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The Thomas-Fermi (TF) atom in an external homogeneous electric field has been discussed. We
introduce the appropriate TF equation and the boundary conditions. The TF equation for this
problem has no spherical symmetry. We approximate the partial differential TF equation by the set
of simple ordinary differential equations. Our approximation is valid for "very large" electric field
values (much larger than those for which the perturbation theory is justified). We found the TF
solutions for various values of the electric field and various numbers of bounded electrons. The
external electric field ionizes and polarizes the atom. We have shown that ionization of a mul-
tielectron atom is substantial even when the external field is significantly smaller than the atomic
one.

I. INTRODUCTION

The purpose of this paper is to solve the standard
Thomas-Fermi (TF) model for an atom placed in an
external electric field. This problem seems to be of a
great importance. Atoms in an external electric field are
discussed in any quantum-mechanics text book. This
analysis is usually limited to weak fields, when a pertur-
bation theory is valid. On the other hand, strong field-
atom interactions are extensively investigated in the
framework of quantum optics. However, in this case,
fields are usually in a resonance with one atomic transi-
tion and only one electron is involved in the process un-
der investigation. The TF model allows one to obtain the
self-consistent potential and the electron-density distribu-
tion function of the multielectron atom. In spite of the
long history and large-scale applications of the TF model
in various contexts, only spherically symmetric solutions
of this model are known. Nevertheless, nonspherical
solutions of the TF model could be as useful in a theoreti-
cal modeling of a different phenomenon as the spherically
symmetric solutions have been so far.

Recent experiments' on the multiple ionization of
atoms by strong laser pulses can serve us as an example
of such a phenomenon. As a result of the interaction of
the highly intense laser light with an atomic beam the
multiply charged ions are produced. Although this in-
teraction has no resonance character, the external field is
so large that it cannot be treated as a perturbation. De-
tailed quantum-mechanical analysis of a strong-
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field —multielectron-atom interaction can be described by
the time-dependent Hartree-Fock model (TDHF). Ku-
lander made some attempts to solve the TDHF equa-
tions; however, the solution requires an extremely power-
ful computer even in a case of helium atoms. The "clas-
sical" approximation to the Hartree-Fock model is the
Thomas-Fermi or the Thomas-Fermi-Dirac (TFD) equa-
tions. In the low-frequency limit of an external field the
static TF description of an atom in the electric field can
successfully explain some of the results of the experi-
ment of Yargeau et al. on the multiple ionization of
atoms performed in the infrared regime of the light spec-
trum. The multiple ionization begins at the laser intensi-
ties close to the 10' W/cm, which corresponds to the
electric field strength of about E= 10 E„, where
E„=e/ao is the atomic field (ao is the Bohr radius).
One can ask here the immediate question: Can the multi-
ply charged ions be produced in the nondynamical pro-
cess as a result of the interaction of atoms with such a
weak, in the atomic scale, static external field? The sim-
ple estimation of an atomic hydrogen gives a positive
answer. The barrier of the hydrogen potential is lowered
by the electric field (Fig. l). One can easily compute the
strength of the electric field that lowers the potential bar-
rier significantly, so that the electron bounded as tightly
as in the ground state of the hydrogen atom is ionized.
The appropriate equations are as follows:
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FIG. 1. Potential energy of the electron in a hydrogen atom
placed in an external homogeneous electric field as a function of
the distance to the nucleus. The energy is plotted along the
external field direction (z is the Cartesian coordinate). The
straight line represents the energy of the interaction with the
external field.

equation are discussed in Sec. III. We give the TF func-
tion and the TF potential for various values of the elec-
tric field and ionization degree. Our calculations show
that the electric field can ionize and polarize the atom.
The neutral TF atom does not exist if an external electric
field is present. For each value of the field there exists an
ion of the minimal ionization degree. Solutions of the TF
equation correspond to ions of all possible ionization de-
grees up to a certain minimal value (for a given electric
field). Particular attention has been given to the ions of
the minimal ionization degree. We calculated the ioniza-
tion degree, Fermi energy, and induced dipole moment as
a function of the electric field for the minimally ionized
atoms. Conclusions and final remarks are presented in
Sec. IV.

