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Chaotic dynamics in open How: The excited jet
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We present a dynamical system analysis of an experimental study on an axisymmetrical excited
air jet. The transition to turbulence —tL)eak turbulence —is investigated by imposing on the lami-

nar flow a controlled excitation which triggers the spatial development of the jet instability. By lon-

gitudinal and azimuthal coherence and phase measurements, we find that a helical structure with

azimuthal mode m =+1 is being selected, in accordance with spatial linear stability analysis. Fur-
ther downstream, the transition to turbulence is evidenced, through a decrease in spatial coherence,
by destabilization and a breakdown of the helical structure. We analyze the transition to turbulence
with the techniques of dynamical systems theory. The presence of an initial helical structure in the
flow suggests that the chaotic dynamics has low dimensionality: the correlation dimension comput-
ed along the jet axis (18$ + l ~ 24/, where p is the nozzle diameter) at R =543 shows that the di-

mension of the chaotic attractor increases continuously from —3 to —6. Good correlation is found
between spatial coherence and attractor dimension, which confirms the validity of the values ob-
tained for the chaotic attractor dimensionality. From local coherence measurements, we infer a
power-law dependence between the attractor dimension and the local correlation length (the range
of the local turbulent structure). This result clearly indicates that in open systems the attractor di-

mension (as computed from time series data) is to be connected to the local chaotic dynamics of the
flow.

I. INTRODUCTION

Chaotic temporal behavior in closed systems governed
by an absolute instability (zero group velocity of a distur-
bance) is nowadays well documented. Systems such as
Rayleigh-Benard (RB) convection or Couette-Taylor flow
between rotating cylinders have been studied extensively
and are presently quite well understood. For RB convec-
tion in small geometry, chaotic flow corresponds to
motion on a chaotic attractor of low dimensionality. '

This low finite value is a consequence of the high
confinement imposed by the boundaries on the internal
flow which results in a strong coupling between modes.
This gives rise to a spatially highly coherent "frozen"
flow, which can therefore be described by a single chaotic
at tractor.

In large aspect ratio RB systems (large in the two hor-
izontal directions), the chaotic state is generated by the
competition between di8'erent unstable modes; the dy-
namics can be described by several localized chaotic at-
tractors in the flow. The secondary instabilities which
develop on the primary instability tridimensionalize the
flow by introducing a vertical vorticity component. Tur-
bulence in such confined systems is thus essentially
spatio-temporal with a loss of spatial coherence in the
flow. It is only recently that the spatial coherence func-
tion between adjacent points in the flow —a measure of
the degree of linear correlation between fluctuations—

has been related to the local attractor dimension while a
control parameter is varied.

The transition to fully developed turbulence is general-
ly investigated in open systems whose initial instability is
generated by large velocity gradients normal to the mean
flow [e.g. , quasi-two-dimensional (2D) mixing layer, 2D
and 3D jets and wakes]. Such systems are generally dom-
inated by a convective instability (the group velocity of the
perturbation is nonzero and the edges of the perturbation
travel in the same direction) and a spatial stability
analysis must therefore be used.

In open systems we observe typically a region of spatial
exponential growth of the most unstable mode (domain of
linear stability), followed by a nonlinear saturation of the
mode which generates advected coherent structures (CS)
and finally a 3D destabilization and a breakdown into ed-
dies of these macroscopic CS (Ref. 5). If we suppose that
the flow is initially quasi-2D, the last sequence of the de-
stabilization process leads —far downstream —to a
homogeneous and isotropic turbulence with a velocity
power spectrum continuous in frequency and wave num-
ber.

The understanding of the destabilization and break-
down process of the coherent structures is of fundamen-
tal importance for a correct analysis of the fully turbulent
flow field which follows the transitional regime. In fact,
with modern techniques of data reduction such as condi-
tional sampling, it is recognized experimentally that re-
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sidual CS are still persistent in the self-similar fully tur-
bulent zone where it is generally accepted that the flow is
independent of initial conditions.

As a first approach to the transition from laminar to
turbulent regime, one can consider that, near the margin-
al stability, the Aow is weakly nonlinear. The Ginzburg-
Landau equation can be used to model the spatio-
temporal nonlinear evolution of hydrodynamic marginal
waves. Although widely used in confined systems, this
approach has been applied only recently to open systems.
Provansal et al. have shown that in a 2D wake, the
transverse velocity Auctuation near marginality follows a
Landau-type description.

