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From coherent to incoherent tunneling of squeezed states in double-well potentials
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Tunneling of initially squeezed wave packets in moderately asymmetric double-well potentials is
studied in the presence of dissipation. The time dependence of the mean position is studied in order
to investigate the features of the trajectory, which strongly depends on the involved parameters.
Some questions related to the evaluation of the dissipative parameters are discussed.

I. INTRODUCTION

The study of the dynamics of a localized double-well
oscillator coupled to a dissipative environment has been
the object of considerable interest in recent years, and
much of the recent work has been reviewed by Legget
et al. ' In all cases the hypothesis was made that only the
two lowest levels resulting from tunneling splitting of the
ground state needed to be taken into consideration: the
conditions under which such two-level models work are
discussed in detail in Ref. 1 and, basically, require that
kT, the difference in energy between the potential minima
(if any), and the tunneling splitting itself all be much
smaller than the vibrational quantum in one well (or,
more generally, the energy separation among the levels of
the uncoupled wells). Even if one uses the two-level mod-
el the theory is very complicated whichever may be the
formalism used, i.e., the Hamiltonian or the functional-
integral one. '

On the other hand, there exists at least one important
case in which the two-level model is intrinsically inade-
quate, irrespective of the parameters' values and of tem-
perature, i.e., when the system is initially prepared as a
squeezed wave packet localized in one of the potential
wells. In fact, it is well known that wave functions rela-
tive to several excited levels must be superimposed to
produce a squeezed wave packet. Thus, unless one is sure
that the system is initially prepared in the exact ground
state of the uncoupled well, higher levels should be taken
into account. This kind of situation was considered re-
cently by Dekker for a symmetric potential, ' and by the
present authors for a slightly asymmetric potential, but
in any case neglecting dissipation.

In the present paper we attempt an analysis of a
squeezed problem in the presence of dissipation. A
motivation for this study is that squeezing may affect the
possibility of experimental observation of macroscopic
quantum effect: tunneling through a barrier and
coherent oscillation. For example, in order to observe
quantum tunneling, it is necessary to reduce as far as pos-
sible classical, thermally activated tunneling without
making the barrier too high. In general this condition as
applied to superconducting junctions and superconduct-

ing quantum interference devices (SQUID's) requires that
the barrier height be very small and, at the same time,
that temperature be well below 100 mK. It is expected
that squeezing, by introducing excited-state components
in the wave packet, will change the tunneling rates there-
by imposing different experimental constraints. In a simi-
lar fashion, we can expect coherent oscillations to be
affected as well.

Our approach is mainly phenomenological, because the
treatment is extremely complicated even in the absence of
squeezing, and we shall consider the case of moderate
Ohmic dissipation and asymmetry, which (in the absence
of squeezing) gives rise to damped oscillations with an in-
coherent background.

In Sec. II we extend the analysis of Ref. 4 in order to
take dissipation into account and to obtain an expression
for the mean trajectory which, as shown in Sec. III, in the
absence of squeezing reproduces the results of previous
treatments. In this section we also explore the different
behaviors of the time evolution of the tunneling system in
the parameters space. In Sec. IV an estimate of the dissi-
pative parameters is made, while in Sec. V we discuss
some questions connected with the considered problem.

II. DISSIPATIVE TUNNELING DYNAMICS

To account for the time evolution of a tunneling sys-
tem coupled to a thermal bath is a rather complicated
problem for the coexistence of two different behaviors:
quantum coherence and statistical incoherent thermaliza-
tion. The presence of the squeezing further increases the
complexity because of the contribution of excited states.
A possible approach to the problem can be that of con-
sidering the temporal wave packet as the superposition of
two packets each of which corresponds to a different re-
gime. In such a way the total wave packet can be written
as

N(x, t, T) =4, (x, t, T)+C&, (x, t, T),
where x is the spatial coordinate, t is the time, and T is
the temperature. The first term N, represents the
coherent part of the wave packet and N; the incoherent
one. The coherent part will be given by
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+,(x, t, T)= fK(x, t;x, , O;T)N(x, , O)dx, , (2)

