the Boltzmann equation.
Con51der now the vector of the density of energy flux
Qg =G* s Equation (56) and stationarity conditions
(47) (50) yield
+(0a /3t )J gA
=—(3L /9p)J g

—[aL /pds — (I /p)-(OL /3j,)1jsp - (71)
Hence, for the kinetic potentials (40) and (41), one finds
on the basis of Egs. (51)-(54),
Qp=pugliu’+y+h F 1gs2V2+1(3g /3p),p ~'j}]
F g5(u-v, )jp+ [ T+1p ~*0g /35,2l -
(72)
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Equations (67), (70), and (72) show explicitly the effect
caused by the form of the kinetic potential (40) (upper
sign) and (41) (lower sign). To settle which formula is the
correct one, we compute the total energy density G44=E,
Eq. (56), for j =k =4, which is

G*=E=—(3B/3t)p—(3n/dt)p, +(da /3t )pr—A
=—p(3L /3p)—[P+1(3g /3p),j]] . (73)
When Eq. (52) is applied in (73), the result is
E=ple(p,5)+u?/2+¢F 1gs2¥?] . (74)

Thus the true nonequilibrium energy density E, Eq. (33),
is recovered only if we use the extended Legendre trans-
formation, Eq. (38), and the nonclassical kinetic poten-
tial, Eq. (41). This result is of physical importance be-
cause it proves that in extending Hamilton’s principle to
nonequilibrium heat-flow phenomena, the entropy flux j,
or its adjoints a; or i; behave as they would if they were
to play the role of a generalized momentum density,
which must be taken into account together with the usual
momentum density J. The role of the classical transfor-
mation, Eq. (37), and corresponding kinetic potential, Eq.
(40), is in fact finished now, since we have proven that
only Egs. (38) and (41) are correct. Therefore, in Egs.
(66)—(68), (70), (72), and (74) only the lower signs pertain
to the true physical situations. Among the variables q,
Js» a,, or i, the last one is crucial in Legendre transfor-
mation (38) due to its role in the nonequilibrium Gibbs
equation (Sec. VIII).

At this point, one can easily write down the energy bal-
ance equation resulting from Eq. (57) for j =4, and Eqgs.
(72) and (74) taken with lower sign for $=1,2,3. In vec-
tor notation this balance reads

3ple +Lu+y+1g52W2) /ot
FV-{pulh +yut+ ot 1g5 TV — (38 /9p)p ]
+[T —1p ~%(3g /3s),¢1is
+(8p ~1i,di)-u} —p(3y/31)=0 . 73

The last term in Eq. (75) is a source term analogous to the
force term in Eq. (70). The energy can be conserved only
when the external field is stationary (dy/dt =0). When
the fluid is out of equilibrium, due to a nonvanishing heat
flux, this energy contains, in the energy representation,
the extra term %gEZVSZ, which appears also in the expres-
sion for energy flux. Heat flux appears naturally in the
theory as the product of a nonequilibrium temperature
and entropy flux j, and for small j, it equals Tj,, in ac-
cordance with the well-known relation linking q and j;.
In the nonequilibrium fluid, the entropy flux j, (or heat
flux q) is coupled with the hydrodynamic velocity field as
the term (gp ~'j,j,)-u=gs(u-v,) in Eq. (75) indicates.
For g =0, the momentum balance equation (70) simplifies
to the case of that for the equilibrium perfect fluid, but
the effect of heat flow still persists in the energy balance
equation (75). Recovering Eulerian fluid theory requires
not only taking g =0 in our theory, corresponding to an
equilibrium fluid description, but also imposing the con-

dition j; =0 in the equations of the entropy balance and
the density of the entropy flux, Egs. (43) and (72). How-
ever, this is also a natural physical requirement for equi-
librium, since j, is taken as an independent variable.