II. MODEL AND APPROXIMATE METHODS
OF ITS SOLUTION

A. Thomas-Fermi model

(ro is the distance from the nucleus to the maximum of
the potential barrier). Equation (l. la) is just the condi-
tion determining the position of the potential barrier,
while (l. lb) expresses an electron energy. As follows
from (1.1), the required external field has the value
E ]g E t which corresponds to the laser intensities
I =—„'„I„=10' W/cm . This is just the intensity for
which the multiple striping of atoms is observed. The
above estimation clearly shows that if the external static
electric field is applied to an atom (even if this field is
considerably weaker than the atomic one), the effect of
lowering the potential barrier is significant and may cause
the essential ionization of the atom.

Up to now, the TF model of an atom in a static homo-
geneous electric field has not been solved properly.
Bruch and Lehnen calculated the electric polarizability
of atoms with the help of the TFD model. They conclude
that within the approximation they have made, the TF
model for an atom in the external field does not have any
solution. This is due to the fact that they neglected the
ionization of the atom by the electric field and therefore
the TF function in infinity cannot fulfill required bound-
ary conditions. On the other hand, Krainov and Many-
kin mentioned the possibility of the application of the
TF model to the description of the strong-field ionization
phenomenon. However, in order to estimate the ioniza-
tion degree they use the spherically symmetric solution of
the TF equation. A proper description of the TF atom in
an external electric field does not allow for a separation of
the polarization and the ionization phenomena.

In our paper we introduce the approximate equations
describing the TF atom in a static external electric field.
With the help of these equations we discuss the various
characteristics of the multielectron atom, particularly the
ionization degree as a function of the electric field. We
begin our paper, presenting, in Sec. II the TF model and
the way of reducing its partial diff'erential TF equation to
a set of ordinary equations. The validity of our approxi-
mations and a detailed analysis of solutions of the TF

The Thomas-Fermi equation was introduced in the mid
1920's by Thomas and independently by Fermi in order
to describe the self-consistent potential of multielectron
atoms. The TF model is based on statistical mechanics.
It assumes the thermal equilibrium of the electron gas.
The electron-electron interaction is included through the
mean field. The Pauli exclusion principle is the only
quantum feature of this model. Nevertheless, the TF
model is in qualitative agreement with experimental data.
The advantage of the TF model is in its simplicity and
universality (atoms of different Z differs by the scaling
units only). If one is interested in a qualitative under-
standing of some physical processes, the TF model can be
very useful.

The standard TF equation is based on the Poisson
equation for the potential generated by a nucleus and sur-
rounding electron cloud. However, in a self-consistent
model this potential is related to the charge-density dis-
tribution function. The relationship between potential
and electron distribution function can be obtained by
minimizing the following TF energy functional:

ErF[p]= f d r —,', (3n ) (fi Im)p(r)

+p(r)e —,
' f d r'p(r')e I

~
r —r'

~

—[(5„(r) +Ze /r] (2.1)

where p(r) is the electron number density at position r to
the nucleus. The first term represents the electron kinetic
energy and the second one the potential energy of the sys-
tem, i.e. , the electron-electron interaction (the self-energy
also), the interaction with an external field P,„(r) (if such
exists), and the interaction with the nucleus. This energy
expression, together with the Poisson equation, leads to
the TF equation for the self-consistent potential P(r):
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[2me[P(r) —Po]I if r(0, 4}&ro(0,4),
b P(r) = 3(2vrh')

0 otherwise, (2.2}

where —e is an electron charge and ro is the radius of
electron cloud. Since Eq. (2.1) should be subject to the
normalization condition on p we have introduced the
Lagrange multiplier Po, which means the potential at the
surface where the electron density vanishes. Therefore Po
is related to the electron Fermi energy; i.e., the maximum
energy of bounded electrons is Ez = —ego.