X 'N X.
N

itX exp ——[Ez —ie&( T)], &=0, 1,2,

here N(x, , O) is the initial wave packet and the kernel is
given by

K(x, t;x, , 0; T)

the indexes choice of Eq. (6) allows us to take into ac-
count only the states which, for symmetry reasons, con-
tribute to the wave packet. The energy shift 62„can be
evaluated according to the relation

exp( —2SO /fi )

(2mn') (o+5~„)
(7)

where So is the classical action in going between the two
potential minima in absence of bias, and the density of
states n

' is given by

(3)
where gz and Ez are the eigenfunctions and the eigen-
values of the complete system, respectively; the imagi-
nary part of the energy E~(T) is related to the dissipative
eAects. According to Ref. 4 we take the initial wave
packet of a squeezed state as

1/4
2R

4(x, ,O) =—

r

2 2R

exp
2

(4)

V(x ) = —,'co (x+a ) + V( + a )

where R is the squeezing parameter and y a local coordi-
nate centered at the minima of the potential

n'=
A@4„

a 2?? 2Q)o
C04~

—2

n+ 1/2

(vr V, )'",
where Vo is the barrier height. By substituting into Eq.
(7), we easily verify that the ground-state tunneling split-
ting is

1/2
SoEEo:26o =2A&o

—S /4
e

The frequencies B4„ for small asymmetry, can be ex-
pressed as

$4„=( sing&„)g, + ( cosy'„)1(j, ,

l 4 +1 (cosV 2 )0-.—(»nv». )4 (6)

where g+, are wave functions of harmonic oscillators
centered at x =+a, respectively, and y2„are defined by
the relation cos(2cpz„)=o. /(25&„+ )o. For n =0, 1,2, . . .

being V( —a ) =0 and V(a ) = tr. The eige—nfunctions in
Eq. (3) are given by

By resolving Eq. (7) with respect to 5z„we obtain
2 1/2

0 2 0+Aco 4n

where bc@4„=( co4„ /n )exp( —So /A') is put equal to
6 "/(2n )! being 8=4VO/A'co. Following the same pro-
cedure of Ref. 4, and taking into account Eq. (2), we find
that

it it4, (x, t, T)= g Az„(sing&„)$4„exp — [E4„—iE4„(T—)] +(cosy'„)$4„+,exp — [E4„+, ts4—„+,(T—)]
n

e4„=e4„+,exp[ —
( o+ 25&„)/k T ]

being o +5&„ the energy separation [see also Eq. (21)], and
1/2 n

tanhR
2

1

coshR

where, by detailed balance, the parameters c.4„and c.4„+1 are simply related by

(9)

As for the incoherent part of the wave packet, let us consider for the moment the case R =0, which requires con-
sideration of only the ground tunnel-split doublet, n =0 of Eq. (6). In this case the incoherent wave packet will be
modeled as a linear combination of statistical states of the type

tE, t
4&, ( t,xT)=[CO(t, T))'~ Poexp — +iy, +[C,(t, T)]' f, exp

iE1t
+lJ„ (10)

where g, and g„are random phases,

Co(t, T)=G(t ) —,'exp
+26o
2kT

cosh
o. +25o

2kT

and
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o +25o
Ci (t, T ) =G(t )

'
—,'exp

o +25o
cosh

2kT (12)

G(t ) being the temporal evolution given by

2c&t
G(t ) = 1 —cos (p ) exp0

2c,0t—sin (q&o) exp (13)

In this way the right thermal balance between the two states l(o and g, is obtained in the asymptotic limit of t ~ ~.
More exactly, we have assumed that this thermal balance holds at any time. The total wave-packet 4, Eq. (1), main-
tains the right normalization as can be easily verified taking into account that the time-averaged overlap between N,
and 4, is zero owing to the random phases y„and y„ in Eq. (10).