VIII. INVARIANT NONEQUILIBRIUM
QUANTITIES AND THE SIGNIFICANCE
OF THERMAL MOMENTUM

We verified that the stationary Lagrangian A, the com-
ponents of energy-momentum tensor G’%, and the corre-
sponding balance laws remain the same when the heat
flux q or the thermal momentum i, are used instead of
entropy flux j, in the action functional (46) based on the
kinetic potential (41). While this fact is not a surprise in
view of invariance properties of any variational problem,
its physical consequences cannot be underestimated,
since it indicates how natural and ‘“objective” are the
nonequilibrium thermodynamic quantities appearing in A
and G/*. This objectivity may be contrasted with the ar-
bitrariness of the “nonequilibrium temperatures and pres-
sures” discussed in Sec. II, such as those given by Egs.
(30) and (31). These depend on the type of nonequilibri-
um variable (q, j,, i, a,, etc.), which is kept constant
when differentiating the nonequilibrium energy e. There-
fore, special attention should be given to the nonequilibri-
um quantities appearing in G’%,'A, and the balance laws.
They pertain to the point A4 in Fig. 1, and are [with the
correct lower sign as retained in Egs. (67), (73), and (74)]

P(p,3,j,) =P (p,3)—L(3g /3p),JE=A , (76)
T(p,5,,)=T 5 (p,5)—1p ~*(3g /3s),j7 , (77)
2(5,5,§,)=ep(p,3)+1gp i) . (78)

The last result recovers our starting point, Egs. (3) and
(24), for arbitrary g(p,s). The interpretation of T, Eq.
(77), as the nonequilibrium temperature of the system
at state A follows immediately from the energy flux ex-
pression, Eq. (72). Since for the resting fluid (u=0) the
only contribution to the energy flux must be the heat
flux, it is clear that the invariant expression
[Ts—1p ~%3g/3s)jllj, in Eq. (75) must represent the
heat flux density q. The nonequilibrium temperature 7,
Eq. (77), is therefore the invariant coefficient linking the
heat-flux density [2=q at u=0] with the entropy flux
density j,, i.e., T=Q,_0/j,- This is identical with the
dynamical definition of the temperature written symboli-
cally in the term T =e’/s’ postulated sometimes with the
requirement that it should coincide with the thermo-
dynamic derivative (3¢ /95),. Since, however, the value
of such a derivative depends on the nonequilibrium vari-
able (j,,i;, etc.) used when differentiating & with respect
to 3, the fundamental questions arise as to which non-
equilibrium variable should be kept constant in the non-
equilibrium energy (78) so that the partial derivative
de¢ /93 yields the temperature (77). It is easy to verify that
j; and q are not appropriate variables in this regard and

- the correct variable is the thermal momentum variable i,

Eq. (29b). Indeed, expressing the energy € in terms of i
yields
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e(p,5,i,)=e ) (p,5)+i2/2g , (79)

and the partial derivative (aé/alv”)p,,-s is just Eq. (77).

Furthermore, the differentiating of @ with respect to
—p ! (or—¥) yields the nonequilibrium pressure of the
system at the point A4, which coincides with £he expres-
sion (76) and hence the stationary Lagrangian A.

This coincidence is, of course, an attractive property of
the variational approach in view of the invariance prop-
erty of the Lagrangian A and the physical pressure with
respect to transformation of both thermodynamic and
space-time coordinates. In addition, with the expression
(76) a subtle point can be resolved. In the kinetic theory,
the nonequilibrium pressure is as a rule defined as one-
third of the trace of the nonequilibrium pressure tensor??

P= [mcCfdc, (80)

which corresponds with the following expression in Eq.
(70):

Vid :l[P(B) - %(ag /ap )j52] +ﬁg§ szvs
=1P+p'v,v, , 8D

with p'=pgs 2. Our pressure (76), or the stationary La-
grangian A, is thus one-third of the trace of P minus
1pgs 2v? (or minus 1Tr(p'v,v,) rather than 1TrP itself.
This indicates that, in the local nonequilibrium case, the
entropy flow stress —p’v v, should be deducted from the
pressure tensor based on the disequilibrium definition.
Indeed, it is the “ordered-flow”-type term rather than the
chaos-related thermodynamic term. Its separation from
the pressure tensor P, Eq. (80), is just as natural as
separating the hydrodynamic term puu in Eq. (70) or the
mass diffusion terms p, v, v, (v, is the diffusion velocity
of the kth species) from the definition of P, Eq. (80), in
multicomponent systems; see, e.g., Truesdell?® for a
definition of the pressure P as 1Tr(P— 3, p,V, V) in this
case. Our approach singles out the role of diffusional
stresses in momentum equations and the corresponding
“kinetic energy of diffusion” 1gp ~%j? in energy equa-
tions associated with the flow of heat or entropy.