The TF self-consistent potential P(r) is defined as

P(r)= —e f d r'p(r')/~r —r'~+[/, „(r)+Ze/r] . (2.3)

With the above definition, the nucleus and external field
potentials do not enter explicitly the TF equation (2.2).
Nevertheless, solutions of (2.2) depend on these potentials
through the boundary conditions. From now on, we as-
sume that the P,„corresponds to a potential of the homo-
geneous electric field, P,„= zE —(z is the Cartesian coor-
dinate along the electric field E direction). Introducing
the standard TF units and restricting our interest to the
axially symmetric solutions only, we can rewrite Eq. (2.2)
in a following way:

atom. At this surface the TF function is equal to zero,
y(go, w) =0, or equivalently, y(go, w) =go. This condition
allows one to determine the electron cloud edge yo(w).

In order to complete the model, the boundary condi-
tions have to be specified. We get immediately from (2.3)
and (2.5) that inside the electron cloud, in proximity to
the nucleus the TF function is dominated by the term

y(g —+0)~1 . (2.7a)

On the other hand, if g goes to infinity, the behavior of
the TF function is determined by the external potential

y(g~ co ) —+ —
g wE . (2.7b)

Somewhere in between, at the electron-cloud edge the TF
function is equal to zero (if go is finite). Then one has to
glue the TF solution inside the electron cloud with the
general solution of the Laplace equation in the free of
charge space with the static homogeneous electric field
existing in infinity:

y(g, w)=g(p —qo)

, +, (1 —w') y(g, w)
a, a

g' Bw Bw

[X(k w}4l'" if P w)o&Pw)

0 otherwise,

where the standard TF function y(g, w) is defined:

g(g, w) =g(y(g, w) —go),
and

r=a

(2.4)

(2.5)

(2.6a)

oo

E(P, (w)+—g, i PI(w) —
yo

I =o 4'+' (2.8)

P~ ( w) is the Legendre polynomial and A
&

is the multiple
moments of the charge distribution (written in dimen-
sionless units). These moments are induced by the exter-
nal electric field and could be calculated from the
definition with help of the charge-density distribution
function. Particularly, Ao is the total charge of the sys-
tem, i.e., the ionization degree:

3/2

and

w =cos(0), 0 & 6 & vr,

cp(g, w) =(a/Ze)P(g, w),

o=(a /Ze)yo,

a =Z ' (3'/4)
2me

(2.6b)

(2.6c)

(2.6d)

(2.6e)

Ao—= =1—
—,
' f dw f dingZ —

1 0

and 3, is the dipole moment:

P= —,' f —dw —P,(w) f ding'

(2.9a)

3/2

(2.9b)
If there is no external field applied to the system, the TF
function g dies not depend on the direction m. In such a
case, Eq. (2.4) simplifies to the ordinary, well-known TF
equation.

Writing Eqs. (2.2) and (2.4) we do not assume that the
electron cloud extends to the infinity. However, we do
not exclude such a situation —then ro(0), or equivalently,
go(w) are infinite. Nevertheless, having in mind the E =0
case, we expect that if the atom is ionized, the electron-
density distribution function vanishes at finite distances
at the surface go(w), which determines the shape of the

In the E =0 case the TF function has radial symmetry
and the total charge Ao is the only nonvanishing moment
of the charge distribution. As it indicates from (2.8) and
the definition of go, the Fermi energy is, in this case,
related to the total charge of the system:
=[(Z N)/Z]/go. The t—otal charge (or, equivalently,
the Fermi energy) is the only parameter classifying the
solutions. Radially symmetric solutions describe a neu-
tral atom or positively charged ions, depending on the
value of yo. In the neutral atom case Z =X and the Fer-
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mi energy is equal to zero, yp=0. The radius of the atom
is infinite (go= ~). The solutions for smaller Fermi ener-
gies —

gp correspond to positive ions with finite radius
go& oo. When a TF atom is placed in an homogeneous
external electric field an extra parameter (except a total
charge) is needed in order to uniquely classify the solu-
tions. This is, of course, the value of the external electric
field.

