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Monte Carlo studies of equilibrium and growth shapes of a crystal
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The equilibrium and growth morphology of a crystal in a diffusion field are studied by means of a

lattice-gas model in a unified way. In a closed system the crystal takes an equilibrium form, and its

shape and size in two dimensions agree with those expected from the exact solutions of the corre-

sponding Ising model. In an open system where a crystal is in contact with a gas reservoir, the crys-
tal grows steadily. For a small crystal or at a small chemical potential difference Ap between the

gas and the crystal, the growth form is polygonal. Its growth rate and the size are interpreted by a

single nucleation and growth mechanism. On increasing Ap or for a large crystal, it becomes den-

dritic. Further increase of Ap results in a fractal aggregate, which is, however, "compact" in a large
scale due to the finiteness of the gas density.

I. INTRODUCTION AND THE MODEL

Pattern formations in various diffusion fields have been
investigated recently as a typical problem of nonequilibri-
um statistical physics. ' Even though bulk systems follow
the same diffusion equation or its static limit, i.e. , the La-
place equation, patterns vary from one system to another:
In a unidirectional solidification from solution a crystal
interface takes a regular form as an array of cells, cusps,
or dendrites. ' When a dendrite is isolated and free, it
has a parabolic tip with almost regular sidebranches. '

In a Hele-Shaw channel a viscous finger is regular,
whereas in a circular geometry fingers show tip splitting
and become ramified. ' In the limit of vanishing interfa-
cial energy, patterns become fractal. A typical fractal
pattern is found in a diffusion-limited aggregation (DLAi,
whose structure is characterized by a fractal dimension

Df.
The main cause of these variations is the difference in a

boundary condition, more specifically, it is the effect of
surface tension. Surface tension suppresses the instability
caused by the diffusion field, and its anisotropy selects the
working point of the growth pattern. ' In macroscop-
ic theories of the unidirectional solidification, " ' the
free dendrite, ' and the viscous fingers, ' the surface
tension is treated phenomenologically and is given as an
input parameter. In the DLA problem, the effect of sur-
face tension is replaced by an artificial algorithm in the
numerical simulation. ' On the other hand, the surface
tension by itself is interesting in relation to equilibrium
phase transitions, namely, a roughening transition of a
particular crystal face' and a faceting transition of an
equilibrium morphology. ' In these cases, microscopic
treatment of the surface tension is necessary. In this pa-
per we propose a simple model of a crystal growing in a
diffusion field, which considers the effect of the surface
tension microscopically, such that the equilibrium and
the growth forms of the crystal are treated in a unified
way.

In order to get a simple model, we interpret that the
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FIG. 1. Atomic configuration at T/J =0.3, p, /T= —1.0,
taken at the 30000th MCS. The vessel size is 0, =70X70, and
among N =56X56 atoms, N,. =1767 atoms are in a solid state
( 0 ) and X~ = 1369 atoms are in a gaseous state (+ ).

gas and the solid phases consist of their respective atoms:
A gas atom is mobile to give an entropy contribution of
the chemical potential, whereas a solid atom is immobile
but its chemical potential has the contribution from the
energy. The situation is further simplified by considering
a lattice system, where the space is divided into discrete
lattice points. Each lattice site can be occupied by a solid
atom, by a gas atom, or can be empty. Double occupan-
cy of a lattice site is forbidden. Figure 1 represents an in-
stantaneous configuration of gas and solid atoms on a
square lattice. Since the system has fourfold symmetry,
we consider only an upper-right quarter of a crystal nu-
cleus in the positive x and y regions. In order to fix the
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center of the mass at the origin, a skewed boundary con-
dition is assumed so that the x and y axes are contiguous
to each other.