The virtue of recognizing the nonequilibrium variables
(e, T, and P) pertaining to the actual physical state (point
A, Fig. 1) lies in the fact that the balance equations ex-
pressed in terms of these variables are not only simplest
but also take an objective form independent of the repre-
sentation used. This occurs because the parameters of
the arbitrary reference equilibrium states (B, C, or D; Fig.
1), which depend on the variables used in the thermo-
dynamic description, do not appear in the objective bal-
ance laws. The representation-free form of the balance
equations (70) and (75) is, respectively,

dpu/dt+V-(puu+1P+z)—pF=0, (82)
op(e+u?/2+y)/3t +V-[pulh +u?/2+¢)+ Tj, +mu]
—p(dy/3t)=0 (83)

(all quantities pertain here to point A4). Here

T=gp 'j,j; =pgs *v,v, is the previously discussed entro-
py flow contribution to the pressure tensor P and 7-u the
corresponding power. Although this form of balance law
resembles precisely that known from the description of
fluids in local equilibrium, it should be remembered that
the quantities 2, P, and T are flux dependent in our none-
quilibrium case. The splitting of these quantities into the
sum of the parameters of the reference equilibrium state
(B, C, or D; Fig. 1) and nonequilibrium flux correction is
always representation dependent—the price paid by one
who wants to use the well-known equilibrium data in
disequilibrium situations. Consequently, the basic equa-
tions of nonequilibrium fluids have forms dependent on
the conventional thermodynamic variables used in the
process description, and the nonequilibrium corrections
appearing in one representation change or vanish in
another representation. We omit here a detailed compar-
ison of the balance laws in various representations (this
problem is planned to be discussed elsewhere by the au-
thors); see Sec. IX where some comparison is done for the
particular case of the ideal gas.

More remarks should be devoted to the thermal
momentum variable, i.e., why does it turn out to be so
essential? The answer is, because the basic entities in the
Hamilton’s principle are matter and entropy and the nat-
ural variables of the energy are their momenta or, in the
Lagrangian, the corresponding velocities. Since the
nonequilibrium thermal energy (24) is well defined, we
have to expect to find the corresponding momenta as
every Lagrangian approach requires. Thus we have not
only velocities or momenta related to macroscopic (hy-
drodynamic) motion (velocity u), but also to the diffusion
of entropy or heat with relative velocity v,. In the mul-
ticomponent case, one would have also diffusion veloci-
ties v, for individual species and the “internal momenta
of unit mass” v,. For our one-component fluid, the mo-
menta pertaining to the unit mass or unit entropy are ob-
tained by differentiating the unit mass Lagrangian L /g
or the unit entropy Lagrangian L /p5 with respect to ap-
propriate velocity

3(L /p)du=dL /dJ , (84)
d(L /p,)/dv,=dL /dj, =i, . (85)

These definitions are general and pertain to arbitrary L,
classical or relativistic. In the particular case of the La-
grangian (41),

dL /3Y=u, (86)
AL /dj,=i,=p 'gj, . (87)

The relative (non-absolute) nature of the velocity v, is ex-
plained by viewing the heat as the transfer of energy or
entropy in the fluid frame. Our earlier definition of i; as
the derivative dge /dj; (volumetric entropy flux adjoint)
conformed to the general definition (85), but it was more
specific; it was, in fact, restricted to Lagrangian quadratic
in v, (or j;) having a form unaffected by external vector
fields (e.g., magnetic field). For so simple a Lagrangian L,
which was our case with heat flow, i; and j, are propor-
tional; this is why our heuristically stated transformation
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(38) survived in the case of j,. In more general cases only
i; should appear in Eq. (38), which is the natural variable
of the energy function. The use of a;, although also al-
lowable in our case in the Legendre transformation, Eq.
(38), is less appropriate than the use of i; from the
viewpoint of the Gibbs equation describing € or pe, since
a; does not generate the invariant pressures and tempera-
tures, Egs. (76) and (77), and i; does. This proves that
despite the simple relation a,=p'i;, Eq. (29), it is the
thermal momentum variable i; obeying the general
definition (85) and not the entropy flux adjoint a, based
on the more special definition, Eqgs. (13) or (29), which
plays the fundamental role in the energy function Eq. (79)
and corresponding Gibbs equation. This is what one
would expect comparing the dimensions of i, the
momentum per unit entropy, and a,, the momentum per
unit entropy multiplied by the volume of mass unit—a
far less physically intuitive dimension. The thermal
momentum i; defined by Eq. (85) is, with accuracy to the
arbitrary constant multiplier, the only variable, which by
Legendre transformation from the given Lagrangian L,
yields the correct energy formula and invariant nonequili-
brium thermodynamic parameters, Egs. (76) and (77), by
differentiation of & Eq. (79). It is easy to verify that for
our Lagrangian, Eq. (41), since dL /dJ=u, the Legendre
transform yields