The work presented here was undertaken in order to
study the highly nonlinear transitional regime in an open
Aow: the excited air jet. By generating artificially a high-
ly coherent structure in an open Aow —free from any
random perturbation —we can explore under well-
controlled experimental conditions the spatial destabiliza-
tion of such structure. The turbulent transition so
observed —herein called weak turbu lence —should be
similar to the transition in free open flows, but occurs at a
value of the Reynolds number R several orders of magni-
tude smaller than in the free case. The analysis is carried
out for a value of the control parameter far above the
critical value, (R —R, ) /R, = 13.3, and is based on
dynamical systems theory. One particular purpose of the
research is to investigate the relation between spatial
order —corresponding to a high spatial correlation in the
flow —and the dimension of the chaotic attractor.

In Sec. II we describe the experimental setup and
present some flow visualizations. We discuss in Sec. III
the spatial development of the Aow structure and in Sec.
IV, we investigate the destabilization of the flow struc-
ture in the weakly turbulent regime in connection with
the existence of a chaotic attractor. In Sec. V we show
that the chaotic attractor can describe the statistics of the
local spatio-temporal dynamics over a length scale com-
parable to the local spatial correlation length scale. Sec-
tion VI is devoted to a discussion —via the bicoherence
function —of the longitudinal evolution of the quadratic
coupling between modes.

II. EXPERIMENTAL ASPECTS
AND FLOW VISUALIZATION

Transition to turbulence in open Aows always involves
a spatial destabilization of coherent structures triggered
initially by a random perturbation which falls inside the
marginal stability curve. ' In order to realize a fast tran-
sitioning Aow and to perform reproducible tests, an iso-
thermal, air into air, axisymmetric laminar jet is external-
ly excited. We define a laminar jet as an axisymmetric
shear flow whose velocity profile varies as U(r *

)
= UCL/(1+r* ) where UcL is the center-line velocity
and r" = r/ro is the nondimensional radial distance [ro is
the measure of the jet radial spread, defined by
U(ro)= Uc„/4]. Experimentally, such a free flow can be
obtained in the self-similar zone of a jet with an initial
Poiseuille velocity profile. "

We used an axisymmetric pipe of length L/D =71,
where D =6.25 mm is the internal diameter of the pipe.
This length is sufficient to ensure a well-established
Poiseuille velocity profile at the pipe outlet. ' A conver-
gent entrance with a contraction ratio I =164 unifor-
mizes the Aow at the pipe inlet and reduces the residual
internal turbulence. Mass Aow is maintained at a con-
stant rate by a self-regulated microvalve which reduces
Reynolds number fluctuations to less than 0.1%. Techni-
cally, the maximum Reynolds number, defined as
R = UD /v, (where U is the mean axial velocity and v, is
the kinematic viscosity) is —700 which corresponds to an
exit velocity of 3.4 m/s at the center line of the pipe.

The external excitation is realized by longitudinally vi-
brating the pipe together with the convergent duct and
the longitudinal displacement is monitored by means of a
displacement transducer. When applying a sinusoidal vi-
bration, the rms of the center-line velocity Auctuation at
the pipe outlet was shown to be linear with the displace-
ment amplitude.

In order to eliminate any mechanical random vibra-
tion, the setup is positioned on an antivibrating table, and
so as to avoid extraneous pressure fluctuations, the whole
system is enclosed into an anechoic chamber with an
internal noise level less than 50 dB.

Since the Aow has no initial swirl, axial velocity mea-
surements are performed with a simple hot wire: length
I/d=200, where d=5 pm is the wire diameter. Before
each set of measurements the hot wire is calibrated in situ
within the expected velocity range. The frequency
response was checked with a square wave test to be =40
kHz which is sufficient compared to the maximum fre-
quency in the velocity fluctuation (from velocity power
spectra, the frequency where the power is between —60
and —70 dB, is =500 Hz, see also Sec. IV). The signal
was postlinearized after data acquisition through a 12 bit
analog digital converter (ADC) on a VAX 11/780 com-
puter. Further information concerning acquisition pa-
rameters will be given when useful. The hot-wire tech-
nique was chosen in preference to the nonintrusive laser
Doppler velocimetry (LDV) technique mainly for two
reasons: one is to avoid the Aow seeding problem in LDV,
and the other is that there is a constant acquisition fre-
quency set by the ADC. In LDV, the arrival time of the
seeding particles in the intersection volume of the two
laser beams is supposed to be Poisson distributed; so we
have a Poisson-distributed pseudoacquisition frequency
at the photomultiplier. Here random sampling will cause
a technical problem. Indeed, we want to reconstruct the
attractor in phase space and compute its dimension from
a single time series using the time delay technique; we
also use fast Fourier transform (FFT) analysis all these
techniques require a constant sampling time.