With each solid atom an energy gain p., ( & 0) is associ-
ated, while a gas atom gains the entropy by exchanging
its position with a neighboring empty site. This exchange
process also mimics the diff'usion in a gas phase. The
effect of the surface tension can be incorporated by an en-
ergy cost of a value 2J )0 in breaking a solid-solid
nearest-neighbor bond. These energetics are summarized
in a Hamiltonian

H=2J g [C;(1—C, )+(1—C;)C, ]+@,+C;,
(, )

where the first summation runs over all the nearest-
neighbor pairs, and the crystallization order parameter
C, on an ith lattice site is unity when it is occupied by a
solid atom and vanishes otherwise. In terms of an Ising
spin variable S, —:2C,- —1=+1, the Hamiltonian reduces
to that of a ferromagnetic Ising model in a field,

roughening and faceting transitions, the two-dimensional
(2D) system with a one-dimensional interface is not so in-
teresting, due to the absence of phase transitions. How-
ever, since there are various exact results known in two
dimensions, we consider it appropriate to start the study
from 2D systems. In Sec. II we investigate the equilibri-
um form, and compare simulation results with the exact
profiles. In Sec. III the variation in the growth form as a
function of the chemical potential gain ~p, ~

is studied.
The relationship of the structures and the growth rate is
also investigated.

II. EQUILIBRIUM SHAPE AND SIZE

Wulff's theorem states that an equilibrium shape of a
crystal can be constructured from the orientation-
dependent surface tension y(9). Since our model, Eq.
(1) corresponds to the Ising ferromagnet, Eq. (2), y(8) is
exactly known for a square lattice "to be

y(8)/T= ~cos8~sinh '(a~cos9~)

H = —J g S,S +(p, /2) g S, +(II/2)(zJ —p, ) .
(ij) i

(2)

with

+ (sin8[sinh '(a(sin9)), (3)

Here the volume 0, being the number of the total lattice
sites and z the coordination number.

Monte Carlo simulations have been performed for the
lattice-gas model, Eq. (1), to obtain crystal shapes. Sto-
chastic evolution of the system consists of the following
steps. Every gas atom hops freely from a lattice site to
one of its nearest neighbors, unless it is occupied. When
a gas atom diffuses to come into contact with solid atoms,
it crystallizes with a probability O'. Inverse to this crys-
tallization process is an evaporation, where a solid atom
at an interface tries to turn into a gas atom. These crys-
tallization and evaporation processes at the interface
should satisfy the detailed balance condition and we have
adapted the heat-bath algorithm: The transition proba-
bility 8' for a process with an energy change AE at a
temperature T is set to be 8'(AE) = [1+exp(AF /T)]

Our process neglects the evaporation in the bulk crys-
tal and solidification in the bulk- of the gas phase, since
our main concern is with the crystal morphology at low
temperatures where these excitations in bulk phases are
quite rare. This is the same assumptions for the solid-
on-solid (SOS) model which simulates the thermal behav-
ior of a singular interface. ' The equilibrium shape of the
SOS model has been simulated by the Monte Carlo
method previously. ' However, the SOS model is inap-
propriate for obtaining some types of growth forms as
dendrite and fractal patterns, since it does not allow
overhanging of the interface, which is essential for these
morphologies.

We start a simulation with a solid nucleus situated in a
closed vessel. Some solid atoms evaporate to a gas phase
and diffuse away from the interface, but some gas atoms
condense back. From this simulation we get an equilibri-
um form of the crystal. ' Instead, if the system is ex-
panded steadily by adding an atom reservoir with a
prescribed gas density at the periphery of the system, the
crystal continues to grow and we get a growth form.
We consider a system on a square lattice. As for the

kx =y(8)cos9 —y(9)'sin8,

Ay =y(8)sin9+y(8)'cos8,
(4)

where A. is a Lagrange multiplier which determines the
crystal size, and the prime means the derivative by 0.
The theoretical profile, Eq. (4) with Eq. (3), is compared
with the simulated shape to test our simulation algo-
rithms.

