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Hyperbolic sine model: A multidisciplinary stochastic process
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The hyperbolic sine model is obtained by continuing the hierarchy of simple multiplicative sto-
chastic processes beyond the Verhulst model or by transforming some physically important models
from different disciplines to their canonical form. The Fokker-Planck equation associated with this
Markov process is solved for the stationary first-order probability density function (PDF), and an
exact time-dependent solution for the transition PDF is derived in terms of a new type of eigenfunc-
tion. As an example, eigenvalues and eigenfunctions are numerically evaluated for the symmetrical
case. It is shown that some new models, of possible mathematical or physical importance, can be
derived from the hyperbolic sine model.

INTRODUCTION

The number of stochastic processes that really have
reached a multidisciplinary status is rather restricted.
The Wiener process, the Ornstein-Uhlenbeck process,
and, more generally, the class of Gaussian Markov pro-
cesses, are well established by now, as a direct conse-
quence of the central-limit theorem being operative in
linear systems with additive noise sources.

A complete analytical description of these processes in
terms of a transition PDF (probability density function)
can be given, but first- and second-order moments are
sufficient and usually are preferred.

The expanding interest in nonlinear phenomena result-
ed in a variety of nonlinear stochastic models with addi-
tive and/or multiplicative noise. Approximation tech-
niques such as equivalent linearization or hierarchical
truncation of the moment equations were used from the
beginning, yielding process descriptions of varying accu-
racy.

Exact analytical results are sparse, and they are limited
mainly to cases that can be transformed into some known
stochastic process (e.g. , the log-normal process, ' the
Hongler model '

) or to cases where the Fokker-Planck
equation (FPE) can be solved by reduction to some stan-
dard equation from mathematical physics (Bessel,
Laguerre, hypergeometric functions ). Integral trans-
form methods have been used occasionally. '

The use of a particular stochastic model is confined
very often to the field of research where it was encoun-
tered first. Some processes seem to have never left the
context of their purely mathematical origin. Interdisci-
plinary diffusion of exact results appears to be a slow pro-
cess. The model, which actually is well known as the
Verhulst model, or the logistic growth model, was stud-
ied and solved at least three times independently in Refs.
6, 9, and 10 before it finally got a multidisciplinary status
in the domain of synergetics and noise-induced transi-
tions.

The one-dimensional hyperbolic sine model, which will
be presented in this paper, also results from apparently

very different stochastic models used in various fields.
The model, is in a sense, a common minimal version of all
the original models, having in its canonical appearance
only two parameters and an additive noise excitation.

Throughout this paper classical calculus will be used,
implying the Stratonovich interpretation of a stochastic
differential equation (SDE); white-noise sources are thus
to be considered as limiting cases of real continuous noise
with very short correlation times.

ORIGIN OF THE HYPERBOLIC SINE MODEL

We now elaborate on the origins of the hyperbolic sine
model.

(I) The hyperbolic sine model can be arrived at by con-
struction of a hierarchy of simple multiplicative stochas-
tic processes. This procedure demonstrates one possible
significance of the hyperbolic sine stochastic process and
also shows the interrelations between a few basic multi-
plicative stochastic processes.

The elementary multiplicative stochastic process
Ix(t) I, when considered as a mere generalization of the
Wiener process, is described by the SDE:

(F(t)) =0,
(F(t)F(t+r)) =GFo(r) .

(2)

Without loss of generality, the constant white-noise spec-
tral density GF may for convenience be adjusted to

GF =2 (4)

by a suitable choice of the time scale. The process Ix(t) I

has a log-normal transition PDF and is stochastically un-
stable in the probability, ' except for a possible singular

x(t)=[fv+F(t)]x(t), x &[0, + co]

where fo is a constant multiplication rate which, accord-
ing to the research field, can be termed as "excess reac-
tivity, " "fertility, " a "Malthusian growth parameter, "
i.e., F(t) is a white-noise process with

40 3354 1989 The American Physical Society



40 HYPERBOLIC SINE MODEL: A MULTIDISCIPLINARY. . . 3355

5(x ) distribution when fo & 0.
The inversion transformation

y(t) =f3—a sinh(y)+F (t),
ye[ —~, +~], a=(so)' &0, P=fo . (15)

x~a/x, a )0 (5)