The presence of a squeezed initial state, R )0 in Eq. (4), modifies the relative weights of the different states, i.e., the
coefficients Az„ in the coherent part of the wave packet [Eq. (8)]; we will assume that the same weights can be used for
the incoherent part as well. Therefore we have that the total wave packet is given by

@(x,t, T)= g A,„[4,„(x,t, T)+C, „( xt, T)], (14)

where N, „ is given in Eq. (8) and 4, „ in Eq. (10) is suitably indicized. By straightforward calculations we have that
the expectation value of the coordinate

(x(t)) = J ~4( xt, T)~ x dx

turns out to be

(x(t)) 2, = g ( A ~„) cos(2yz„) cos yz„exp(x 0 )
2~4n +1 2~4n

t —sin gz„exp — t

2~4n + 1 2~4n—cos(2yz„) 1 —cos pre„exp — t —sin yz„exp — t tanh
o +26q„

21T

~4n +~4n+]+sin (2yz„)exp — t cos
o. +25q„

This expression, which in absence of dissipation
(s4„=s4„+,=0) reduces to that of Ref. 4 describing a
purely coherent regime, for moderate dissipation (small
values of s's) gives a description of the dynamical behav-
ior which starts at t =0 with a quasicoherent motion and
with increasing time becomes more and more incoherent.
For large values of c's the tunneling process becomes ir-
reversible in a very short time. The third term in Eq. (15)
represents the damped oscillatory part of the motion
whose mean value is given by the first term: both tend to
zero with increasing time. The second term, which is the
only one which survives at large times, gives the asymp-
totic value of the coordinate.

(x(t ~~, T~0) )
(x(0)) [o +(A'bee~„) ]'

(16)

III. COMPUTATIONAL ANALYSIS

Before considering the detailed different behaviors
which can be obtained by Eq. (15) in different parameter
regions, let us test our result in the limiting case of R =0.

At low temperature the asymptotic value of the coordi-
nate tends to

which in the absence of squeezing reduces to—o/[o +(fib.coo) ]' . This result is coincident with
that of Ref. 6. Moreover, still for R =0, our result of Eq.
(15) is very similar to Eq. (107) in Ref. 6 under the as-
sumption that the total decay rate I =c0+c, More
properly, this assumption turns out to be exact for
sufficiently large values of o. , since in this case c i
represents the decay rate from the upper to the lower
minimum, while c0 is the rate of back tunneling. A de-
tailed evaluation of the decay rate I has been performed
in Refs. 1, 6, and 8 for the Ohmic case. Here we will
treat the c's as parameters and we will discuss their eval-
uation in Sec. IV.

In Fig. 1 we show two examples of trajectories, com-
puted by Eq. (15), with (a) or without (b) squeezing, un-
der the assumption that s4„+, (for R & 0) is independent
of n. We note that, in addition to the typical damped os-
cillatory motion, the squeezing causes the presence of a
chaotic behavior analogous to that obtained in the ab-
sence of dissipation. In Fig. 2 we report the log-log plot
of the trajectory length as a function of the inverse sam-
pling interval for the case of Fig. 1(a). The fractal dimen-
sion of the trajectory is still comparable with the results
previously obtained without damping even for relatively
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the lower well, and to make the motion more and more
incoherent. These results are in qualitative agreement
with those obtained in the absence of squeezing as report-
ed in Ref. 6.

Until now the dissipation has been considered as
operating only within the several pairs of levels, whose
separation is o +252„( &(fico), neglecting decay processes
among the several pairs (even inside the same well). This
is an incomplete picture which can be improved by con-
sidering that the initial squeezing is bound to disappear.
We will take this fact into account by assuming that 8
evolves with the time according to the simple relation

D
x

x

—l

0 40

R(t)=Roe (17)

where y is a suitable parameter.
In Fig. 5 we show a trajectory computed for y=0. 1.

We see that the effect of a finite value of y is that of re-
ducing the extension of chaotic behavior and the ampli-
tude of the oscillations depending on the value of R. The
analysis of the log-log plot shows that the fractal dimen-
sion of the trajectory (d =1.917) is still comparable with
the results previously obtained provided that the parame-
ter y is sufficiently small. When y increases the fractal
dimension tends to decrease, but for y ~ 0.3 the results of
the fractal analysis lose significance.