In Fig. 2 we show an averaged interface profile at tem-
peratures (a) T/J =0.3 and (b) T/J =0.6. The interface
is located at the position where an averaged degree of
crystallization (C) is —,'. The average is performed over
2-3X10 Monte Carlo steps per site (MCS) for
T/J =0.6 and over 3 —6X10 MCS for T/J =0.3, disre-
garding the initial 10 MCS as an equilibration in every
simulation. At each temperature, crystal shapes for vari-
ous chemical potentials p, are similar but the size in-
creases on increasing ~p, ~

/T. On heating the system the
crystal shape becomes rounded. The temperatures simu-
lated, T/J =0.3 and 0.6 are far below the Ising critical
temperature T, /J =2/ln(1+V2)=2. 27, and assure the
absence of a hole creation in the crystal nucleus. Our
simulation profiles agree with theoretical ones, Eq. (4)
with Eq. (3), which are drawn by curves in Fig. 2 with an
adjustment in the top height of the crystal.

In order to discuss the size of a nucleus, we assume
that the crystal shape is scaled to the equilibrium form
determined by Wulff's theorem. Suppose that in a vessel
of volume 0 there are totally N atoms. Among them, N,

a=(2/b)(1 —b )' [1+(sin 28+b cos 28)'~2]

b =2sinh(2J/T)cosh (2J/T) .

Hereafter we take a temperature unit where the
Boltzmann constant kz is unity. The interface profile is
then exactly represented in a parametric form by using
Wulff's construction as



3410 YUKIO SAITO AND TSUYOSHI UETA

solid atoms gather to form a solid nucleus, and the
remaining N =N —N, gas atoms are distributed and
diAuse in a free volume 0—N, . The associated entropy
of the gas phase is obtained to be

S =in[(II —N, )!I(N N,—)!(0—N)!] .

From our scaling assumption of the crystal shapes the
interfacial energy scales to the linear dimension of
the crystal L =QN„and a proportionality coefficient
should be an averaged surface tension y( T):

y'( T) = f y(0(s) )ds l2 fy dx
1/2

where the integration is performed along the periphery s
of the quarter of the crystal. Note that y(T) depends
only on a temperature and is independent of the system
size N, . Including the energy gain by crystallization
p, N„we get the total free energy

F (N, ) = 2y( T)QN, +p, N, —TS

A free-energy cost of the formation of a crystal nucleus of
the size N, is then given by

AF(N, ):F(N—, ) F(N—, =0)
= 2y(T)QN, +p, N, .

60- T(1=0s. —T (II N, )ln—
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The extremum of AF determines the critical radius via a
relation

OAF(N, )
=y( T)I &&IN, +p, —T ln[(N —N, )/(II —N, )]

5

=y(T)IQN, —by=0 . (9)

Here Ap= p —p, is the chemical potential diAerence be-
tween the gas,

p = T ln(N N, ) I( Il —N—, ) = T Inn

and the solid p, . The second derivative

(10)

0 AF = —(y/2)N, i +T[(N —N, )
' —(fl, N, ) ']-

ON

=0.6

20-

10- +

0
0

2.00

10

~ &
',)

K ') ( &)

()

20 30

FICi. 2. Average interfacial profiles at (a) T/J =0.3 and (b)
T/J =0.6 with various chemical potentials. Curves are the ex-
act profile of the two-dimensional Ising model. The top height
is fitted to the simulated profile.

is positive when N, ~N and is negative when N, ~0.
Thus if Eq. (9) has solutions, AF has two extrema: one
maximum at a small N,"' and one minimum at a large
N,' ' as is shown in Fig. 3(a). In a closed and small sys-
tem, the crystal takes a size N,' ' which corresponds to
the minimum of the free-energy cost AF, if AF(N, ' ') (0.
As ~p, ~

decreases, N, =0 becomes the absolute mini-
mum position of a free energy, and N,' corresponds
only to a metastable state. Finally, when ~p, ~

becomes
smaller than the critical value p, , where OAF /BN,
=9 5F/3N, =0, only the gas phase is stable and the
crystal nucleus should evaporate. The relation between
the crystal size N, and the chemical potential ~p, at
T/J =0.3 is shown in Fig. 3(b). The data points ob-
tained by simulation lie quite close to a theoretical curve
given by Eq. (9). Furthermore, when we initiate a simula-
tion with a small initial nucleus of the size N, which lies
to the left of the unstable branch in Fig. 3(b), the solid
nucleus evaporates completely. Also, if the simulation is
done with a chemical potential