This also changes the nature of the boundary at x =0 and
yields a new type of stochastic process. The inversion
transformation (5) applied to (6) now gives

x(t) = —fox (t) —(so/a)x'(t)+F(t)x (t),

which is the stochastic Verhulst model, when taking
a =s„and k= fo:—

x(t) =Ex(t) x(t)+—F (t)x (t) . (8)

Besides the mathematical artifact of an inversion trans-
formation, there is also a more physical way to arrive at
(8). The process (1) almost surely "explodes" when
f„&0. Stabilization can be obtained now by introducing
a state-dependent (e.g. , linear) feedback upon the multi-
plication rate fo (cf. the limited carrying capacity in pop-
ulation dynamics):

x(t) =[fo—x(t)+F(t)]x (t), fo &0 .

leaves (1) structurally invariant. Only the sign of the sys-
tem parameter fo changes. The sign change of the noise
function is irrelevant, of course.

To compensate for the almost sure extinction of the
process [x(t)} when fo &0, a constant positive source
(immigration) s„can be introduced in (1):

x(t)=[fo+F(t)]x(t)+s„, fo &0, so &0 .

n(t) = [f,—1+F(t)]n(t)+Ac (t),
c(t) =n (t) —Ac (t), n, c H [0, + oo ] .

(16)

(17)

The system (16) and (17) is a simplified reactor model
used for the study of delayed neutron eftects.

Equation (16) again describes the neutron (n) chain re-
action. The eff'ective (or "prompt") multiplication is now
reduced to fo

—1, as a fraction of the fission neutrons
only becomes available as a delayed neutron source A.c by
the decay of delayed neutron precursors (c). The latter
are produced and do decay according to (17).

The process In (t), c(t) } is known to be stochastically
unstable in the absence of any feedback.

Transformation of (16) and (17) to the additive noise
version can be done by the physically indicated substitu-
tions

The three models, where (15) is the hyperbolic sine
model, can be interpreted to describe Brownian motion in
a particular type of force field. The mere use of
mathematical transformations such as (5) or (12) was cri-
ticized in Ref. 3 as being nonphysical. The additive noise
equation, however, is a canonical form to which a one-
dimensional SDE can be reduced unambiguously, and
which allows one to easily discover equivalent stochastic
processes.

(2) The true origin of the hyperbolic sine model is in
nuclear-reactor stochastic kinetics, where the following
two-dimensional stochastic Markov process was con-
sidered by the author:

This again is the Verhulst model (8), with k =fo.
Addition of a constant source so to the stochastically

stable process described by (7)—(9) results in

n =a exp(x), a &0

c =b exp(y), b &0 .

(18)

(19)

x(t)=so+fox(t) —x (t)+F(t)x(t), so, fo&0 (10)

which is structurally invariant under the inversion (5):

x(t) =a —fox(t) —(so/a) (xt)+F(t)x (t) .

x =o. exp(y), o. )0 (12)

An obvious choice for a is a =so. The processes in (10)
and (11) then only differ in the sign of fo and have a nor-
malizable steady-state PDF as will be shown later. Fur-
ther source addition and/or inversion clearly leaves the
processes described by (10) or (11) structurally invariant.

The multiplicative stochastic models (1), (8), and (10)
can be transformed to additive noise models by letting

This yields, for the stochastic process Ix(t), y (t) },
x(t) =fo —1+(Ab la) exp(y —x)+F(t),
y ( t) = (a lb) exp(x —y) —A. .

Subtracting (21) from (20), introducing z by

z=x —y,

(20)

(21)

(22)

z(t) =/3 —a sinh(z)+F(t),

y(t) =( —,'a)[exp(z) —( ,'a)], y, z E [ —ao—,+ co ]

with parameters

(23)

(24)

and choosing a /b = A,
' gives, for the process

}z(t),y(t) I,

which is indicated by the non-negative physical nature of
x and by the log-normal solution for the PDF of (1).

One finds, respectively, after appropriate choice of e in
(12),

o. =2(X)'

f3=fo+A, —1 .

(25)

(26)

(13)

y&[ —~, + ~],a=A, &0 (14)

y(t)=fo+F(t), yH [—oo, + oo ]

y(t) =a[1—exp(y)]+F( t),

Equation (23) again is the hyperbolic sine model, and
so the z variable separately describes a one-dimensional
stable Markov process.

(3) In Refs. 11 and 3 the "genetic model" was studied
as a basic example of a nonlinear system with a purely
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noise-induced transition:

x(t)=a( —,
' —x)+Px(1 —x)+x(1 x—)F(t), x &[0,1] .

