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We present an extensive numerical study of a long rf-biased Josephson junction in the presence of
an applied magnetic field. We show the great complexity of the system and clarify some of the
diverse spatiotemporal relationships that exist. At low values of the rf amplitude the spatial con-
straint succeeds in exciting an oscillating and localized pattern of solitonlike character. The dynam-
ical response of this excitation as the forcing amplitude is increased allows us to observe three dis-
tinct intermittent phenomena: intermittency induced by interior crises, spatiotemporal intermitten-
cy between strange attractors, and tangentlike spatiotemporal intermittency. We also analyze at
higher rf-bias amplitude a transition to a regime consisting of traveling waves with the spontaneous
development of dc voltage which we interpret as being due to spatiotemporal chaos.

I. INTRODUCTION

The relationship between temporal chaos and spa-
tiotemporal patterns in systems with many degrees of
freedom has received a great deal of attention in recent
years; this problem has been studied theoretically in non-
linear partial differential equations' and in coupled
maps, whereas experimental observations have been re-
ported for some confined hydrodynamical systems such
as Rayleigh-Benard convection and Taylor-Couette
now. 4

In particular, systems modeled by the driven damped
sine-Gordon equation have shown to be a fruitful test
field for these studies; these systems present the coex-
istence of the two main and extreme nonlinear phenome-
na: temporal chaotic dynamics and solitonic struc-
tures. Furthermore, the sine-Gordon equation is ubi-
quitous in condensed-matter theory ' because it is a sim-
ple wave equation involving a periodic local-potential
term.

The tendency of a sine-Gordon-like system to preserve
an initial solitonic state has been known for a few
years, ' while spontaneous pattern formation in them is a
more recent preoccupation. ' ' ' ' ' In particular, pat-
tern formation and conversion in long Josephson junction
(LJJ), which is a sine-Gordon-like system, appear to be a
source of new spatiotemporal phenomena and provide a
field in which simulation' ' and experiment may act
interactively. In addition, since the LJJ is fairly well un-
derstood, it may allow us to understand and describe
better the origin of chaotic dynamics in this system.

In this paper we show that the solitonlike character of
the LJJ can play a fundamental role as an activating
mechanism of chaos and introduces a rich variety of new
and interesting spatiotemporal phenomena. This is done
by selecting a typical sequence of solutions with increas-
ing rf bias, with parameters similar to those that can be
achieved experimentally.

We show that, at very low values of the rf amplitude
(p (0.380), the chaotic dynamics of the LJJ are reminis-
cent of those exhibited by typical low-dimensional sys-
tems such as the Josephson junction without spatial ex-
tent. However, this does not mean that for the same
values of dissipation, amplitude, and frequency of the
forcing, both the Josephson junction without spatial ex-
tent and the LJJ exhibit identical responses. We show
that in contrast with small Josephson junctions, which at
low values of the rf amplitude only exhibit period one
solutions, the LJJ in the presence of an applied magnet-
ic field exhibits quite a rich dynamical behavior in this re-
gime. This is possible because, due to the boundary con-
ditions and forcing, the system can generate localized os-
cillations of solitonlike character, which can be chaotic
or subharmonic depending on the junction parameters.
The development of a solitonic structure supposes the or-
ganization of the energy exchange in such a manner that
only a few modes of the system participate effectively in
the dynamics, leading to low-dimensional chaos despite
the large number of degrees of freedom of the system.

We show for higher amplitudes (p )0.380), that
higher-dimensional. effects can introduce spatiotemporal
effects which can sensibly modify the usual chaotic
scenarios. At p=0. 380, we find intermittency between
strange attractors, which has spatiotemporal origin. Fur-
ther increase of the amplitude of the forcing (p=0. 65)
causes the appearance of a spatiotemporal tangentlike in-
termittency characterized by switching between two
states corresponding to the loss and recovery of the soli-
tonic character of the solution.

Finally, at large values of the amplitude of the rf bias
(p )0.7375), we describe a transition to a spatiotemporal
chaotic traveling-wave regime; this transition corre-
sponds to the Puxonic regime in which the LJJ develops
an average voltage. This Auxonic regime is found to al-
ternate with a localized wave mode that in addition to n
periodicity can also exhibit two-frequency quasiperiodici-
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Our paper is organized as follows. In Sec. II we
present a description of our model and simulation. In
Sec. III we present the study of the three different inter-
mittency phenomena found: interior crises induced inter-
mittency, intermittency between strange attractors, and
spatiotemporal tangentlike intermittency. In Sec. IV the
transitions between the spatiotemporal chaotic traveling-
wave regime and the localized and oscillating wave re-
gime are presented. Finally, in Sec. V we summarize and
present our conclusions.