~ p, , ~
smaller than the criti-

cal value, the solid nucleus again evaporates and extin-
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FIG. 4. Stroboscopic growth shapes of the crystal at various p, 's, and gas atoms distributed around the final configuration of the
crystal. Chemical potential ~p, ~

/Tis (a) 5.0, (b) 7.0, (c) 9.0, (d) 10.0, (e) 11.0, (f) 12.0, (g) 13.0, and (h) ~. For (g) and (h) only the final

crystal shape is shown in black, and in (h) gas atoms are omitted.
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set far enough from the interface in order not to disturb
the gas-density distribution. When the crystal grows, it
absorbs surrounding gas atoms and the density around
the crystal is suppressed. The natural length scale that
characterizes the variation of the diffusion field is the
diffusion length l =2D/V, where V is the growth veloci-
ty. The best way to shift the particle reservoir outwardly
is, therefore, to keep its separation from the crystal tip
larger than 1. This scheme is applicable at high ~p, ~/T.
At small ~p, ~, however, the crystal grows very slowly and
the diffusion length I =2D/V is very large. In order to
keep the system small enough to perform simulation, we
choose another scheme: The particle reservoir is shifted
outwardly only when the density in front of this region is

depressed more than the level of random fluctuation from
the prescribed value. Since the growth at these small p,
will turn out to be strongly governed by the interface ki-
netics, we expect that our scheme of the reservoir shift
may not influence the growth kinetics essentially. At
~p, ~

/T = 8.0, simulations with different schemes in shift-
ing the reservoir yield similar shape evolution, and the
velocities agree with each other [Fig. 5(a)].

B. Structure and dynamics

Simulated growth shapes of the crystal vary on in-
creasing the energy gain

~ p, ~
/T associated with the

solidification, as is shown in Fig. 4. At small ~Iu, ~/T
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300 '

10

=4.0 and 5.0, the crystal grows slowly and its shape is
polygonal up to our maximum simulation size [Fig. 4(a)].
On increasing ~p, ~

/T from 6.0 to 10.0, the crystal grows
initially in a square form, but becomes unstable at the
corner, and turns into a dendritic form ultimately [Figs.
4(b) —4(d)]. A further increase in ~p, ~I/T leads to the
splitting of the dendritic tip and many irregular branches
are observed [Figs. 4(e) and 4(f)]. Until ~p, ~

/T = 12, the
structure is rather open, but from ~p, ~

/T ~ 13 the width
and the spacing between dendritic branches become very
fine and the whole structure looks compact. [Figs. 4(g)
and 4(h)].

As for the dynamical aspects of the crystal growth,
time evolution of the crystal tip is observed. A separa-
tion rt'p of the farthest tip of the crystal from the origin
increases asymptotically in proportion to the time t, as is
shown in Fig. 5. At

~ p, ~
/T = 8.0, the r„'s for two

different schemes in shifting the particle reservoir at the
periphery of the vessel increase almost identically, as
shown in Fig. 5(a). The growth rate is defined by the time
variation of r„as V=6.r, ; /b, t. The chemical potential
dependence of V is shown in Fig. 6(a). When the crystal
grows in a square form or in an open dendritic form, the
growth rate is very small. On the other hand, when the
crystal grows in a compact form its growth rate increases
drastically. The logarithmic plot of the rate V in Fig. 6(b)
reveals that for small ~p, ~'s V depends exponentially on

p, i/T as

V ~ exp( —0.29~@, ~
/T) . (13)

12

200-

tip

p6
Figure 6(b) also shows a smooth increase of the velocity V
around p, ~IIT=8, tracing no hint of diff'erence in the
shifting scheme of the reservoir there, above and below.
It confirms again the validity of our simulation pro-
cedure.