As said, the 84, +, are treated as parameters, and so far
we have assumed that the dissipative effect is the same in
each pair of levels; moreover, we have assumed that y
can be treated as an independent parameter. It is very
difficult to predict the dependence of c4„+&

on n and their
relationship with y without detailed knowledge of the mi-
croscopic mechanism that causes dissipation. We will
consider this point again in the next section; for the mo-
ment, we will proceed with our phenomenological ap-
proach and consider also the case where c4, +, varies
strongly with n, i.e., it is proportional to the square of the
tunneling-splitting relative to the considered pair. In our
notation this means to take

FIG. 6. Expectation value of the position vs time with dissi-
pative parameters c4„+&=(Aco4. )'El, el=0.02, y =0. Other pa-
rameter values are o =0.5, kT=O, 0=40, R =2 [as in Fig. 1(a)].

In this framework we have that the oscillatory contribu-
tions from the upper levels tend to disappear very fast
and the fractal nature is lost.

In Fig. 6 we show a trajectory computed under the last
hypothesis. We see that even if the chaotic behavior is
practically absent, the effect of the initial squeezing is still
evident producing a sensible reduction of the amplitude
of the oscillations and a particular shape in the initial re-
gion of the tunneling path depending on the va1ue of the
squeezing parameter R. A residual presence of the chaot-
ic behavior can be evidenced even in this last scheme pro-
vided that the parameters 8 and E& are sufficiently small.
A detailed description of this fact is given in Fig. 7.

From the above analysis it seems safe to conclude that
our model, while providing a right description of the
dynamical behavior already known in absence of squeez-
ing, is able to give information also when the squeezing is
present in different physical situations.

IV. DISSIPATIVE PARAMETERS

The model we have worked out in the previous sections
treats the dissipative terms (namely the e's and y) essen-
tially as parameters, considering two different schemes.

D
x

x

—l

0 40

FIG. 5. Expectation value of the position vs time with a
time-dependent squeezing parameter, Eq. (17), for y=0. 1 in

units of the ground-state tunneling frequency. Other parameter
values as in Fig. 1(a).

FIG. 7. EfFect of the squeezing in the initial portion of the
trajectory with dissipative parameters as in the case of Fig. 6
but c, , =0.0001, 8=16, o. =0.5, kT=O, y=0, R =2.
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As mentioned above, a consistent evaluation of the dis-
sipative terms would require that the microscopic mecha-
nisms which govern dissipation be known in sufficient de-
tail. First of all, the treatment in terms of time-varying y
should be replaced by a proper consideration of the inter-
pair relaxation, i.e., the new quantities c& ~ ought to be
introduced, let us label then generically I( . The relation-
ships that connect the c.'s to each other, the E's to each
other, and the first to the latter, will involve the density
of states of the bath at energies of the order of the vibra-
tional quantum in a separate well, which is much larger
than Aco0, and it is not evident that the derivation based
on the Ohmic assumption would still be valid. If it is,
the choice E4„+,~ (b,co4„) can to some extent be justified
by the considerations which follow concerning the damp-
ing for R =0, because even for R )0 intrapair relaxation
is produced by tunneling. Interpair relaxation is a
different process and will produce different relaxation-
ships among the K's, not to mention the c.—K connec-
tion.

In the remainder of this section, we will first see that
our first choice does not contradict thermodynamics, and
then we will examine in more detail our second choice.

The case of c4„+, values independent of n can be
justified by considering the equation of the free energy,
written as a complex quantity,

exp
F„+iF,

kT
= +exp

E(+i c(

kT
(19)

where I =0, 1,2, . . . is the quantum number of the uncou-
pled initial well. This is satisfied by the trivial solution

F =c. =c. =c (20)

which, as said in the previous section, it was assumed by
us as a computational model although we were aware
that other solutions exist. We note, however, that the
plausibility of the solution (20) rests on the fact that for
an uncoupled harmonic well the several levels are equally
spaced (the spacing being fico). The existence of a second
well coupled to the first one produces several pairs of lev-
els whose separation is 252„+o.. This suggests that other
computational models could be more appropriate as dis-
cussed in the following.