II. THE PHYSICAL MODEL AND ITS SIMULATION

a'y a'y . 1 ay+ +sing= — +psin(Q&t) .
Bx r)t QP,

(2a)

Here the distance is normalized to the Joseph son
penetration depth A,J =(Ac L /8~edI, )', time is normal-
ized to the inverse of the Josephson plasma frequency,
co =(2eI, /RC)'~, and the rf amplitude p is normalized
to the critical current I, ; P, =2eI, R&C/A is the Stewart-
McCumber parameter (a measure of the damping of the
system) and Qz is the normalized applied frequency.

In order to take into account the presence of an exter-
nal applied field, we use the following boundary condi-
tions:

BP(0, t) BP(L, t) =rt ~H(y) .
(ax Bx

(2b)

Here 0 is the applied magnetic field normal to the sur-
face of the insulating barrier. Thus the dimensionless
quantity 71 in Eq. 2(b) is a measure of the external mag-
netic field.

The derivative in time of the phase difference is the
voltage across the junction according to the Josephson
relation

A Josephson junction is considered to be long when its
length is greater than the Josephson penetration depth
A,J; this implies that magnetic flux can now penetrate the
insulating barrier and spatial effects can no longer be
neglected.

This situation can be modeled by the following sine-
Gordon-like equation ' which assumes that the junc-
tion is effectively current biased by an rf drive (uniform in
space) and shunted by an effective normal resistance Rz
and an effective capacitance C,

AcL BP AC BP
8~ed aX' 2e dT'

ay +I, sit(ncoq T), (1)
2eR~ BT

where P =P(X, T) is the phase difference of the supercon-
ducting order parameter between each side of the barrier,
L is the length of the junction, d is the magnetic thick-
ness of the junction, I,f is the rf current, the term in
Bd /BT represents quasiparticle loss, and I, is the critical
current. This equation can be reduced to a single dimen-
sionless form

=2 eV,a~
aT (3)

III. LOW-ENERGY BREATHER REGIME

At values of the rf amplitude below the threshold for
fluxon generation (p (0.7375), the LJJ generates a local-
ized breatherlike excitation whose frequency can match
the one of the drive or some subharmonic of it, as well as

where T is the unnormalized time.
The LJJ can support coherent and persistent spa-

tiotemporal excitations, i.e., solitonlike states, because of
the underlying sine-Gordon nature of the system. For in-
stance, the solitonic traveling-wave excitation in a
Josephson junction is a current loop (composed of surface
current and tunneling supercurrent) connecting the two
surface layers via the barrier. This current loop encom-
passes one quantum of magnetic flux No and the soliton-
like excitation is therefore often called a fi'uxon. From
the integration of Eq. (3), a time-averaged voltage corre-
sponds to the presence of a time-averaged magnetic flux.
The ability of the system to support fluxons or solitonic
traveling waves requires a threshold energy just like the
kink solutions of the pure sine-Gordon equation.

Other fundamental nonlinear normal modes of the
sine-Gordon equation that are found in the LJJ system
are the breather and plasmon oscillations; in contrast to
kinks, both of these solutions do not require a threshold
energy, i.e., they can be sustained even for low input en-
ergies.

The breather oscillation is a solitonlike state with an
internal degree of freedom, which can be regarded as
formed by a bounded kink-antikink pair (i.e. , fluxon-
antifluxon pair in the LJJ case ) whereas the plasmon os-
cillations are noncoherent, small-amplitude harmonic
solutions.

In all the results to be presented in this paper, the pa-
rameter values are L = 5, P, = 15.744, rt = 1.25, and
O,&=0.65. The choice of these parameters corresponds
to realistic values, like those that can be obtained in the
laboratory. At the same time we have studied these pa-
rameters in detail because, for increasing rf bias, they ex-
hibited a rich variety of the solutions that can be found in
various regions of parameter space. Similarly, the high
damping prevents the spurious generation of plasmons
without the need for special initial conditions which can-
not be obtained in experiments.