B. Approximate equations

The TF equation, even in the radial symmetry, has to
be solved numerically. In an axial case a numerical solu-
tion of Eq. (2.4) for g(tU) &go(w) is complicated. The TF
equation (2.4) is of the elliptical type with the Dirichlet
boundary conditions. But in the problem of the type we
are dealing with, the boundary has to be determined, in a
self-consistent way, from the solution we are just looking
for. Therefore it is more convenient, for numerical
reasons, to deal with the Cauchy problem when the func-
tion and its derivatives at one of the borders are known.
The problem is how to properly specify the derivatives in
order to fulfill required conditions on the second bound-
ary. Fortunately, one can easily find a general solution of
the TF equation for g « 1 and all w. Taking into account
the condition (2.7a), the TF function can be expanded
into a power series of g' and the Legendre polynomials
of to (in a radial case a similar expansion can be found in
the paper of Feynman et al. ):

X(g, u)=1+ yPi(w) y a, (2.10)
1=0 I& =2

Substituting this expansion into Eq. (2.4) we can obtain
the coe%cients az&, which determine the TF function in
the proximity of the nucleus. In the Table I we have list-
ed some first nonvanishing coefticients ak&. Only coef-
ficients from the first row of Table I are independent. All
others are functions of those few. Solutions of (2.4) could
be classified according to the values of the coeScients
j a I

=a zo, a ~, , a 62, a s3, . . . . The spherically symmetric
TF solution can be obtained by putting a2o&0,
a4, =a6z = . =0. The terms proportional to the
remaining coefficients break the spherical symmetry. For
instance, terms proportional to a4, have a dipole shape;
to a62, a quadrupole; and to a83, an octupole shape. The

parameters Ia ) have no direct physical interpretation.
Nevertheless, they are strictly related to the physical
quantities, since for a given Fermi energy and external
field the solution is unique.

The usual way of integrating the radially symmetric
TF equation is to start with the given derivative a2p at
the point /=0. The total charge of the system, the Fermi
energy, and the TF function outside the electron cloud
could be calculated if the electron-density distribution
function were known. We have checked numerically that
if the homogeneous electric field is applied to the system,
only azo and a4, should differ from zero. This fact is not
surprising, since terms proportional to a4& have the sym-
metry of the external field type. Moreover, if a4, =0 then
E =0, and we can suppose that a4& is in some sense "re-
sponsible" for the electric field value. If the field in
infinity has quadrupole or octupole symmetry, the
coeScients a62 or a83, respectively, should be different
from zero. Specifying the values of asap and a4, at the
surface g( w ) =0, we can continue integration outward.
The situation is now similar to a spherical case. The sur-
face go(w), where the electron density vanishes, can be
determined during the numerical integration using the
condition g(go(w))=0. Outside the electron cloud the
solution is given by the formula (2.8). Matching the TF
function from outside the electron cloud to the numerical
solution, the electric field value E and the Fermi energy—

yo could be obtained. At the electron-cloud edge go(u)
the equation (2.8) reads

ce

rpo+EgoP, (w) —g I, P((tu)=0 .
I =o So(tv)

(2. 1 1)

Expanding the left-hand side of (2.11) into the Legendre
polynomials of tu and neglecting (as small corrections) all
terms proportional to the polynomials P ( 2),re (wi), . . . ,

we get the set of two algebraic equations for E and cpp.

Even knowing how to change the Dirichlet boundary
conditions into the Cauchy problem, the numerical solu-
tion of the TF equation meets with some difTiculties.
Namely, the right-hand side of the TF equation (2.4) is
singular at the origin of the coordinate system, which
makes two-dimensional integration unstable. We can
avoid this difficulty by changing our Eq. (2.4) to the set of
second-order ordinary equations and restricting our in-

TABLE I. Coefficients a„, of expansion of the TF function in the proximity of the nucleus g « l.