We have compared our mean velocity measurements
(null excitation) with those of Rankin et al. ' obtained by
LDV in a water into water laminar jet with L/D =383.
In Figs. 1(a) and 1(b) we show the normalized velocity
profile and the longitudinal evolution of the center-line
velocity. As the comparison shows excellent agreement,
we are confident that the hot-wire probe does not
significantly perturb the Aow field. From these measure-
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ments, the nonexcited laminar jet is recognized to be
self si-milar for the mean velocity from an axial distance
X, =(X/D)/R, =0.018 where R, = UCLD/v, with UCL
the center-line velocity at the pipe exit. '

Flow-visualizations were performed by longitudinal
laser light sheet cuts of the seeded jet (condensed oil va-
por), with and without excitation. Figure 2(a) shows that
the free jet at R =500 remains stable up to downstream
distances X/D 70, whereas stability analysis by
Morris' predicts that the most unstable mode —the sirn-
ple helical mode —has a critical Reynolds number as low
as R, = 38. That the jet be stable here at R =500

confirms that the flow is indeed free from random pertur-
bations and that the inlet flow has a very weak residual
turbulence (at X/D =36 and R =370 without excitation,
no velocity fluctuations could be observed on the oscillo-
scope).

Figures 2(b) and 2(c) show stroboscopic (at the excita-
tion frequency) flow visualizations for two amplitudes of
excitation. Spatially evolving structures are observed.
One distinguishes a three-regime sequence: (i) a laminar
region dominated by stationary macroscopic structures,
(ii) a weakly turbulent zone where the structures are no
longer steady in time (despite the stroboscopic visualiza-
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FIG. 1. (a) Radial profile of the mean axial velocity, normalized by the center-line mean axial velocity. Longitudinal probe posi-
tion, X, =0.005. (b) Longitudinal evolution of the mean axial velocity, normalized by the mean velocity at X, =0. Open circles:
present measurements (null excitation) with R, = 1000; open triangles: measurements from Rankin et al. (Ref. 14), R, = 1000.
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FIG. 2. Laser-light sheet flow visualization of the seeded jet.
(a) The nonexcited jet at R =500. Top of scale is located at
X/D =61. (b) and (c) Stroboscopic flow visualization of the ex-
cited seeded jet: fo =20 Hz, R =500, normalized rms velocity
fluctuation u/U=0. 4% (b) and 0.6%%uo (c). Notice the weakly
turbulent region where the helical structure is no longer visible.

tion), and (iii) a turbulent zone where the structures have
disappeared and an important mixing process takes place.
Increasing the excitation amplitude shortens the laminar
and transition regions and enhances the turbulent one,
but does not modify qualitatively the sequence. Further-
more, the same spatial pattern holds for a range of excita-
tion frequencies (20—40 Hz). These flow visualizations,
by showing the different flow regimes, clearly indicate the
convective nature of the instability.

III. FLOW STRUCTURE
AND NORMAL MODE ANALYSIS

A. Linear stability analysis:
Comparison of experiments with prediction

The flow being axisymmetric (along the x direction)
any perturbation can be written as

3 (r*)expi(ax cot+ m 8—)

where 3 (r') is the r*- edpe ned tnamplitude, a is the
complex wave number, co (real) represents the frequency
of the perturbation, and m is the azimuthal mode num-
ber, 0 being the azimuthal angle. m =0 corresponds to
the axisymmetric mode (i.e. , the vortex ring), m =+1 to
the simple left and right helical modes, m =+2 to the
double left and right helical modes, . . . . In a laminar jet,
modes m =0 and +2 have been recognized to be more
stable than the mode m =+1.'