(27)

SOLUTION OF THE FOKKER-PLANCK EQUATION

The stochastic process [x(t)) generated by the
hyperbolic-sine —model SDE, with parameters rescaled
for convenience and F (t) according to (2) —(4),

x(t)=2/3 —2asinh(x)+F(t), x E[—~, ~], a&0

(29)

is a stationary Markov process, fully characterized by its
transition PD F p ( x, t Ix o ).

This PDF is obtainable as the solution of the time-
dependent FPE associated with (29), '

5,p (x, t Ixo) =5 p —5„ I [213—2tz sinh(x)]p ),
with initial condition

(30)

The parameter a (a&0) in (27) does not result from a
generalization of the original genetic model (a = 1), but is
due to the normalization of F according to (4).

Transformation of (27) to 'canonical" additive form is
now performed by

exp(z) =x /( 1 —x ) or x = exp(z) /[exp(z) + 1],
zH[ —~, +~] (28)

which immediately results in the hyperbolic sine model
(23).

solution of (30) as well. Starting with the expansion '

p(x, tlxo)=p, (x) g P„(x)P„(xo)exp( —
A,„t), (35)

n=0

which is the backward Kolmogorov eigenfunction equa-
tion.

This equation has essential singularities at +~ and is
not reducible to some standard equation of mathematical
physics. Gathering the relevant information about the
solutions of (36) from Sturm-Liouville theory, from Ref.
13 (see also Elliott's theorem in Ref. 3), and from system
symmetries, one has the following.

(a) The spectrum of eigenvalues A, „ forms a discrete in-
creasing sequence of non-negative real values:

O=AO&A] &A2& ' ' ' lim A,„=+~
(b) The set of eigenfunctions P„ is complete in

C[ —oo, + ~].
(c) P„has exactly n simple zeros in [ —ce, + co ].
(d) Lemma 4.2 of Ref. 13 asserts the existence of a sin-

gle solution y (x), bounded in [0,~] and satisfying the
condition (zero-probability fiux boundary condition)

lim p, (x)y'(x)=0 .
+ —+ oc

(37)

The same is true for the interval [ —~,0] and the other
entrance boundary at x = —~.

(e) The symmetries of the SDE (29) induce the follow-
ing property of the eigenfunctions:

the equation for the eigenfunctions P„(x) is

P'„'(x)+ [2P—2a sinh(x)]P'„(x)+A, „P„(x)=0, (36)

p (x, 0/xo) =6(x —xo) . (31)
$„(x,P)=+/„( —x, —g) . (38)

p, (x)= lim p(x, tlxo), (32)

can be obtained from (30) with 6,p =0.
One finds

As the diffusion-interval boundaries at + ~ are GS nat-
ural or F entrance [see Ref. 3 for a comparison of the
Gihman-Skorohod (GS) and Feller (F) classification
schemes], no boundary conditions need to be imposed.

The stationary PDF p, (x), which basically is defined
by

Summarizing, it is concluded that for each eigenvalue
k„ there exists one single eigenfunction P„(x). The eigen-
functions are bounded in [ —~, + ~ ] and have the sym-
metry

P„(x,P)=( —1)"P„(—x, —P) . (39)

The solution of (36) can now proceed as follows.
The coefficient of the first derivative in the equation is

periodic with imaginary period 2~i. Characteristic
periodic solutions similar to Mathieu functions' may ex-
ist and can be found by substituting a series solution

p, (x) =N exp[2Px —2a cosh(x)],

where the normalizing factor N follows from'

N '= dx exp 2 x —2a cosh x

(33) P„(x)= gal, .q„.(x),

where q&(x) is some suitable nucleus satisfying

q„(x +2vri ) =q„(x) .

(40)

(41)
=2K»(2a), a &0 (34)

with K»(2a) the modified Bessel function.
So, p, (x) is normalizable for a&0. This proves that

the processes (10) and (11) also have a normalizable
steady-state PDF.

The supposed universality of the hyperbolic sine model
motivates the search for an analytical time-dependent

A direct analogy with the case of Mathieu's (modified)
equation where qk(x)= exp(kx) [or = cosh(kx), sinh
(kx)] does not work out here Abounded . 2~i-periodic
function of x, however, is

tanh(x /2) = [exp(x) —1]/[exp(x)+ 1],
tanh(x /2)

~

~ 1 (42)
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resulting in a nucleus with desirable properties:

q&(x)=[tanh(x/2)], ~qk(x)~ ~1 for k ~0 .