Qt;2

Q20
4Q30= 3=2

Qso 5 Q20
1

Q60

a70 70 (a20)= 3 2

= 2
Qg0 15 Q20

Q90 (Q20 ~
2 1 3

100 175 ( 20 ~

31 1 4
110 1485 20 + 1056 ( 20

+19g(Q41)

Q41
=2

Q71 = —Q41

= 3
Q91 55 Q20Q4'1

= 2
101 27 41

9 2
111 364 ( Q20 ~ Q41

= 2
Q92 13

112 25 Q20 62 +
75 ( 41 ~

1 I 2

ag3

Q113 17 ( 83 ~
2 3
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terest to, in some sense, "weak" fields only. Expanding
into the power series the TF function y(g, w) in the prox-
imity of the arbitrary direction wo (hw =w —wo « 1 is a
small quantity),

g(gq w) =g((» wp ) +pi(gq wp )6w + &pi(g& wo )kw +
(2.12)

where

d'y(g, wo)
pl

/z ' —
( g )3/2+ 2 g

—3/~

i/2 "'~i(& "' i/2

+2( y, (g, wo) .

(2.17a)

(2.17b)

g, (g, wp) = (2.13a)

W —W 0

(2.13b)

and substituting expansion (2.12) into Eq. (2.4) we obtain
the following set of ordinary equations:

gl/2 7 —+3/2+g —3/2[2w J ( 1 w )g]

X]
,
' =-', X'"X,+2&-'"(X,+2wpX, )+, (2 14)

gl /2 3 ~l /2~ + 3 ~
—i /2~2+ 6g

—3/2~

y((~0, w)=1+a2pg+ —', g '+a4, wg +

gi($~0, w)=a~, g +
y~((~0, w)= —,', a4, (" +

(2.15)

This infinite set of equations is as accurate as Eq. (2.4}
and no assumption about the strength of the electric field
is necessary. But it is useless to consider the infinite set
(2.14) instead of Eq. (2.4). As it will be shown later, this
set of equations can be truncated by a few first ones if the
external field is weak, i.e. , E &ela =E„Z . We want
to stress that independently, on the order of expansion,
the first equation of our hierarchy (2.14) does not depend
on the g2, the second on the g3, and so on. Therefore, if
the order of the expansion is increased, it does not affect
some number of the first equations.

In the proximity of the point g(w) =0, the functions y,
and X2 are

In a spherically symmetric case g, is equal to zero, and
from (2.17) we get the standard textbook TF equation at
once. Equations (2.17) are approximate TF equations for
the atom in the external homogeneous electric field.
They have been derived under the condition (2.16), which
we have justified properly for the innermost regions of
atom only. In order to check the inhuence of the higher
corrections yz and y3, we have integrated Eqs. (2.17) and
the three lowest equations of the set (2.14) for various
values of initial parameters a2O and a4I and various direc-
tions mo. As we could expect, the transformation
a4& ~—a4, leads simply to the change in direction of the
electric field. From now on we restrict our analysis to
positive a4, only. In Fig. 2, the typical TF function along
the field direction is presented. The electron cloud is ex-
tended along the OZ axis:

go(w =1})go(wp) & go (w = —1) for —1 & wp & 1

(2. 18)

(the electric field is directed to the negative part of the
OZ axis). Near the nucleus the Coulombic field is very
strong; therefore only the electrons for which

/=go (w =1) are affected by the external field. Therefore
this region is expected to be the most dangerous one for
the validity of the assumption (2.16). In Fig. 3 the func-
tions g, g&, and gz are plotted for various directions and
ionization degrees. Our calculations show that for g)) 1

and w =1, the inequality (2.16) is no longer valid. Never-
theless, as it is shown in Fig. 3, gz is large for an almost
neutral atom in a small range of angles, close to t9=0
only. We have checked numerically that for a "small"
a4, the inhuence of higher derivatives gz and y3 on the
TF function is negligible, even when these derivatives are