Morris' has performed a linear spatial viscous stability
analysis of an axisymmetric laminar jet by computing the
spatial growth rate —a, for the simple helical mode. The
main results of the analysis are the following: (i) there ex-

ists a curve of marginal stability (u; =0) in the (co, R)
plane which gives a critical Reynolds number R, =38
below which the simple helical mode is stable whatever
the frequency of the perturbation and (ii) the flow is dom-
inated by a viscous instabi1ity since, for a finite range of R,
the simple helical mode has a maximum spatial
amplification rate [existence of a closed curve of constant
spatial amplification in the plane (co,R)]. We shall now
check these spatial linear stability predictions against our
experimental results.

It is generally accepted that the linear approach is val-
id as long as u/U ~ 2% (Ref. 17) where u is the rms ve-
locity fluctuation. In our experiments, the excitation am-
plitude was kept su%ciently low in order to satisfy the
above "linear" conditions. The jet was excited at several
frequencies ranging from 15 to 70 Hz. For each excita-
tion frequency, the Reynolds number was increased slow-
ly step by step, with AR =25, and at each Reynolds num-
ber increment the velocity fluctuations were recorded.
The hot-wire probe was positioned in the self-similar
zone such that X, ~0.018 and, according to the excita-
tion frequency, so as to get significant velocity fluctua-
tions. Using a multibandpass digital filter with frequency
window b,f=1 Hz, we measured the rms of the velocity
components at the excitation frequency fo and its har-
monics. In Fig. 3, we show the normalized rms velocity
fluctuations as a function of R, respectively for an excita-
tion frequency fo =20 and 30 Hz. Since the measuring
position is fixed in space, one can speak equivalently of
the rms value of the fluctuations or of the spatial
amplification rate e, . One observes that this quantity
reaches an absolute maximum for a finite value R, which
evidences the viscous character of the instability (the spa-
tial amplification rate is larger at a finite value of the
Reynolds number than at R = ~ ).

We compared our experimental results with Morris's
predictions. ' From normalized radial velocity profiles
measured in the self-similar zone (X,=0.018 ) and
without excitation, the characteristic radius ro is estimat-
ed to be r =4.5 mm for 250~R 500. In Fig. 4 we plot
the frequency of the disturbance as a function of the
value of R at which the largest spatial growth rate is ob-
tained. Figure 4 shows our experimental results (labeled
by letters) along with data from Morris's analysis for the
simple helical mode with either ro=2. 8 or 4.5 mm. Ex-
perimental points 3, B, C, and D measured at X, =0.018
are in agreement with the linear prediction if ro =2.8 mm
is used. This discrepancy with the estimated value (4.5
mm) could be due to contamination of the simple azimu-
thal mode m =+1 by the axisymmetric mode m =0 still
present in the flow. In fact, at point F. (X/D =16) the
amplitude ratio between the helical and axisymmetric
modes is 3

&
/AD —-3 (see Sec. III B). The persistence at

this position of the axisymmetric mode does not allow
therefore a direct comparison with Morris s analysis per-
formed for the mode m =+1 alone. Data labeled F—K
show the influence of the shape of the velocity profile on
the jet instability (these data were obtained in the devel-
opment region X, ~0.018). In particular, points G, H,
and I were measured at X, =0.003, 0.010, and 0.016, re-
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spectively, based on R, =2R *, where R * corresponds to
the largest spatial amplification rate. One observes that
as the measuring position moves downstream, R* in-
creases in value towards the linear prediction: again, this
could be a consequence of the influence of the flow struc-
ture on the overall stability characteristics. We per-
formed measurements further downstream in order to
capture the instability of the simple helical mode alone;
however, for such positions the velocity fluctuations
exceed 2% and consequently the linear stability analysis
breaks down.