The case of E4„+,~ (b,co4„) can be reasonably support-
ed by extending to the excited states a result which was
demonstrated to hold for the ground state. More exactly,
as anticipated in Sec. III, this result for the ground state
concerns the total decay (or relaxation) rate I which, in
turn, is written as the sum of forward ( I i) and backward
(I o) tunneling rates of incoherent processes from the
upper toward the lower minimum; that is,

I =I,+ I =I, 1+exp (21)

So, if o. is sufficiently high, we can establish a direct con-
nection between the decay rates and our E's, that is
c, ~ I, and c.0~ I 0. Therefore, an estimate of c.'s can be
performed by evaluating, for instance by a path-integral
method, the decay rate I as done in Ref. 8 for the Ohmic

case. There are however, in our opinion, some aspects
which need to be clarified.

Here we report the salient features of a similar treat-
ment, based on an instanton analysis, in order to better
understand the limits of application of the method. Ac-
cording to the Langer-Coleman method ' the decay rate
I can be related to the imaginary part of the free energy
of a metastable state by the relation

2/ ImF [ 2 —lnZ
(22)

where P= 1/k T and Z is the partition function which can
be written as a functional integral

Z= exp — x ~
S x(r)

(23)

where S[x(r)] is the Euclidean action of the system. On
the other hand, the partition function can be expressed as

Z iZ=Z +Z + . =Z 1+ +.0 1 0 z 0
(24)

1F= ——»Zo-
P PZO

(2&)

where for I3~ ~ the first term gives the ground-state en-

ergy Am/2. The second term has to be seen as a complex
quantity whose real part is the energy shift (Lamb-shift),
while the imaginary one is directly related to the decay
rate [Eq. (22)],.

In order to understand the origin of this imaginary
part we have to consider in the partition function the
contributions due to the quantum fluctuations, around
the bounce trajectory, which are determined by the in-
tegral

S(cr,a, rii )
exp (26)

where S is the action integral for a bounce path of dura-
tion wz. For the potential model adopted here S can be
expressed as S=S~—AS where S~=2S0=2coa is the
bounce action in the absence of bias and dissipation and

AS
=err~ —2a lncorii —era exp( —A.corii ) . (27)

In Eq. (27) the first term is due to the bias, the second ac-
counts for dissipation, a=2ga /~A is a dimensionless
coefficient directly related to the friction parameter g,
and the third one represents the interaction between kink
and antikink. " This latter term can be made more or less
important by varying the factor A. in front of the frequen-
cy co. The bounce duration ~z ' is given by the stationary
condition of the action, that is by the solution of the tran-
scendent equation

where Z0 represents the contributions from the paths of
permanence in the initial minimum, x(r) —=0; Z& «Zo is
the contribution from one-bounce paths, etc. So, retain-
ing only the leading terms we have
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2

co~~ =A, ln(pj ] AQ)a 0
'0 p

Ap Q)

2'
cow' p'
CO7 g

(28)
simply obtained by neglecting in Eq. (27) the last term.
By substituting this result into Eq. (29) we have in the
limit of small a

This fact prevents p to go to zero even for o. ~ o. /co, the
bounce duration decreases with lowering a but remains
finite for a~O, as it must be, since the bounce duration
can never be zero.

At zero temperature (P~ oo ) the integral (26) diverges:
this is due to the first term in Eq. (27). The divergence
can be eliminated by deforming the integration path into
the complex plane, at the stationary point, Eq. (28),
thereby obtaining the imaginary part of the energy.

By working out in the functional integral (23) the fluc-
tuations due to all modes, apart from the breathing one
which is factorized into the integral (26), by standard
methods the following result is obtained:

2
scop ImJ

(29)
2

where

(30)

1/2

exp ~ (2a) ' —ln

a /A. co

A,ma

Ap

A,cuba

Ap

7TJ=+i
2

(31)

which, for a~O, shows a divergent unphysical behavior
similar to that of the unbiased case.

We note, however, that for A, ~~ and p —0 Eq. (31)
becomes

2=+i &2~ CT

67

2a —1

( 2A )1/2 —~e (32)

which is comparable with the result, quoted in Refs. 1

and 8,

CT2—2&l
CO

2a —1

1

I (2a) (33)

and heep is the tunneling frequency relative to the ground
state. Equation (29) at least qualitatively supports the
second dissipative scheme adopted in Sec. III. At this
point, however, some problems arise in the evaluation of
the integral in Eq. (30). From the results reported in the
literature, it can be seen that for any finite value of the
bias (o %0) I is nearly proportional to the dissipative pa-
rameter a [see Eq. (7.20) in Ref. 1] so that I ~0 for
cz ~0 as it must be, since finite decay is physically
justified only in the presence of dissipation.