C. Nucleation growth at small
I p, I
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0 t
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300-

tip

oo ~ i 16
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In order to characterize the crystal structure at small

~p, ~, we estimate the stability limit of the square crystal
L „.When a crystal grows in a square form, the num-
ber of surface crystal atoms N, ; is equal to 2L —1, with
L =QN, being the linear dimension of the square crystal
of a size N, . When a crystal becomes dendritic, the inter-
face becomes complicated and the ratio between N, , and
L increases: If, for example, a dendritic branch grows
with a constant width, N, , is proportional to the total
number N, . This expectation is clearly seen in Fig. 7,
which depicts (N, , + 1 ) /2L versus L. For small
L &L „,the ratio remains unity, while for L )L,„ the
ratio increases rapidly. The stability limit L „thus ob-
tained is plotted in Fig. 8 as a function of the chemical
potential p, ~. From this plot one observes that L ,„also.
depends exponentially on the chemical potential p, .
The least-squares fit leads to the relation

200-
~0

~0
~0 L,„~exp( —0.59

~ p, /T) . (14)

~ ~

~0

100-

~ ~
~0

~ ~
~ o~
~ ~

0
200

~0

400 600

FIG. 5. Time evolution of the crystal size r„„at (a) small and
(b) large chemical potentials. At

I p, I
/T= 8.0 two diff'erent

schemes in shifting the gas reservoir yield almost identical be-
havior.

When the crystal grows larger than L „,it takes a den-
dritic profile. The tip size and the sidebranch periodicity
of the dendritic structure still seem to be scaled with

,„, as shown in Fig. 4. Thus L „characterizes the
structure in the crystal.

One thing to note is that the morphological transition
from polygonal to hopper or dendritic structure induces a
drastic increase in the time evolution of N. . . but not in
the tip velocity, as is shown in Fig. 5. The tip velocity
shows only a transient slow evolution in time. The
reason may be that the tip velocity is mainly determined
by a local environment, such as gas-density distribution,
which does not change so much, even when global mor-
phology varies.

The exponential dependence of V and L,„on ~p, ~
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may be interpreted by the surface kinetics of the nu-
cleation and growth mechanism. For a small ~p, ~

a cry-
stallization probability of an isolated atom on an edge site
is very low as

~& =~, ;exp[( l(M, I
4J—) /T]/I 1+exp[( ~ p, , ~

4J—) /T] I

=ns;exp[(~p, , I

—4J)/T] . (15)

Here n, is the gas density at the interface, and 4J
represents the energy cost to create two excessive broken

V~ =2LP) . (16)

In the steady state, gas atoms consumed by the nu-
cleation and growth should be supplied through the
diffusion in the gas phase. The surface kinetics rate Vz

bonds. Once a solid atom is nucleated on the Aat edge,
farther spreading costs no energy and a layer growth
takes place quickly. Since the total probability of nu-
cleation on an edge of the length 2L is 2LP, , the growth
rate of an edge is obtained to be

~ ~ ~

3

~ ~

»I~, li&)

0
0- ~ ~ ~ ~ ~ ~ ~

10 12

Iv, l/T
18 10 12

I~. I/T
14 16

g, t
jn —'—

V

10

FIG. 6. (a) Steady growth rate Vvs chemical potential. An arrow indicates the velocity at Ip, = ~. (h) lnVvs Ip, I/T Astraight.
line shows the least-squares fit. (c) ln(ng; /V) vs Ip, , I