E(p,5,u,i,)=(dL /38Y)-J+(dL /dj,)-j,—L
=pe(p,5)+ipg lil+ipu+py . (88)

This is the correct total energy (32) in terms of its natu-
ral®* variables (5,5,i,,u) containing the (volumetric) none-
quilibrium internal energy pe, (79). The inverse Legendre
transformation applied to the function E(5,3,u, j,) allows
one to recover the Lagrangian L(g,5,u, j,), Eq. (41), from
E, Eq. (88). The Gibbs equations describing the specific
and volumetric nonequilibrium internal energies € or pe,
Eq. (79), are, respectively,

de=Tds—PdV+p ~'j,-di, (P=A), (89)

d(pe)=Tdp, +udp+j,-di; . (90)
In this form, independent of the particular form of L, the
above Gibbs equations are completely general and hold
even for relativistic systems. Here 5, =p5and T, P, and i
are objective (invariant) nonequilibrium temperature,
pressure, and chemical potential (at point 4). Equations
(76) and (77) describe T and P in terms of parameters P, g,

and T g, of the reference (isentropic and isochloric) state.
The corresponding expression for i is

p=e+P/p—Ts
=pp\(p,5)+1gp "2ji[1—(31ng /3 Inp);
+(3dIng /91ns),] . 91)

It is important to note that heat flux q can be found from
our Gibbs equations (89) and (90) as

q=Tp(0e /3i,) . 92)

In a complementary paper we discuss the thermodynamic

transformations related to the Gibbs equations (89) and
(90) and the concept of nonequilibrium thermodynamic
length.

IX. COMPATIBILITY WITH KINETIC THEORY

Let us return to the case of the ideal gas (g=const).
The balance equations for the momentum and energy,
Egs. (70) and (75), respectively, differ in their form from
those found in the kinetic theory.® Such differences are
occasionally considered to be a proof of an inconsistency
of extended thermodynamics or the restrictive nature of
Hamilton’s principle. It is believed by some that it holds
only for equilibrium fluids.? Therefore, we are going to
show that the compatibility with the balance equations of
the kinetic theory is easily achieved if one takes into ac-
count the two different representations (energy and entro-
py) in which both descriptions are formulated. As Eq.
(24) and Fig. 1 indicate, the equilibrium reference param-
eters of the two representations (pomts B and C) of the
same nonequilibrium state A4 are connected by the follow-
ing equations:

ec)=2kTc)/m =e( g =ep(p,5)+1p g3}, (93)
Poy=pkT(c,/m=P(p,5)+1p 'gj: , (94)
hie)=3kTc)/m =hg(p,5)+3p ~’gj; , 95)

where e¢), P(c), and h ¢, represent the energy, pressure,
and enthalpies, respectively. Equation (76) indicates that
in the ideal-gas case P =P p); hence from (94),

P=Pc,—4p '8ii=P)—4Trz . 96)

Substituting this result into Egs. (82) and (83) [equivalent
to (70) and (75)], yields, since & 4, =e ),

dpu/dt +V-(puu+1P o +11-u)—pF=0, 97)
dplecytu?/2+¢)/dt
+V-[puh ) +u?/2+¢)+q+I]1—poy /3t =0,
(98)
where
O=7—311Trx (99)

is the symmetric traceless tensor describing shear stresses
in the system. (Here they are caused only by the flow of
heat; in the general case, macroscopic flow terms can
contribute to I1.) Nonequilibrium normal stresses associ-
ated with the definition of the nonequilibrium pressure
used in the kinetic theory [{TrP, where P is defined by
Eq. (80)] do not appear in the case of the ideal gas. Equa-
tions (97) and (98) are the well-known balance laws ob-
tained (in the entropy representation) in the kinetic
theory.® The entropy representation form of Egs. (97)
and (98) of the ideal gas can be constructed with the ener-
gy representation form of Egs. (70) and (75) taken for
constant g. A natural extension of this work would be
the inclusion of the momentum transport terms associat-
ed with the macroscopic motion (velocity field u) and
mass diffusion.
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X. CONCLUSIONS