B. Spatial development of the How structure

We now investigate the longitudinal evolution of the
mean wavelength of the disturbance and show how the
flow structure observed in the laminar zone can be
decomposed into normal modes. We used the cross-
spectrum technique which consists in computing the
Fourier transform of the cross-correlation function
A;, (r) =&[ x(t) x,(t+~)] between two random, station-
ary, and real variables x, (t) and x (r) (F. denotes the ex-
pectation). The complex Fourier transform reads'
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FIG. 3. Rms axial velocity fluctuation components, normalized by the local mean velocity, as a function of R, for excitation fre-
quency f„and harmonics 2fo and 3fo. (a) fo=20 Hz, normalized rms velocity u/U=1. 6%, R =150; longitudinal probe position
X/D =7.8, center line radial position. (b) f„=30Hz, u /U = 1.5%, R =200; X/D = 11.7 and center line radial position.
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FICi. 4. Frequency of the applied disturbance as a function of R for which the disturbance experiences the largest spatial
amplification. Crosses: Morris's computation (Ref. 15) at R = 50, 100, 200, and 1000, with a characteristic radius
ro( U = U«/4) =2.8 mm ( X ); and r„=4.5 mm (+ ). Present experimental points: open circles labeled 3, B, C, D, and E were mea-
sured in the self-similar region with a normalized axial position X, =-0.018; open triangles labeled F, 6, H, I, J, and K were measured
in the development region of the jet with normalized axial position X, =0.004 (F), 0.003 (G), 0.010 (H), 0.016 (I), 0.003 (J), and
0.003 (K).

I'„(f ) =F(&;&(r) )

=C„(f)+iQ&(f)

where cp( f ) =arctan[Q, (f ) IC, (f)] is the phase shift be-
tween the variables x, and x at frequency f The nor-.
malized coherence function is defined by

where P, , and P are the power spectra of the random
variables x, and y, respectively. When y(f)= l, the x,
and x variables are linearly correlated while, when
y(f ) =0, the two variables are totally uncorrelated at fre-
quency f

In the present experiment, the coherence function is
used to localize the laminar region in the jet, and the
phase shift to compute the longitudinal wavelength of the
disturbance (by longitudinal cross correlations) and to
decompose the fiow structure into azimuthal modes (by
azimuthal cross correlations). We cross correlated the
velocity fluctuations with the displacement of the vibrat-
ing apparatus which is used as the reference signal. Spe-
cial care must be taken when estimating the cross-power
spectra. In order to reduce the variance of the phase
shift and of the coherence estimators, ' power spectra are
averaged and 24 fast-Fourier transforms (FFT's) are com-

puted over 1024 data points each, which gives a frequen-
cy resolution Af =3.05 Hz.

Longitudinal cross correlations. Figure 5 shows the
longitudinal evolution of the coherent function y(f) and
of the phase shift y(f ) for an excitation at fo =40 Hz and
R =426. From the coherence plot, two distinct regions
are observable: the region where y( f ) = l indicates a per-
fect correlation between the velocity fluctuations and the
excitation. This region is to be related to the laminar
zone of the jet while the transitional zone is characterized
by the region of coherence decay. A low value of the
coherence function indicates a destabilization of the
coherent structure which is therefore less linearly corre-
lated to the excitation.

The phase shift y(f) (defined mod 2~) varies linearly
with the axial position X/D in the region where the
coherence function is high valued. This behavior is a
clear indication of a spatial periodicity in the Bow; the
corresponding change in slope shows a downstream lon-
gitudinal decrease of the wavelength [see Fig. 5(b)]. Fig-
ure 6 shows the axial evolution of the Strouhal number
S =fok/Uc„evaluated with the mean wavelength X of
the disturbance and the center-line mean velocity UcL at
the pipe exit, for several excitation frequencies and Rey-
nolds numbers. The wavelength is obtained from the
phase shift variations [Fig. 5(b)]; k represents a value
averaged over a distance comparable ta k itself. Notice
that the variation of the Strouhal number as a function of
axial position follows a "universal" law, independently of
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FIG. 6. Strouhal number (evaluated with the mean wavelength of the disturbance) as a function of the axial position X/D, for
various excitation frequencies and Reynolds numbers.

modes, we can write the total velocity fluctuations in the
linear regime as '

u (t) = A o expi( —2n fot+ao)
+ A

&
expi( 2vrfot+0—+a&)

+ A, expi( —2nfot —8+a &) .