/T Astraight line shows t.he least-squares fit.
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Since n, , =1 and is much larger than n;, we may re-
place the coefficient on the left-hand side to be unity.
Until now we have assumed that the gas density along the
polygonal edge n, is uniform. However, when the crys-
tal grows steadily in the polygonal form, the density
difference is produced between the corner and the center
of the edge. Since the density variation is character-
ized by diffusion length t' =2D/V, the density difference
between the corner, n (L), and the center points, n (0), is
of order L/I, where L is half the edge length. Precise cal-
culation has been done with the static approximation to
the diffusion field and the result is

ng(L) —n (0)=(qL/n)[P( —,') —P( —,')]=0.28qL, (18)
1.0

~ ++
+ ~

p

100 200

FIG. 7. Ratio between the numbers of the interfacial solid
atoms N, ; and the linear dimension of the square crystal
L =QN, .

(n, ,
—n, ) VD =Dq . (17)

should be balanced with the diffusional rate VD, and

Vi~
= VD = V/&2, where Vis the growth rate in the diag-

onal direction. When the gas with density n; crystal-
lizes into a solid with density n, ;, at the interface, the
mass deficiency produced per time (n, ; ng, )V—D should
be transported via the diffusional flow Dq =D B„n,
where B„represents the normal gradient at the interface:

L,„—+ns, /P, ~ exp[(4J —
l p, l ) /2T],

and the velocity is

(19)

V- "t/ n&, P
&

o- ng, exp [ ( l p, l
4J ) /2 T),— (20)

where we have approximated ng (L)=n, and n (0)=0.
From Eq. (19) one expects lnL, „ to be proportional to

—lp, l
/2T, which differs not so much from the simulated

slope —0.59. For the growth rate V the comparison is
not straightforward, since the gas density at the tip n

also varies as a function of p„as is clear from the particle
configurations in Fig. 4. In order to estimate n, , we as-
sume that the diffusion field around the growing tip
varies exponentially with the diffusion length tt =2D /V,

with 1t being the digamma function: 1t(z)=d lnI (z)/
dz. Since q= VD/D=+2/1, our qualitative argument
is valid with a modification of a constant factor of the or-
der unity. When the density at the center n (0) is
suppressed to the corresponding equilibrium density—

I p, I/'Tn, =e '
( «1), the central part cannot grow any

more. This determines the limit of po1ygonal growth
for our model system. The maximum linear size L,„of
the polygonal growth is obtained from Eqs. (16) and (18)
to be

n (r)=n +(n —n;)e p(x—rV) . (21)

1nI.max

Here n =0. 5 is the gas density at infinity. We obtain
from the simulation an average density n in the circle of
radius a, which is approximately related to the gas densi-
ty at the interface n; as

ng; =ng —(n~ —n )(a V) /2[1 —(1+aV)e '~] . (22)

The interfacial gas density n, is then calculated from
Eq. (22) and is found to depend on lp, l

exponentially as

n, ~ exp( —0.22lp, l /T), (23)

2-
10

as shown in Fig. 9. The logarithm of the ratio n, /V at
small lp, l

/T is shown in Fig. 6(c), and is proportional to
l p, l

/T with the slope —0.50,

ng, / V ~ exp( —0.50
l p, l

/T) . (24)
FIG. 8. Linear size of the stability limit for the polygonal

growth L „vs lp, l/T Astraight line shows .the least-squares
fit.

It may be fortuitous, but the slope just fits the expected
value —

—,
' in Eq. (20).
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FIG. 9. Gas density at the interface tip ng, obtained from the
configuration. A straight line shows the least-squares fit.