In classical fluid mechanics® the heat flux is as a rule
only formally added to the energy flux of the perfect fluid
in order to preserve an agreement of the theory with ex-
periments and with kinetic theory.® Here we have shown
that it can be derived as the expression T j; if one allows
the entropy flux to be associated with a degree of freedom
independent of mass flow. In the traditional Eulerian
fluid, the entropy can be transported only by the convec-
tion of the mass elements and the heat flux cannot ap-
pear. In other words, in the Eulerian fluid the entropy is
“stuck” to the individual particles of the fluid, and the
heat, interpreted as the effect of the entropy flow in the
fluid frame, cannot exist. Making entropy flux an uncon-
strained variable allows entropy to flow freely, indepen-
dently of mass, so that heat flow appears naturally. How-
ever, when the entropy flow becomes unconstrained, it
becomes at the same time elevated to the rank of an addi-
tional independent flow variable. This is why the j; vari-
able and corresponding thermal momentum i; are so
significant in the Legendre transformation, Eq. (38), and
in the extension of Hamilton’s principle to nonequilibri-
um fluids. The compatibility of our results with the ki-
netic theory pertains to the Grad formalism rather than
Chapman-Enskog formalism. This compatibility proves
that the extension of Hamilton’s principle to nonequili-
brium fluids is possible, provided that a careful analysis
of the nonequilibrium availability is made and the rela-
tion between the two representations of thermodynamics,
the entropy and energy representations, is properly
understood in the case of nonequilibrium. Furthermore,
the invariance of the nonequilibrium thermodynamic
quantities, Eqgs. (76)—(78), revealed by the variational ap-
proach, makes it possible to prove the essential role of the
thermal momentum i; =9L /dj, as the natural nonequili-
brium variable in the Gibbs equation describing fluid
with heat and to solve simultaneously the problem of
nonequilibrium temperatures and pressures.
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APPENDIX: IRREVERSIBLE HEAT CONDUCTION

In the case of irreversible processes, the conservation
laws for mass, momentum, and energy constitute the con-
straints on the entropy balance equation (with a positive
source o).

s /3t +V-Us+j,)=0 . (A1)

Starting with these conservation laws given as Eqgs. (42),
(70), and (75), an expression for the rate of entropy o has
been obtained in the form

a(gsv,)
—t"‘VT‘f‘ng(ll’VS )

o=—Tj, | =

(A2)
Note that the time derivative of i, =g%v_, rather than q
or j, appears in this equation. For local equilibrium one
can put g =0 in the above result and recover the classical
expression for the entropy production. In order to inter-
pret expression (A2) from the physical viewpoint, one can
eliminate the Lagrangian multiplier from the reversible
stationarity conditions, Egs. (49) and (50), and obtain

(8/0t )AL /3j,)—V[IL /pd3s +u-(3L /dj,)]=0 . (A3)
But this is precisely the expression in the large
parentheses of Eq. (A2) for our L. Hence, for the irrever-
sible process one may write

To=—j,-(3/3t)dL /dj,)— V(3L /pd5s +u-3L /dj,)] ,
(A4)

or verbally, (dissipation function)= —(irreversible
flux) X (reversible variational force). Thus we have ob-
tained the generalized thermodynamic force as the rever-
sible force derived from Hamilton’s formalism. An
analogous result occurs in lumped-parameter systems
where the entropy source is the sum of the products of ir-
reversible flows and the variational derivatives, i.e., the
left-hand side of the Euler equations.?® When the La-
grangian is independent of rates (or fluxes), the expres-
sions mentioned above become usual gradients which cor-
respond with the local equilibrium theory.

Whenever the effect of g, Eq. (25), can be neglected
(g =0), Eq. (A2) gives 0 = —j,V InT; hence one may pos-
tulate that j,= —AV InT, or after multiplying by T,

q=—AVT, (AS)

which is the Fourier law with the heat conductivity
coefficient A. However, for nonzero g, Eq. (A2) is a better
approximation of the real situation. For the isobaric fluid
at rest (=0, P=const), Eq. (A2) implies
j,=—AT 43i, /3t +VT), (A6)
exhibiting clearly the role of the thermal momentum in
the extended phenomenological law. Substituting this re-
sult with q=Tj, and using the ideal-gas equation in the
expression j,=gp 'qT !, one obtains without any ap-
proximations the Cattaneo equation for an isobaric gas

q=—A(gk /mP)(3q/3t)—AVT . (A7)

The thermal relaxation time 7 can be introduced, which,
on the basis of Egs. (A7) and (26), is

r=Agk /mP=2Xm /5kP . (A8)

This value of 7 is in complete agreement with the kinetic
theory.®7
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