The series solution (40) acquires the form

(43)

P„(x)= g a„[tanh(x/2)]",
k=0

(44)

which upon substitution in (36) yields a five-term,
fourth-order recurrence formula for the coefficients ak.

(k + 1)(k +2)ak+z+4/3(k +1)ok+ &+(4A, —8ak —2k )ak —4P(k —1)a~ &+(k —1)(k —2)ak &=0, k + 3 (45)

together with the starting relations (or recurrence bound-
ary conditions)

a&+2/3a&+2Aa0=0,

3a3+4/3a, +(2A, —4a —1)a, =0,
3a4+3/3a3+(A, —4a —2)az —Pa& =0 .

(46)

(47)

(48)

It is clear from (45) —(48) that, provided A, is known, a
pair of (ao, a, ) values entirely determines the solution.
So, apparently two independent solutions are possible, in
general. However, the symmetry condition (39)
translates into an additional relation for the coefficients,

a„(/3) =( —1)"+"a„(—/3),

stating, e.g. , that odd coefficients of even eigenfunctions
should be odd functions of P. Specifically, for (ao, a, ) if
ao is odd in P, then a& should be even and vice versa.
This essentially destroys the independence and leaves for
each eigenvalue only one solution, which is determined
up to an arbitrary normalizing constant.

Higher-order recurrences have not been very popular

in mathematical physics, despite an increased under-
standing and an enlarged availability of computational
tools and methods. '

The problem one is faced with, basically, is twofold.
(/) Calculation of the eigenvalues Esse.ntially, this can

be done by expressing the compatibility of the homogene-
ous relations [(45)—(48)] by demanding an infinite (Hill)
determinant to be zero. The infinite number of roots A.„
is the set of eigenvalues. Simplifying computational algo-
rithms, as alternatives to infinite determinant calcula-
tions, are fortunately available. See, e.g., Ref. 15.

(2) Calcu1ation of the coefficients Even w. hen an eigen-
value A.„ is known, the straightforward use of the re-
currence relation is hampered by the existence of m
different solutions for a recurrence of order m. Due to
the finite precision of the computation, the so-called
"dominant solution*' emerges when proceeding in a for-
ward way. Regressive calculation with the Miller algo-
rithm, starting at sufficiently large N with

N 1V +1 ~N+2 N+ —
1

however, generates the "minimal solution, " which usual-

a4
a2 4—

-10
I

10
I

20
I

30 40

FIG. 1. Graphical representation of the transcendental equation (59) for the even eigenvalues; a = 1.
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P'„'(x) —2a sinh(x)P'„(x)+k„P„(x) =0 .

(ii) Series solution (44):

(51)

ly is the convergent series one is looking for in physical
applications. See Ref. 16 for an in-depth analysis of this
computational problem.

In this paper the feasibility of the above approach wi11

be illustrated only for the highly symmetrical case with
f)=0, where the method becomes particularly simple and
elegant. Rephrasing the relevant equations for P=O, one
has the following.

(i) Eigenfunction equation (36):

o. =0. 1 o.= 1.0 a=5.0

0.0
0.431 236 19
1.228 446 18
2.276 557 50
3.546 01948
5.018 331 68
6.680 401 00
8.522 313 22

10.536 20442

0.0
2.396 525 95
5.480 983 57
9.105 704 11

13.202 430 34
17.727 686 66
22.650 446 86
27.947 047 54
33.598 626 42

0.0
10.468 404 93
21.823 448 28
33.979 604 94
46.874 846 14
60.461 131 60
74.701 106 07
89.562 302 76

105.018 303 3

TABLE I. Lower eigenvalues k& for the symmetrical case
(f)=0).

P(x)= g at,. [tanh(x/2)]" .
k=0

(52)

(iii) Recurrence for the aq, (45), and starting relations
(46) —(48):

(k + 1)(k +2)aI, +~+(4A. —8ak —2k )ak

+(k —l)(k —2)aq ~=0, k & 3 (53)

aq+2Aao=0,

3a&+(2A. —4a —1)a, =0,
3a~+(X—4a —2)a~ =0 .

(iv) Symmetry of the eigenfunctions (39) or (49):

(b„(x) = (
—1 )"P„(—x ),

(54)

(55)

(56)

or all a z& + &

=0 for even eigenfunctions, which now be-
come even functions of x, and all a&& =0 for odd eigen-
functions, which are now odd in x.