We have integrated system (2) using a standard implicit
finite-difference method dividing the junction into 128
sections. Because we stress our interest in spontaneous
pattern formation, our integration was started from flat
initial conditions P(x, 0) =0 at all points but at the ends
where we forced the system to satisfy the boundary con-
ditions. Unless otherwise stated we plot variables only at
the center of the junction.

A mechanical analog of the system under consideration
is a chain of coupled pendula in the presence of damping
and forcing. This chain of pendula can be modeled by a
system such as (2) in which the term P represents the
interaction between pendula and g represents an applied
torque at the extremes of the chain.
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produce a chaotic response. This regime is of interest for
a variety of reasons. First, there are qualitative changes,
due to the spatial variable, to the usual chaotic scenarios.
Second, new spatiotemporal phenomena can also appear.
Also, in contrast with the LJJ, the junction without spa-
tial extent can only exhibit period-1 solutions in this lim-
it. In this section we describe these phenomena.

—0.1

A. Scenario of interior crises

In this section we describe the generation of a breath-
erlike excitation in the low-energy regime and detail how
its temporal response evolves through a period-doubling
cascade and an internal crises sequence. We also point
out the similarities and differences of this last chaotic
scenario with respect to those already known for low-
dimensional systems.

The presence of the applied magnetic field induces
symmetry breaking which in turn leads to the excitation
of an oscillating and localized spatial structure, which
can interact strongly with the driving force. This is simi-
lar to the case of the temperature difference and external
forcing in Rayleigh-Benard convection another continu-
ous and dissipative system that exhibits low-dimensional
chaos and organization of localized and traveling pat-
terns.

At low energies the junction exhibits no average volt-
age and, therefore, zero-time-averaged magnetic Aux is
present. This situation corresponds in the mechanical
analog of the LJJ to each of the "coupled pendula" being
trapped in one well of its own periodic potential
(
—~&P&n).

We have verified that all the spatial points of the junc-
tion present the same kind of dynamical attractor in this
regime. While the qualitative similarity of the dynamics
at every point is guaranteed by the existence of a solitonic
profile, from point to point the phase-space plots ((t,
versus (t) are found to vary their detailed shape. This
asymmetry of the response is also introduced into the sys-
tem by the applied magnetic field.

As p is increased, a solitonic structure of the breather
type is found up to p=0. 34, when it enters a period-
doubling cascade. As p is increased even further, a
chaotic response is eventually attained but the solitonic
character of the response persists. That is, the breather is
still present but now its oscillation is nonperiodic. The
dynamical attractor for this solution is found to be like
those characteristic of low-dimensional systems, despite
the large number of degrees of freedom of the LJJ.

The low-dimensional character of this strange attractor
can be specified even further. In fact, it corresponds to
an interior crisis, as shown in Figs. 1 and 2. We recall
that in the literature a crisis is defined as a certain sud-
den change of the strange attractors that occurs when the
control parameter of the experience is varied. An interi-
or crisis is one that preserves the boundary of the basin of
attraction; these events are the result of the collision of
an unstable periodic orbit with a strange attractor.

In Fig. I (p=0. 3530) we present the strobed time
series for the voltage P, in which the value of the voltage
is plotted at each period of the forcing. Note that the
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FIG. 1. Intermittency induced by interior crisis. The strobed
time series P, (nT) vs nT for p=0. 3530 reveals a two-band
chaotic regime with occasional 2n-periodic windows.

system shows occasional windows in which the system is
in a period-2 or -4 state, embedded in the aperiodic or
chaotic bands. In order to demonstrate that this corre-
sponds to an interior crisis, one has to resort to plotting
the return map for the fourth iterate, ((((n +4)T) versus
P(nT), which would reveal the presence of unstable
period-2 and -4 solutions. It is known that in the Nth
iterate return map a periodic orbit is stable only in the
case that the absolute value of its derivative at the inter-
cepting point with the line P((n +N) T ) =P( n T) does not
exceed unity. Because of this, in order to search for the
possible coexistence of unstable periodic attractors to-
gether with the chaotic attractor, we must construct the

I.O
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FIG. 2. Interior crisis. The return map for the fourth iterate
P((n +4)T) vs P(nT) at the threshold of the fusion of four
bands into two, evidences the coexistence of a four-piece strange
attractor and at least an unstable period-4 and an unstable
period-2 orbit.
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return map for the fourth iterate, P((n+4)T} versus
$(nT).