For a given a4i, if g is sufficiently small, the following in-

equality is fulfilled:

1.0-

0.8

Opp = I.588478

Xi(k wo)»X~(k wo» (2.16) 0.6

which means that the leading angular dependence of the
TF function comes from g&. We expect that if the exter-
nal field is "weak, " the TF function y(g, w) depends on
the direction "very weakly almost everywhere. " Only the
electrons far from the nucleus are sensitive to the exter-
nal field. Let us assume that the condition (2.16) is
fulfilled inside the whole electric charge cloud and for all
directions, i.e., for g(w) & g'o(w). With the help of this as-
sumption we can truncate the infinite set of equations
(2.14) by the first two:

0.4

0.2

0 -5 0 5
Z (Tf units)

10

FIG. 2. Typical TF function along the direction of the exter-
nal electric field.
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comparatively large. Equations (2.17) are a good approx-
imation of the TF equation (2.4) for the "not-too-large"
coefficient a4, (i.e. , the not-too-large electric fields). Our
assumption is valid even if the value of a4, is of the order
of 1, which corresponds to the strength of the electric
field close to the atomic field E (E„Z . The advan-
tage of Eqs. (2.17) in comparison to (2.4) is obvious. In-
stead of partial differential equations of the second order,
one has to deal with the set of two ordinary differential
equations for each direction. The numerical solution of

the set (2.4) is as easy as the integration of the standard
(E =0) TF equation.

III. FEATURES OF THE TF ATOM
IN THE EXTERNAL ELECTRIC FIELD

Integrating Eqs. (2.17) for different values of parame-
ters a2O and a4&, all the possible solutions for the TF
atom in the external electric field could be obtained. But
as we know from the E =0 case, not all values of a2o are
allowed in the free space for a system of a nucleus and
bounded electron cloud. The neutral atom is character-
ized by a20= —1.588 (a~, =0). Smaller a20 correspond
to positive ions. Similarly, when EWO (i.e., a4, &0) the
maximal limiting value of the first derivative, a2~; (a4t ),
does exist. Only a2O(a2„(a4, ) are allowed. For azo
larger than az~; (a4, ) the TF function can never reach
zero value and we cannot fulfill the boundary conditions.
The solution describing a neutral atom exists only for
E =0. Other solutions correspond to positive ions of
different ionization degrees: from the naked nucleus up
to the maximal possible number of bounded electrons.
This maximal number of bounded electrons depends on
the value of the external field. The electric field ionizes
the atom. Let us consider a situation when an initially
neutral atom is placed in the space where the homogene-
ous external electric field is switched on adiabatically. If
the electric field grows from its zero value, only electrons
of energy exceeding the Fermi one escape from the sys-
tem. The remaining part of the electron cloud is all the
time in the temporal equilibrium. These electrons fill all
the energy states up to the Fermi energy. During adia-
batic growth of the electric field the ion of the minimal
ionization degree (corresponding to the temporal value of
the external field) is produced. If the field is decreased
adiabatically the potential barrier grows. Only the dipole
moment of an ion is changed, while the ionization degree
remains constant. Ions of the minimal ionization degree
for a given value of the external electric field are of spe-
cial importance from the ionization process point of view.
These ions correspond to the solutions for which

20 2 li ( 41)'

- (c)

0.02-

0pp = 1.58808 5-

0

0.01-
C

Ch

2

Q ~

I

10
I

f2
I

f4
I

f6
I

18 0
0 200 300

3
E (Ia cgs units)

FIG. 3. Function y, g„and g2 in regions where our assump-
tion g& &y2 is not valid. (a) and (b) Small ionization degree; (c)
large ionization degree.

FIG. 4. Potential corresponding to the Fermi energy of the
minimally ionized atoms against the electric field.
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P =aE, (3.1)

where P is an induced atom dipole moment and E is an

0.04-

0.03

0.01

0-
0 200 300

E (IO cgs units)

i
400

FIG. 5. Minimal ionization degree for a given value of the
external field.