Recurrence (53) is still fourth order, but eventually is
reducible to a pair of second-order recurrences, one for
the even eigenfunctions and one for the odd. Eigenvalues
X„and coefficients a& can be obtained simultaneously as
follows.

The ratio of two successive coefficients,

all ratios up to Rz are determined, and choosing ao=1
(or another suitable normalization value) generates the
coefficients. Only ratios R & with k ((N, which are
sufficiently stabilized when increasing X, should be con-
sidered for this step. This implies that the value of N is
dictated by the number of stable coefficients one needs for
a prescribed precision of the eigenfunctions.

Similarly, for odd eigenfunctions Pz +, one finds

ai /a, =R i(A. ) =(4a+ 1 —2X)/3, (61)

which generates the kz +i and the corresponding se-
quences R&, R~, . . . , Rzk+]. Here, a, =1 is one possible
choice. Finally, the lowest even eigenfunction, P„, corre-
sponding to ko=0 is a constant.

Table I contains the first few eigenvalues for three a
values.

Figures 2 and 3 show some eigenfunctions g„(x) of the
FPE, which are related to the eigenfunctions of (51) by

it „(x)=p, (x)P„(x),
with p, (x) according to (33) and (34) with f3=0

can be computed from an infinite continued fraction that
is equivalent to (53):

Rk =(k —1)(k —2)[(2k +8ak —4A. )

—(k +1)(k +2)R„+~] (58)

starting with R&=0 at sufficiently large N and working
backward.

For even eigenfunctions Pz, one starts at a large even
N and one arrives at R4, the value of which is dependent
upon the A, value used during the calculation. Using,
now, the even starting relation (56), it follows that

DERIVED MODELS

The hyperbolic sine model was shown to be the canoni-
cal form of difI'erent kno wn multiplicative stochastic
models.

Inversely, an infinity of nonlinear transformations can
be applied to the hyperbolic sine model to generate new
stochastic processes. However, only a few of them can be
expected to have a possible physical or mathematical
significance.

(a) The hypberbolic sine model (29) is transformed back
to the "stochastic Verhulst model with constant source"
by choosing the variable

a~/az =R4(A. ) =(4a+2 —
A. )/3, (59) y =exp(x), y H [0, + co ] . (62)

which is a transcendental equation for the even eigenval-
ues A.~,„,as graphically represented in Fig. 1.

Solving (59) iteratively simultaneously yields the se-
quences R 4, R 6, . . . , R z&. Together with R z from (54),

One obtains the SDE:

y(t)=a(1 —y )+2f)y+yF(t), a &0 . (63)

The stationary PDF of this process follows from {33)and

R, =a, /ao = —2~, Ip, (y)dy I

= Ip, (x)«
I

. (64)
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FPE —Ev en Eigenfunctions
1.00
0.90
0.80
0.70
0,60
0.50
0.40
0.30
0.20
0.1 0
0.00

—0.1 0
-0.20
-0.30
-0.40
-0.50
—0.60
-0.70
—0.80
-0.90
—1.00

0.00
I

0.40
I

O.eo
I

1.20
I

1.60
I

2.00
1

2.40
I

2.80

FIG. 2. Even eigenfunctions tt„of the FPE for k =2,4, 6, 8; symmetrical case P=O; a= l.

0.30

FPE —Odd Eigenfunctions

0.25—

0.20—

0,15—

0.1 0—

0.05—

0.00

-0.05—

-0.1 0
0.00

I

0.40
I

0.80
I

1.20
I

1.60
l

2.00
I

2.40
I

2.80

FICi. 3. Odd eigenfunctions P» of the FPE for k = 1, 3, 5, 7; symmetrical case P=O; a= 1.
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One finds

p, (y)=Ny ~ 'exp[ —a(y+1/y)], yE[0, +oo] .

The inverse process,

z =1/y = exp( —x),

(65)

(66)

y =tanh(x/2), y E [ —1, +1]
which obeys the SDE,

y(t) =p(1 —y ) —2ay+ —,'(1 y)F(—t),

(67)

(68)

describing a stochastic process with quadratic (Ito) drift
and diffusion. Inversion now results in

z= 1/y=coth(x/2), lzl
) 1

z(t) =P(1 —z')+2az+ —,'(1 z')F(t) —.
(69)

(70)

also diffuses in [0, + ao ] and clearly has the same PDF's,
with a sign change of /3. In the symmetrical case p=0,
one observes that the process [y(t) I and its inverse have
exactly the same PDF's.