In Fig. 2 we show such a return map for the fourth
iterate, P((n +4)T) versus P(nT), at the threshold of the
fusion of four bands into two. This map exhibits four
pieces, each one intercepting the line P((n +4)T}
=P(nT) with a slope of absolute value exceeding one. In
addition, one can also identify the emergence of another
two intercepts with a slope of absolute value exceeding
one at the points where each pair of pieces is fusing.
Therefore, Fig. 2 shows the coexistence of a four-piece
strange attractor and at least an unstable period-4 orbit
and an unstable period-2 orbit that have successively col-
lided with the nonconnected strange attractor as the
pieces merged. This shows that once a nonconnected
chaotic attractor has been attained via period doubling,
the attractor evolves through successive interior crises
which reduce the number of its disconnected pieces.

In the case of the junction without spatial extent, nu-
merical and analog simulations have shown different
types of crises, particularly, the broadening of bands
and the nonconnected strange attractors have been previ-
ously reported. These last couple of phenomena have
also been observed experimentally in the nonlinear and
forced semiconductor oscillator.

Both the junction without spatial extent and the semi-
conductor oscillator are systems whose dynamics are only
temporal due to their low dimensionality as well as cer-
tain mathematical models (for example, the logistic
equation) that also exhibits the occurrence of a bifurca-
tion cascade followed by a succession of interior crises.
Therefore, the occurrence of this phenomenon in the LJJ
is not wholly unexpected, is not ascribable to its spatial
extent, and simply rejects the possibility of low-
dimensional behavior in the system. That such is the case
is shown in Fig. 3 where we present the return map for

the two-piece attractor and two-band chaos (p=0. 3530).
In this return map the different pieces exhibit low dimen-
sionality, indicative of the few degrees of freedom
effectively involved in the dynamics.

Indeed there is a close relationship of the two-piece re-
turn map of Fig. 3 with that already known for other
models and systems with just one degree of freedom: one
of the pieces that composes the map has a parabolic
shape similar to the return map generated by the logistic
equation while the other piece has a close resemblance to
the return maps obtained for the forced diode and
the discrete map that models it, as weil as for spin-wave
instabilities forced by microwave fields.

While this crisis is quite similar to that reported previ-
ously in other systems, there is one point in which the in-
termittency induced by the crisis scenario presented for
the LJJ differs: we have not observed the presence of a
response with the ( I/f) spectrum at low values of fre-
quency. This type of behavior is usually associated with
intermittency between dynamical attractors.

If the bias amplitude is increased even further, the se-
quence of interior crisis is interrupted when the two
pieces of the strange attractor attempt to fuse via the col-
lision with an unstable period-1 attractor. In this regard,
the two-piece strange attractor also suffers a crisis, but of
a different kind. This time the region of attraction is sen-
sibly enlarged for brief periods of time, as can be appreci-
ated in the strobed time series of Fig. 4 (p=0. 354). The
enlargement of the region of the attraction supposes the
sudden removal of the boundary of the former basin of
attraction at the moment when the line P((n +1)T)
=P(nT) in the return map is crossed. The corresponding
strange attractor (Fig. 5) not only occupies a larger re-
gion of the Poincare map, but also exhibits a well-defined
fractality. This reveals that the system is still behaving as
a low-dimensional one.

We would like to define this event to be a new type of
crisis: it cannot be regarded as an interior crisis because
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FIG. 3. Interior crisis. Return map for the two-piece attrac-
tor and two-band chaos (p=0. 3530). In this return map the
different pieces exhibit low dimensionality which is indicative of
the few degrees of freedom which are effectively involved in this
dynamics.

FIG. 4. Strange attractor boundary crisis. Strobed time series
P, (nT) vs nT for p=0. 354 reveals a sensibly enlargement of the
region of attraction when the two pieces of the strange attractor
attempt to fuse via the collision with an unstable period-1 at-
tractor.
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FICJ. 5. Poincare map P, (nT) vs P(nT): low-dimensional
chaotic behavior after the strange attractor boundary crisis

(p =0.375).

Hereafter we will present a new kind of crisis in which
spatial effects are partially responsible for the dynamic
transition. As a result of this event, an intermittent re-
gime between two strange attractors can be spontaneous-
ly attained by the system.