On the contrary, for the unbiased case o. =O, I tends
to a ' for a~0 [see Eq. (5.31) in Ref. 1] thus, apparent-
ly, the two limits do not commute. Really, this in-
congruence does not exist. In fact, by substituting Eq.
(27) into Eq. (30) and by evaluating the integral by the
saddle-point method, we obtain the approximate result

1 —2a

(34)

which is practically coincident with the expression, rela-
tive to the relaxation rate of the incoherent process, re-
ported in Eq. (106) of Ref. 6, for o ))hcoo. This last re-
sult can be used in order to perform an estimate, at very
low temperature, of the decay rate in the overdamped
limit. We see that, in units of tunneling splitting
(iiibcoo—= 1), a=ma /2cr turns out to be of the same order
as o. when o. is of the order of unity. Thus, the values of
s considered in this work (e ~0.5) all represent cases of
moderate damping. '

V. CONCLUSION

In this paper we have examined the dynamical evolu-
tion of a localized double-well oscillator interacting with
a thermal bath; in particular, we have studied the effects
of initial squeezing of the wave packet on the coherent
oscillations of the system.

The computation of the mean position versus time is
essentially based on a traditional quantum-mechanical
treatment while the estimate of the dissipative constants
is based on a path-integral analysis, namely the Langer-
Coleman approach to the metastability of the states.
This is a powerful method, but its limits of applicability
must be taken into account in order to avoid incorrect
predictions, as discussed in Sec. IV and as anticipated by
Sethna. ' In fact, if we neglect the exponential term in
the action integral [Eq. (27)], or underestimate its impor-
tance, we are just choosing a different approach to the
problem, i.e., the so-called truncated matrix formulation.

Our approach has been a phenomenological one since,
on the one hand, we treated the dissipation constants as
parameters, and on the other hand we simulated interpair
relaxation by a time-decaying R. The dissipation causes a
quenching on the chaotic nature of the trajectory which
in a finite time tends to disappear depending both on the
relative importance of c.'s and on the squeezing time evo-
lution governed by the parameter y. In particular, the
fractal nature of the undamped trajectory is practically
washed out in the second of our schemes,
e4„+ i

~ (5~4„)2, and the effect of squeezing in this case is
primarily to quench coherent oscillations, a result that
can be easily understood on intuitive grounds.

It seems that this has been a rather constant historical
characteristic of the formal treatment of this problem so
far: very complicated calculations produce perfectly
"reasonable" results, especially as concerns the time evo-
lution of the oscillations. Of course, this is satisfying, but
it makes one think that there might have been a simpler
way of getting to the same qualitative behavior, and we
think that the present treatment helps towards this end.

A completely different alternative to the approach con-
sidered in this work can be offered by the thermo field dy-
namics (TFD). ' An extension of this theory to treat
nonequilibrium phenomena in the presence of dissipation
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can be employed in order to obtain further results to be
compared with those here reported. In the case of the
TFD the framework is the following: in a perturbative
scheme the temporal evolution of the energy and the dis-
tribution of the "particles" are evaluated self-consistently
both in the case of open (i.e., coupled to a thermal bath)
systems and in the case of closed systems.

Recently, ' it was suggested that this method could be
applied to a (t model in field theory in the case of a
broken-symmetry situation, which simulates the behavior
of the Higgs field. For a case which closely resembles our
problem, the Lagrangian to be considered is of the type

(35)

where P=U+to, U is the classical component of the field,
to its quantum fluctuation, and cP the bias. '

It is a shared opinion that the application of the frame-
work of the TFD to a specific problem like that depicted
here could be a convenient and useful expedient to clarify
some aspects which are still uncertain in the topic of the
dissipative tunneling processes. At the same time, this
may represent an important test to demonstrate the use-
fulness of such theory to treat problems of practical in-
terest.
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