FIG. 10. Fractal dimension Df of the crystal vs chemical po-
tential ~p, ~/T

D. Irregular structure at high ~p, ~'s

Up to the chemical potential ~p, ~/T ~ 10, the system
consists of a single primary dendrite, whereas for high
~p, ~

/T ~ 11 multiple branches are observed. This varia-
tion in morphology may be caused by the relative magni-
tude of the system size and the diffusion length l = 2D/V,
which characterizes the density depression in the gas
phase and also the separation between each dendrite. At
small ~p, ~'s with low growth rate, l is large and of the or-
der of the system size, and the crystal cannot grow in an
open space. At large ~p, ~'s, on the other hand, l becomes
short and the crystal can grow in an open space between
primary dendrites. The open structure of the crystal is
reflected in the relation between the mass N, and the ra-
dius of gyration R, defined by

N,

For ~p, ~/T higher than 13=4J/T, the energy barrier
against nucleation given in Eq. (15) vanishes and most gas
atoms solidify when they attach to the solid. The veloci-
ty V increases drastically compared to the nucleation
growth rate at small p, ~'s. The diffusion length is less
than unity, and the structure in the growth form becomes
very fine. The fractal dimension Df of the aggregate
agrees now with the space dimension d =2, indicating
that the system is "compact. " Even though Df is equal
to d = 2 both at very small and very large

~ p, ~'s, the crys-
tal structure is quite different: polygonal structure at
small

~ p, ~

's and irregular compact structure at large

~p, ~'s. The difference can be detected in the number of
the interfacial solid atoms N, , The relation between N, ,
and the total number of the solid atoms N, is asymptoti-
cally represented by the power law

(27)
R =(I/X, ) g r, (25)

where ri is the distance of the ith solid atom from the ori-
gin. The relation

N, ~R D
(26)

defines the fractal dimension Df. We have estimated Df
at various

~ p, ~ s, as is shown in Fig. 10, and obtained the
value around 1.7 for the dendritic growth. The fractal di-
mension is near the value of the DLA, but the dendrite
here is almost regular. Df smaller than the space dimen-
sion d =2 does not necessarily mean the irregular fractal
structure but merely represents the openness of the struc-
ture. Since the sidebranch of the dendrite develops while
the primary dendrite elongates, Df turns out to be larger
than 1.

Figure 11 depicts the variation of the exponent a as a
function of the solid chemical potential ~p, ~/T. At a
small ~p, ~, a takes the value —,', representing that the
shape is polygonal. At large

~ p, ~, a becomes 1,
representing that the shape is complicated and that a
finite fraction of solid atoms is situated at the interface.
From

~ p, ~
/T = 11 to 14, the value of a exceeds unity, in-

dicating that the crossover from a polygonal to an irregu-
lar growth form is taking place gradually at about our
system size.

When ~p, ~
is infinite, a gas atom solidifies instantane-

ously as it touches the solid aggregate. The problem is
the same with the DLA model growing in a gas with a
finite density, and the growth rate takes a maximum
value V,„. The assumption of a short diffusion length
permits ample gas atoms around the crystal tip, and the
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FIG. 11. Exponent a, which relates the number of interfacial
solid atoms N, , to that of the total solid atoms N,. as N, ,

~ N,

IV. SUMMARY AND DISCUSSIONS

Crystal shapes are simulated by using a lattice-gas
model, which incorporates the surface tension of the
solid, chemical potentials of the solid and the gas phases,
and also the diffusion dynamics in the gas phase. Simula-
tions for a closed system at various temperatures produce
equilibrium shapes on a square lattice, which agree with
the exact profiles of the corresponding Ising model. The
crystal size also agrees with the prediction from the free-
energy minimization analysis.

By extending the simulation to an open system which
is provided with a particle reservoir with a fixed gas den-
sity, various growth shapes are obtained. On decreasing

growth is essentially controlled by the surface kinetics.
One can then estimate a rough value of the maximum ve-
locity V „.When a diagonal site solidifies, the tip grows
a distance of &2. In a time interval of At =1, the site
tries to crystallize four times in our choice of time unit.
The probability of crystallization is equal to the probabil-
ity of finding a gas atom on that site, which is about n .
Therefore the growth rate is roughly estimated to be
V=&2X4Xn =2.8 for our system with n =0.5. The
diffusion causes the rearrangement of gas atoms around
the growing tip, and enhances the growth rate. The
simulation result V,„=3.25 agrees with this estimation.
The diffusion length 1=2D/V-0. 6 is less than the lat-
tice parameter, and the assumption of the surface kinetics
control is confirmed. The rate V „=3.25 is a little
smaller than, but of the same order of, the value V =3.64
obtained in the growth simulation from a linear seed of
the solid. Since in Ref. 30 solidification is tried before
and after the diffusion, crystallization is more favored
and a higher growth rate comes out than in the present
work.