The chaotic dynamics [which we have already present-
ed in Fig. 5 (Poincare map)] for p =0.375 suddenly
change at p=0. 380 to the one shown in Fig. 6 (note the

of the sensitive enlargement of the previous basin of at-
traction; neither can this event be identified as a bound-
ary crisis because, after the collision with the unstable
period-1 orbit, the former strange attractor has been re-
placed by another strange attractor, and not by a periodic
orbit as is usually the case. Therefore we would like to
call it a strange attractor boundary crisis. This new kind
of crisis is a transition between two low-dimensional-like
regimes similar to that exhibited by small junctions and
cannot be related to the fact that the junction is now
larger than its penetration depth.

B. Scenario of spatiotemporal intermittency
between strange attractors

different scales between them). This dynamical transition
suddenly enlarges the basin or region of attraction and in-
creases the dimension of the corresponding strange at-
tractor that rules the system (compare the Poincare maps
5 and 6).

The involvement of the spatial variable in the genesis
of the phenomenon can be proved by noting that the
Poincare map of Fig. 6 (p=0. 380) is the superposition of
the maps for p=0. 375 in the case of a junction of length
L =5.0 (Fig. 5) and that of the one with L =4.0 (Fig. 7).

Thus this dynamical transition can be regarded as a
spatial crisis due to the sudden removal of the boundary
between the basin of attraction for the junction of length
L =5.0 and the basin of attraction for the junction with
length L =4.0, i.e., the two strange attractors now share
the same basin of attraction. A crisislike dynamical tran-
sition, which originates on the existence of the spatial ex-
tent of the system, has not been previously known and
shows how spatial effects contribute and are an integral
part of the complexity of dynamical systems with spatial
extent.

The difference of the phase between two points of the
barrier (the middle and an extreme), taken at each period
of the forcing, corresponding to the overlapped strange
attractors, is presented in Fig. 8. In this plot it can be
seen how much time the system spends in each of the
coexisting attractors, while it also reveals the spatial
dependence of the junction phase (i.e. , the inhomogene-
ous character of the alternate solutions). This clearly
shows that this regime is a spatial intermittency between
the two strange attractors which the system has for two
different lengths.

The strobed difference of the phase series of Fig. 8 is
analogous to the strobed time series reported in the case
of the junction without spatial extent for intermittency
between strange attractors induced by noise. This last
phenomenon is known as multistability. It is neces-
sary to point out that the phenomenon we are reporting
is the only known case in which two strange attractors
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FICx. 6. Spatial crisis (p=0. 380). Poincare map P, (nT) vs

P(nT) shows the increasing of the dimension of the attractor
and reveals an enlargement of the basin or region of attraction.
Note the diiT'erent scales in 5 and 6.
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FIG. 7. Spatial crisis. The Poincare map of Fig. 6 is the su-
perposition of the maps for p=0. 375, in the case of a junction
of length L =5.0 (Fig. 5) and the map of one with L =4.0 (Fig.
7).
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FIG. 8. Spatial crisis. The difference of the phase between
two points of the barrier (the middle and an extreme), taken at
each period of the forcing, bg(nT) vs nT, corresponding to the
overlapped strange attractors reveals how much time is expend-
ed for the dynamics ruled by each one of the coexisting attrac-
tors, while also revealing the spatial dependence of the junction
phase (i.e., the inhomogeneous character of the alternate solu-
tions).

collide or coexist without the presence of noise inducing
the instability of the attractors. This spontaneous char-
acter raises the novelty and importance of this spatiotem-
poral dynamic transition; furthermore, other noninduced
phenomena of coexistence or collision of attractors (such
as interior and external crises and temporal intermitten-
cy) involve a strange attractor and a periodic one; never,
as far as we know, two strange attractors.

A possible physical explanation of the instability of the
strange attractors involved in the spatial intermittency
between two chaotic regimes may be that both of the
breather profiles corresponding to each one of these
chaotic attractors are incommensurable with the spatial
length of the junction which makes it unstable; this
causes the system to attempt to find a stable condition,
but the other nearby attractor is also unstable. In the
case of the LJJ, the intermittency between the two
strange attractors does not generate (1/f)" noise (at low
frequencies), in contrast to the case of intermittency be-
tween two strange attractors induced by noise.

C. Scenario of spatiotemporal tangentlike intermittency

The subsequent increase of the rf-bias amplitude deter-
mines the appearance of a high-dimensional chaotic re-
gime which appears to originate by disorder in the spatial
degrees of freedom.

We introduce this new kind of effect by presenting the
Poincare map (Fig. 9) at p=0. 5; at this value of the rf
bias the amplitude of the oscillations in phase space in-
creases significantly and the identities of the formerly
overlapped attractors are no longer distinguishable.