Here 3+I represents the amplitude of the m =+1 az-
imuthal mode and the u, 's denote the phases of the
respective modes. By cross correlating u (t) with the

i2n fOtreference signal s ( t ) =e " and taking the Four ier
transform of the cross-correlation function, one obtains
the cross spectrum

P„,(f)= Aoe 5(f fo)+ A, e ' —6(f fo)—
+ A, e ' 6lf fo)—

where 5(f f o ) is the Dirac 5 fu—nction.
It is clear why we have ignored the double helical

mode m =+2: this mode (with frequency 2fo) does not
contribute to the fluctuations at fo; the same applies to
the higher-order azimuthal modes. From the relation
given above, the phase shift at frequency fo reads

( A, /A o )sinH —
( A, /A o )sing+ sinao

p(fo)=
( A, /Ao) cosO+( A

&
/Ao) cos8+ cosao

Here we have set +I=a I=0 i.e., the modes m =+1
are assumed to be excited simultaneously. Given the az-
imuthal angle 0, the phase shift is a function of o:p and of
the amplitude ratios 3 I/Ap and 3 I/Ap. So by fitting
the experimental phase shift with the theoretical y(fo),
we can determine the dominant modes from the mode

amplitude ratios.
In Fig. 7 we show the theoretical and experimental

phase shifts versus the azimuthal angle 0, for two axial
positions (X/D = 16 and 19.2) with R = 395 and with ex-
citation frequency fo =40 Hz. The amplitudes of modes
m =+1 are set equal. From the fitting procedure, it ap-
pears that the flow structure is mainly composed of the
first two azimuthal modes whose relative strength, in
terms of the amplitude ratio, varies with the longitudinal
position. At X/D =16, the best fit is obtained by setting
c4 I / 3 p —1.65 while at X/D = 19, the optimal amplitude
ratio is AI/Ap —4.0. These results confirm the linear
stability analysis prediction that the flow selects the sim-
ple helical mode even though the injected disturbance at
the pipe exit is initially axisymmetric.

The influence of the Reynolds number on the mode
selection mechanism is seen from the comparison of Figs.
8 and 7. An increase of R (R =494, Fig. 8; 395, Fig. 7)
enhances the growth of the helical mode: for the same ax-
ial position [Figs. 7(a) and 8(a)], the amplitude ratio
3 I /Ap goes from =4.0 for R =395 to = 10 for R =494.
Figure 8(b) shows that further downstream, the flow is
prevalently dominated by only one mode, here m = —1

( A
&
/Ao = 13.0 and A

&
/Ao-7. 0) and that the theoret-

ical phase shift approaches a linear decay (with slope —1)
as a function of the azimuthal angle.

Longitudinal evolution of the fluctuations. In order to
follow, independently of the finite value of excitation am-
plitude, the longitudinal evolution of disturbance as-
sumed to be initially infinitesimal, we Wiener-filtered the
velocity fluctuations. Here, the Wiener-filtering opera-
tion consists in subtracting from the velocity power spec-
trum the power contribution linearly related to the exter-
nal excitation. Using the coherence function (see above),
the power not linearly related to the excitation is given by
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Pnl P tot( I ~ (f ) )

where y„,(f) is the coherence function between the ve-

locity fluctuation and the displacement signal. Figure 9
shows the (Wiener-filtered) amplitude evolution of the
fiuctuations at frequencies fo and 2fo. Three successive
regions can be observed: an initial region of spatial ex-
ponential growth (where the linear regime is valid), a sat-
uration region, and a region of decreasing amplitude.
Without Wiener filtering, no exponential growth could be
detected at frequency f„Anin.crease of R reduces the
region of spatial exponential growth, thus enhancing the
turbulence transition.

IV. WEAK TURBULENCE:
EVIDENCE OF DETERMINISTIC CHAOTIC FLOW

Velocity power spectra (Fig. 10 shows measurements
taken at X/D =15.36, 21.12, and 25.44) reveal an ex-
ponential decrease in frequency of the peak amplitude at
the excitation frequency and its harmonics, as well as of
the broadband "noise. " As the measuring probe moves
downstream, an increase of the broadband noise level is
noticed while the peaks remain at a constant amplitude
value. An exponential decay of the broadband noise at
high frequencies is recognized as a sufficient condition for
the presence of "determinism" in a chaotic state. '
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Therefore we conjecture the existence of an attractor
whose dimension can be used as a statistical quantity to
characterize the jet instability. We also raise the question
of the downstream evolution of the attractor's dimen-
sionality.