The influence of the external electric field on the mul-
tielectron atom can be described not only qualitatively,
but also quantitatively, in the framework of the TF mod-
el. The minimal ionization degree, the peak of the poten-
tial barrier —yo, the induced dipole moment, and even
the geometrical shape of the atom as functions of an
external field could be easily calculated. In Fig. 4 the
Fermi energy yo of the minimally ionized atom as a func-
tion of external field is presented. The Fermi energy di-
minishes with the electric field (po grows since
EF = —ego); the external electric field lowers the poten-
tial barrier. As the potential barrier is lowered the excess
of electrons escape from the atom. The degree of ioniza-
tion grows, see Fig. 5. Initially, for larger electric field,
the ionization degree is larger but later begins to saturate.
More interesting is the behavior of the induced dipole
moment, Fig. 6. The electric field of the value
E=10 Ze/a produces the ion of the maximal dipole
moment (ionization degree is about 17%). This max-
imum is an effect of the two competitive processes. As
the electric field starts to grow from its zero value the
atom begins to polarize and ionize. The field is too weak
to ionize an atom significantly, but is strong enough to
polarize the electron cloud. The dipole moment grows.
If the electric field is large, the atom is strongly ionized.
Only the electrons in the neighborhood of the nucleus are
left. Therefore the dipole moment goes to zero. The
above result clearly shows that studying the ionization of
an atom by fields of magnitude as large as 10 E„,one
has to take into account the escape of electrons above the
lowered potential barrier. This mechanism of ionization
can be very important, not only for a static electric fields,
but also in a case of optically varying ones. Such a physi-
cally simple intuitive picture of the ionization of mul-
tielectron atoms in a slowly varying electric field has been
successfully proposed by us in order to explain some
quantitative results of the strong-field ionization
phenonemon.

The formalism presented here allows one to calculate
the electric polarizability a of the TF atom:

(a)
25

~ 20

Q)
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FIG. 6. Induced dipole moment of minimally ionized atoms
against the external field. (a) Logarithmic scale; (b) for small
electric fields E =0.

external field. However, there is no solution of the TF
model corresponding to the neutral atom in the electric
field; the initial slope (at E =0) of the function P(E)
presented in Fig. 6(b) can be interpreted as the polariza-
bility of the TF atom. The quantity obtained in this way
is infinite. This result is in agreement with an earlier pa-
per. The TF model does not correctly describe the ion-
ization and polarization processes. The reason is quite
obvious. The TF atom has an infinite radius. The elec-
tron density tends to zero too slowly. The TF model al-
lows a substantial number of electrons to be far from the
nucleus. These electrons are very weakly bounded. But
these electrons are mainly involved in the ionization and
polarization processes. Therefore it is very easy to ionize
and polarize the TF atom. The ionization degree and the
electron polarizability calculated from the TF model can
be overestimated.

In Fig. 7 the density of the electron cloud is presented.
We do not plot the lines of constant density in the small
neighborhood of the nucleus because the density is
infinite at /=0, where the nucleus is placed. Figure 7 can
also be interpreted as equipotential lines for the TF atom
in the external electric field. This figure visualizes the ex-
tended shape of the ions —the effect of polarization by
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IV. FINAL REMARKS
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mental data. The presented model has a very intuitive
physical meaning. Although the results are qualitative
rather then quantitative, the method remains valid for a
different statistical model of atom based on the TF equa-
tion; for instance, to the Thomas-Fermi-Dirac equation.
Including long-distance corrections to the TF equation,
one can obtain more realistic models of the multielectron
atom in an external electric field. Improved" in such a
way, the TF model of an atom in the external homogene-
ous electric field has been applied by us in order to ex-
plain the recent experiments of the multielectron ioniza-
tion of atoms by strong laser pulses. Contrary to the
various existing theoretical attempts at an explanation of
these phenomena, the TF model gives not only the simple

physical picture of the ionization, but also allows one to
obtain (without any fit) the quantitative results that are in
very good agreement with the experimental data.
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