This strange attractor exhibits a definite loss of fractali-
ty; this increase of the dimension of the chaos can be as-
sumed to be due to the spatial variable: the higher

FIG. 9. Activation of an increased number of effective de-
grees of freedom (p=0. 5). Poincare map P, (nT) vs P(nT) ex-

hibits a loss of fractality of the dynamical attractor.

dimensionality of the Poincare map indicates a relaxation
of the solitonic character of the solution caused by the
activation of an increased number of effective degrees of
freedom and a consequent breaking of the order in the
energy exchange between the different modes.

This regime is followed by an intermittency between
two spatially inhornogeneous regimes characterized in
time by period-3 and high-dimensional chaos, as shown
in Fig. 10(a), which plots the difference of the phase be-
tween two points of the barrier (the middle and an ex-
treme), taken at each period of the forcing for p =0.65.

The third iterate of the return map P((n +3)T) versus
P(nT), Fig. 10(b), presents three regions of high concen-
tration of points that approaches in tangentlike fashion
the line P((n +3)T)=P(nT), where periodic solutions
exist. In this respect the map resembles the usual one for
the intermittent transition to chaos or tangentlike bifurca
tion, but, in addition, the map also exhibits an increased
dimensionality which reAects the occasional spatiotem-
poral disorder. The power spectrum analysis again re-
veals an absence of (1/f) decay at low frequencies; this
fact contrasts with the usual association between this
kind of noise and the tangentlike intermittent route to
chaos.

Figure 10(c) shows the corresponding phase-space por-
trait which reveals the underlying mechanism: each one
of the "pendula" that forms the mechanical analog has
reached sufhcient energy as to explore the more nonlinear
region of the potential well in which it is trapped and
even to visit the adjacent wells. The sensitivity to the ini-
tial conditions increases its importance because near the
maximum of the potential there is more sensitivity to
where the trajectory ends; this provokes a loss of the
coherence of the solution, i.e., the breather is destroyed.
This event corresponds to the high-dimensional chaos,
whereas the reconstruction of the solitonic profile corre-
sponds to the period-3 response.

Spatiotemporal intermittency with loss of the solitonic
character of the solution has been previously reported for
the nonlinear Schrodinger equation among other partial
differential equations; in addition, the transition to spa-
tiotemporal intermittency has been experimentally stud-
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ied in Rayleigh-Benard convection. Nevertheless, we
point out that a clear identification of a dynamical transi-
tion of spatiotemporal character as a tangent bifurcation
[as the third iterate of the return map P((n +3)T) versus
P( n T) reveals at Fig. 10(b)] had not been previously
demonstrated.

As the rf-bias amplitude is increased even further, the
characteristic stability of the solitons is the prevailing
effect and for p=0. 7 the system sustains a period 3
breather trapped in three wells of the potential, not in
one well, as in the case of all the dynamics presented ear-
lier. The system visits the adjacent potential wells while
preserving the breather's spatiotemporal pattern, in con-
trast to the former tangentlike intermittent regime.

IV. REGIME ABOVE THE THRESHOLD
FOR THE FLUXON GENERATION

A. Fluxonic regime

I—

I

2 I

qh (nT)

In this section we present results for rf-bias amplitudes
of the forcing above the fluxonic threshold (p&0. 7375);
in this range of parameters the onset of chaos is associat-
ed with an increase of the equipartition and the exchange
of the energy between the modes, because the dynamical
behavior corresponds to the regime of creation and de-
struction of Auxons.

At p=0. 7375 the system has sufficient energy so that
the breather excitation suddenly splits into two traveling
waves which propagate in opposite directions (a fiuxon
and an antifiuxon). ' ' ' For our choice of the value of
the applied magnetic field (z1=1.25), numerical and ex-
perimental studies show that the incoming Auxons are an-
nihilated into plasma oscillations at one end of the junc-
tion. ' The plasmons then travel back to the other end
of the junction and trigger a new fluxon and in this way a
process of alternate creation and destruction of Auxons is
established.