We shall first discuss the technique used to compute
the attractor's dimension. We then show how this di-
mension correlates with the spatial coherence function in-
troduced in Sec. III. Finally, in order to quantify the de-
gree of chaos we present an evaluation of the Kolmo-
gorov entropy.

Attractor Dimension. The probabilistic approach is
used: one studies the scaling of the asymptotic probability
density on the attractor when the size e of the partition
on the attractor decreases. Obviously the multifractal
nature of the attractor remains unknown until the com-
plete spectrum of the generalized dimension D has been
investigated. We focused on the evaluation of the di-
mension of order 2, D2, this choice is motivated mainly
by the well-known diSculty of obtaining reliable results
when dimensions are computed from experimental data.
The analysis therefore requires a careful examination of
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phase shift computed with ao=90' and A, = A, , A, /AO =10.0 Excitation frequency fo =40 Hz, u/U=0. 9%, and R =494. (b)
Open circles: present measurements, azimuthal plane located at X/D =24. Solid line: phase shift computed with ao=10,
A, /AD =30, and A, /AD =70. Excitation frequency fo =40 Hz, u /U=1. 1%, and R =346. Crosspower spectra were averaged
over 64 FFT's.
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the parameters influencing the dimension evaluation.
A lower bound to the second-order dimension D2 is ob-

tained from the correlation integral Cd(e) defined as
modified by Theiler's analysis

1
Cd(e) =

Xo(Xd —2tti —1)

No

e(e —~X, —X, ~)
i =1 j=l

jp(i —w, i+ w)

where 6( ) is the Heaviside function and e is the radius of
the hypersphere in phase space; X, is the d-dimensional
phase vector reconstructed from the single time series

given by the velocity Auctuations, using the delay recon-
struction technique,

X, =[x(t),x(t+ r), . . . , x(t+(d —1)r],

~ being the delay time. Xo is the number of reference
vectors in phase space and Xd =X—(d Xp), where X is
the total number of data points in the time series and p
the time shift parameter. The correlation function
represents the mean probability of finding two phase vec-
tors on the attractor whose separation distance is less
than or equal to e.

With the delay reconstruction method it can be shown
that
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—H2 ddt
Cd(e) —e"e

where v is the correlation dimension, a lower bound to
D2. So, from a log-log plot of Cd(e) versus e, the correla-
tion dimension is easily obtained in the scaling region of
the correlation function if the embedding dimension

satisfies d ~ 2v+1. The order-2 correlation entropy is
given by

H2= lim H2 d
d —+ oo

where in the scaling region,

H2 d
—( I/kr) logic[Cd(e) /Cd+&(e)],
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FIG. 10. Semilogarithmic plot of the normalized velocity
power spectrum. Longitudinal position of probe X/a=18. 2

(a), 21.1 (b), 24,0 (c); radial probe position r =1 mm. Each
power spectrum is averaged over 48 FFT's of 2' data points
each with a frequency resolution f =0.302 Hz; a Hanning win-

dow is used. Excitation frequency f&&=40 Hz, normalized rms

velocity fluctuation u/U=0. 95% with R =543.

with k integer.
Many parameters enter the dimension evaluation when

it is computed from a single time series. A correct choice
of the time shift is crucial: ~=p~„where p is the shift pa-
rameter and w, the sampling period. With an infinitely
accurate time series, ~ can be chosen arbitrarily. This is
of course not the case in practice. In the literature, one
finds the empirically established criterion 3 Tp /~

13—30, where Tp is the main pseudoperiodicity of the
dynamics. ' ' Recently, Fraser and Swinney have pro-
posed a method where the optimal time delay is given by
the first minimum of the mutual information. The mu-
tual information is a measure of the dependence of two
variables, say x(t) and x(t+r). If the mutual informa-
tion is zero for a given ~, the system has lost in such a
time interval the memory of its initial condition and con-
sequently x (t) and x (t +r) are independent By choo. s-

ing, in the time series, variables spaced by a time interval
~, one selects the largest amount of information about the
dynamics, and thus the phase vector is optimally recon-
structed. Another method is to set the time delay equal
to the time corresponding to the first zero of the auto-
correlation function: in this case, the variables are or-
thogonal but not independent. For a highly periodic au-
tocorrelation function, this gives ~= Tp/4 which is in the
range of the empirical criterion.