(b) The central role of tanh(x /2) in the time-dependent
solution of the FPE suggests that one consider as a new
variable

can be reduced to the standard type (68), which only has
two parameters and which is equivalent to the hyperbolic
sine model, by taking

/3=(a +c)/2,
tanh( y ) = ( a c) /—2b,
a= b/c osh(y),

p, = tanh(y /2),
y=(z+p)/(I+pz) .

(79)

(80)

(81)

(83)

The condition for this reduction to the possible follows
from (80):

The transformation (75) and (76) thus leaves the diffusion
coefficient absolutely invariant —it maps the diffusion in-
terval onto itself and it leaves the drift structurally invari-
ant as it only changes the coefficients of this quadratic
term.

As an example of possible application, it follows that a
SDE of the type

z(t) = —az —2bz+c+ —,'(1 —z )F(t), lz l

( 1, b )0

(78)

The PDF's for z are the same functions as for y, but with
the sign of o. reversed, and defined over a different
diffusion interval.

The stationary PDF for z, e.g. , is

p, (z)=2Nlz+ ll ~ 'lz —ll

la —cl (2b .

CONCLUSIONS

(84)

x(t) =2P—2a sinh(x —y)+F(t) (72)

is reduced to (29) by x —y ~x.
This, however, defines a one-parameter family of non-

linear transformations, leaving (68) structurally invariant.
To show this, let x represent the original hyperbolic-
sine —model variable as in (29), and

y=tanh(x/2), lyl (1
z = tanh[(x —y )/2], lz l

( 1 .

Then,

z =(y —p)/(1 —py ),
with

p = tanh( y /2), l p l

( 1 .

While y describes the process (68), z has the SDE:

z(t)= —[P+a sinh(y)]z —2a cosh(y)z

+ [P—a sinh(y )]+—,'(1 —z )F(t) .

(73)

(74)

(75)

(76)

(77)

X exp[ —2a(z +1)/(z —1)], lzl 1 . (71)

This distribution is bimodal, having one lobe at each side
of the inaccessible interval [—1, + 1].

The process is continuously "tunneling" between the
two lobes via +~, with a finite transition probability.
Physical applications are not obvious.

(c) Translational invariance of the hyperbolic sine mod-
el is trivial:

The hyperbolic sine stochastic model arises as the
canonical form of several nonlinear multiplicative sto-
chastic processes.

The simple appearance of the model and its associated
FPE inspires an exact-solution method for the transition
PDF in terms of a new type of eigenfunction which is ex-
pressible as a power series of tanh(x/2).

The problem whether nuclei more suitable for normali-
zation or for second-order moment calculation exist is
still unresolved. The solution method is believed to be
generalizable to other similar equations, as recurrence
calculations are no longer problematic, and as they offer
an interesting alternative to "crude" numerical solutions.

A few models derived from the hyperbolic sine process
were presented without regard for their physical content.
There is some hope (or some synergetic belief} that in
view of their particular symmetries and mathematical
properties, these models may fit some physical process as
well. Transformation properties of the models con-
sidered can indeed be related to the fact that the variable
in the hyperbolic sine model (29) is representing a (loga-
rithmic) ratio of two dependent physical quantities, e.g.,
neutron density and delayed neutron precursor density in
(22) and (23), or two complementary chemical concentra-
tions or allele frequencies in (28).

Physical symmetry dictates the observation of x/y or
of y/x to be equivalent.

Finally, a remark related to noise-induced transitions is
in order.

Whereas the genetic model (27) exhibits bimodality of
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its stationary PDF above some critical noise level [corre-
sponding to a~0. 5 in (27)], no similar phenomenon is
displayed in the stationary PDF of the hyperbolic sine
process, the bimodality being masked by the transforma-
tion (28). This example shows that noise-induced
transitions —or "parameter-induced transitions" if the
noise intensity is kept normalized —may appear as a pure

consequence of the accidental physical scale of observa-
tion one is dealing with in a particular application.

The question whether "critical dynamics, " as deter-
mined by the eigenfunctions and the invariant spectrum
of eigenvalues of the FPE, do constitute a more robust
characteristic of noise-induced transitions is actually be-
ing investigated.
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