Figure 11 presents the Poincare map for the direct
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FIG. 10. Spatiotemporal tangentlike intermittency
(p =0.65). (a) The difference of the phase between two points of
the barrier (the middle and an extreme), taken at each period of
the forcing, AP(n T) vs nT, reveals an intermittency between two
spatially inhomogeneous regimes characterized in time by
period-3 and chaos. (b) The third iterate of the return map
P((n +3)T) vs P(nT) presents three regions of high concentra-
tion of points that approach in tangentlike fashion the line
P((n+3)T)=P(nT). (c) Phase space P, (t) vs P(t) showing
trapped solution attempting to visit the adjacent wells of the po-
tential.
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FICy. 11. Fluxonic regime (p=0. 7375). Poincare map $, (nT)
vs P(nT) for the direct transition from localized oscillations of
period-3 to chaotic traveling waves; solutions diffuse from one
well to another.
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FIG. 12. Fluxonic regime (p=0. 7375). Poincare map P, (nT)
vs P(nT) (mod 2rr) showing a strange attractor with a loss of its
fractality because the presence of the plasmons implies the ac-
tivation of an increased number of degrees of freedom.

transition from localized oscillations of period-3 to chaot-
ic traveling waves; in this figure traces of the period-3 at-
tractor still appear. As can be appreciated in Fig. 11,
solutions in this regime diffuse from one well to another;
these kinds of solutions are known as free-running solu-
tions. This situation amounts in the mechanical analog
to the possibility of the pendula performing complete re-
volutions. Due to the propagation of excitations the sys-
tem exhibits a finite voltage, as shown by the zero-
frequency peak at the power spectrum; thus it follows
from Eq. (4) that the insulating barrier holds magnetic
Aux quanta in the time average.

Figure 12 corresponds to the same solution as Fig. 11
and it presents the Poincare map (mod 2vr); this figure re-
veals a strange attractor with a loss of its fractality be-
cause the presence of the plasmons implies the activation
of an increased number of degrees of freedom. The pres-
ence of nonsolitonic excitations introduces disorder into
the energy exchange. Recently a similar transition from
localized oscillations to a traveling-wave regime has been
reported for the Rayleigh-Benard convection.

tractor with a periodic orbit which produces the destruc-
tion of the basin of attraction of the chaotic attractor and
the replacement of the chaotic attractor by a periodic at-
tractor; the event is characterized by the occurrence of a
chaotic transient in which the dynamics is determined for
a period of time by the chaotic attractor which is eventu-
ally destroyed.

The strobed time series of Fig. 13 presents the chaotic
transient associated with the boundary crisis for an am-
plitude of the rf bias p=0. 8. In this case the transient is
remarkably long: almost 3000 periods of the driving
force.

Kautz has obtained a similar noise-free crisis event
for the junction without spatial extent. Our result also
occurs in the absence of disordered input of temperature,
but in addition, because of the presence of the spatial
variable, it also exhibits the transition from traveling
waves to a localized oscillation.

In previous work' we have shown that, in contrast to
the breather excitations at low values of the rf bias, this
time the breathers can exhibit, in addition to n periodici-
ty and chaos, spontaneous generation of quasiperiodic be-
havior which arises from the competition between two in-
commensurate frequencies: one due to the driving force
and the second one due to the oscillation of the breather
at its natural frequency.

This breather regime is again localized in space and
eventually becomes unstable and changes into a new
traveling-wave regime, establishing, as the amplitude of
the forcing is increased, a switching regime between a
free-running solution involving an increased number of
Auxons and a trapped solution in an increased number of
wells of the potential. As an example, Fig. 14 presents at
p=2. 625 a trapped quasiperiodic solution in three wells
of the potential ~

The spontaneously generated quasiperiodic behavior of
the LJJ is quite similar to that of the Rayleigh-Benard
convection. Furthermore, for both systems the univer-
sality of the transition from quasiperiodicity to chaos had
been determined quantitatively by the study of its mul-
tifractal character. ' '

B. Boundary crisis: Auxon annihilation

In this section we present a dynamical transition which
results in the existence of breatherlike solutions even
above the Auxonic threshold.

Due to the dissipative nature of the LJJ, the Auxons
are not perfectly solitonic excitations; thus they can ex-
change energy in collisions between them or with
plasmons. In addition, it is known that these collisions
also produce radiation emission. It has been predicted
by theory ' ' that these characteristics of the collisions
in the fluxonic regime can lead to the annihilation of the
Auxons and plasmons into a breather excitation. Recent-
ly this phenomenon has been detected by experiment.