the solid chemical potential p, ( (0), the growth shape
changes from a polygonal through a hopper to a dendrite,
and then to a fractal aggregate, and finally to an irregular
but compact structure. This kind of variation is realized
in the growth experiment of the cyclohexanol crystal
from pure melt. ' Morphological transitions are studied
in other systems, such as in electrochemical deposi-
tion ' and in viscous fingers in a radial Hele-Shaw cell
with some anisotropies. ' Especially, in a Hele-Shaw
cell with a regular sixfold lattice of grooves ruled on the
bottom plate, apparently similar morphological transi-
tions are observed. On increasing pressure, faceted
growth varies to dendritic growth. At higher pressure,
tips split, which on further increase of pressure stabilize
again to form dendrites. Two dendrites at low and high
pressures are rotated 30' mutually, and the intermediate
tip splitting is due to the competition between selective
orientations of different dendrites. In our lat tice-gas
model, tip splitting and irregularity are caused by the
random shot noise by the solidification, like the DLA
model. Therefore, in spite of the apparent similarity,
morphology diagrams may be determined differently in
two cases.

Crystal growth at small lp, is characterized by the ex-
ponential dependence of the maximum size of the polygo-
nal crystal L,„on —lp, IT. The ratio n, IV between
the interfacial gas density n, and the growth rate V also
shows similar dependence on p, . These results can be in-
terpreted by the single nucleation and growth mechanism
on the edge of a crystal. However, we do not yet have a
proper explanation for the Ap dependence of V and n

respectively. According to the static approximation of
the diffusion field, gas densities at the corner and the
center of the edge are obtained as

n (L)=n —0.27qL, n (0)=n —0. 55qL . (28)

These results disagree with the simulation results, Eqs.
(13) and (23). It may be necessary to take the time varia-
tion of the diffusion equation into account.

When the crystal grows larger than L „, it becomes
dendritic. The main structures such as the tip width and
the sidebranch periodicity still seems to be governed by
the scale L „.The dendritic crystal has a rather open
structure, which is characterized by its fractal dimension
Df about 1.7. Further increase in p, lets the crystal
grow fast, such that the diffusion length l becomes com-
parable to or less than the lattice parameter. In this case,
the crystal becomes compact with D&- =d =2. Even
though both the polygonal and the compact crystals have
the same Df, their structures are completely different:
The number of interfacial solid atoms %, , is a fraction of
the total solid atoms N, for the irregular cr~stal, whereas
it is proportional to the linear size L =+N, for the po-
lygonal crystal.

For lp, /T ))1, the assumption of the small equilibrium
density at the center yields the constant gas density at the
corner n, =n (L)= n l2 and the chemical potential
dependence of the growth rate as

V =Dq —ns /L, „~exp( lp, l
~2T) .
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We have to remark that the characterization of the
growth shapes depends on the crystal size. Even for
small ~p, ~'s such as ~p, ~/T=4. 0 and 5.0, the dendritic
instability may appear when the crystal becomes larger
than the corresponding I. ,„. Also at ~p, IT 5 10.0
when the dendrite grows larger than the diffusion length,
a secondary branch might evolve to fill in the open space
between main branches. These points are, however, out
of our computation capability. Effects of the tempera-
ture, of the ratio of ~D and ~sE, and of the surface

diffusion are the interesting future problems to be stud-
1ed.
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