In what follows we show that this annihilation process
in the LJJ can be identified as an external or boundary
crisis. An external crisis is a collision of a strange at-
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FIG. 13. Fluxon annihilation as a boundary crisis (p=0. 8).
Strobed time series $, (nT) vs nT presents a long chaotic tran-
sient.
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affect the integrability and therefore the existence of soli-
tonic excitations) as well as behaves as a source of order
(it plays an important role in the formation of solitonic
patterns of the breather type) of the spatiotemporal dy-
namics.

V. SUMMARY AND CONCLUSIONS
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C. Spatiotemporal chaos

The existence and definition of the spatial chaos are
problems that arise when attempting to extend the study
of chaos to systems with many degrees of freedom and to
continuous systems. Whereas temporal chaos is well un-
derstood and has a well-defined framework, the concept
of spatial chaos is not clearly defined yet and often ap-
pears confused or mixed with disorder and turbulence.

We propose, alternatively, a definition of spatiotem-
poral chaos (rather than attempt to define merely spatial
chaos) based on an extension of the concept of attractor
in a dynamical scenario, i.e., the spatiotemporal attractor.

In the fluxonic regime the LJJ does not attain a corn-
plete spatiotemporal disorder; on the contrary, the dy-
namics are ruled by an attractor due to the alternate
creation and destruction of fluxons in a sort of spatiotem-
poral analog of the stretching (due to the dissipation) and
folding (due to the nonlinearity) process of the phase
space that gives rise to a strange attractor in temporal
chaos. Due to the active presence of the dissipation (flux-
ons can be annihilated when interacting between them or
with the boundaries of the insulating barrier; these are ra-
diative processes) and the nonlinearity (which creates the
fluxons) in the process ruled by this spatiotemporal at-
tractor, we consider as spatiotemporal chaotic the dynam-
ics which involves a continuous formation and conver-
sion of patterns.

The nonlinearity is a source of order that organizes sol-
itonic patterns, both in the low-energy and the fluxonic

regimes; this occurs in spite of the presence of nonconser-
vative forces which do not allow the integrability of the
equation and therefore precludes the existence of soliton-
ic solutions. Curiously, the dissipation in this system also
plays a role in the ordering of the dynamics, not only dur-
ing the transients, but in the radiative collisions that give
rise to the higher-energy breather states that alternate
with the fluxonic windows.

Then, as a paradox, the dissipation acts in a contradic-
tory way in the LJJ: it is a source of disorder (it can

FICx. 14. Quasiperiodic regime (p=2. 625). Phase space P, vs

P(t) reveals a trapped quasiperiodic solution in three wells of
the periodic potential.

We have shown that in in a LJJ, temporal chaos and
solitons not only coexist but coalesce, giving rise to a
new spatiotemporal phenomena with a very definite phys-
ical meaning.

In this regard, we have presented in this paper for the
first time three distinct intermittency phenomena (inter-
mittency induced by interior crises, spatiotemporal inter-
mittency between strange attractors, and tangentlike spa-
tiotemporal intermittency), all of them in the absence of
noise, neither extrinsic to the system nor (l/f)"-like
noise induced by the system itself. This study contrasts
with the accepted association of the hopping between
dynamical attractors and ( 1 /f ) -like noise. ' Many
of the studies that sustained that association have had the
junction without spatial extent as a scenario; this con-
trasts with the qualitatively different results that we have
obtained for the LJJ.

The qualitative differences of our results for the LJJ
are mainly due to the ability of the system to generate
breatherlike excitations either below or above the fluxon-
ic threshold. These solutions are trapped in one or more
wells of the periodic potential, and their existence sup-
poses the absence of a periodic voltage in the junction.

We have also presented three distinct types of chaotic
regimes in their relation to the formation and conversion
of spatiotemporal patterns: we have successively present-
ed the chaotic oscillation of a solitonic structure of the
breather type, intermittent chaos with alternate loss, and
recovery of the solitonic character; and finally, spatiotem-
poral chaos in the presence of fluxons and noncoherent
excitations.

We emphasized the appealing similarity, both qualita-
tive and quantitative, of a variety of phenomena (which
involves pattern formation and conversion, low-
dimensional chaos, and spontaneously generated quasi-
periodicity) which occur in both the LJJ and the
Rayleigh-Benard system; a pair of nonlinear, continuous,
arid dissipative systems. In fact, the Rayleigh-Benard
system appears as the hydrodynamical analog of the LJJ.
This similar behavior suggests that the phenomenon of
turbulence can be understood via the study of the transi-
tion from a few effective degrees of freedom to a high
number of effective degrees of freedom of the LJJ.
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