Given T=(d —1)pr, the observation window (in the
time series) used to reconstruct the d-dimensional phase
vector, it is important to examine whether the dimension
varies as a function of T. In fact, maintaining T = Tp,
while increasing the dimension d of the embedding phase
space can lead to an apparent saturation of the correla-
tion dimension v, thus giving a wrong estimate of the at-
tractor dimensionality. ' In our analysis, we consider
that the dynamics evolves on an attractor with a ftnite di
mensional value if this value is T independent within a
given range of T (for small T, data in the observation win-
dow are too correlated: as a result, the reconstructed at-
tractor concentrates along the diagonal of phase space,
thus reducing its actual dimension; for too large values of
T, data in the observation window are uncorrelated and
consequently an artificial increase in the dimension fol-
lows).

The sampling period ~, is also a critical parameter.
Too small an acquisition period can lead to a completely
wrong estimate of the dimension: for small ~, a knee with
slope =1 appears in the scaling region. Caputo ' has
shown that a large sampling period ~, chosen between
To/7 and To/2 can be considered as a satisfactory value.
However, when the acquisition frequency is too low com-
pared to the maximum frequency contained in the signal,
Theiler's method must be used. This method allows one
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to choose the acquisition frequency according to
Shannon's criterion and independently of the attractor
reconstruction constraints. The method introduces a
cutoff parameter w generally chosen larger than w„the
autocorrelation time computed from the time series. The
parameter w has the same effect as an increase of ~, and
reduces dramatically the knee in the correlation function
plot by shifting the inflection point towards the large e
values —and outside the scaling region.

From the definition of the correlation function, use of
the cutoff parameter w, when the separation distance be-
tween two phase vectors is evaluated, excludes those
phase vectors whose index j is in the range (i —w, i +w),
where index i refers to the ith reference vector. Intuitive-
ly, this amounts to eliminating part of the trajectory cen-
tered on the ith reference vector to focus on the fractal
structure of the attractor. Actually, this is equivalent to
increasing the acquisition period, which artificially in-
creases the distance between phase vectors along a recon-
structed trajectory.

Practically, in the present analysis, the appropriate
value of w is obtained by repeated trials until the knee in
the correlation function disappears. This is a conse-
quence of the very large autocorrelation time —and
hence the difficulty of defining easily ~,—in the transi-
tional region because of the strong time periodicity in the
ve1ocity fluctuations. As an example, we mention that
from velocity measurements at X /D = 19.68, the
inflection point in the correlation function plot disap-
pears for w =700, which is equivalent to skipping about
23 orbits centered on each reference phase vector.

Experimental conditions. Since the reduced wave-
lengths obtained with different excitations follow the
same spatial evolution along the jet axis (see Fig. 6), we
have chosen to use a sinusoidal excitation with frequency
fo

=40 Hz and normalized excitation intensity u /U
=0.95% (with u the rms velocity fiuctuation and U the
mean exit velocity). The Reynolds number was set to
543, i.e. , (R —R, ) /R, = 13.3. Velocity measurements
were performed with the single hot-wire positioned at a
radial position r =1 mm from the jet axis. The explored
longitudinal region is between 4 and 30 diameters. We
took 245 760 data points per position with an acquisition
frequency f, =1237 Hz using a low-pass filter set at 500
Hz. If the inverse of the excitation frequency is taken as
the typical pseudoperiodicity of the dynamics, the mea-
sured attractor is roughly composed of 8000 revolutions.

Since the total observation time of the variable is fairly
long ( = 199 sec/acquisition), we verified the station-
arity —in the weak sense —of the velocity fluctuations by
computing the first three moments. The run test method
was used, which indicated a weak stationarity of the stud-
ied time series within a 90% confidence level (for the
analysis, each record was subdivided into 20 to 40 time
series). ' '

When computing the correlation function, by assuming
the ergodicity of the attractor, we used No =50 reference
vectors randomly distributed in the time series, which
gave 12X10 computed correlations per embedding di-
mension. In the present analysis, we explored a large
number of revolutions while the number of reference vec-
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FIG. 12. Correlation dimension v as a function of the obser-
vation window (d —1)p. Embedding dimension: d =16 (solid
triangles), 14 (open triangles), 12 (solid and open circles), 10
(open squares). Longitudinal posi tion: X/D = 16.8 (a)
X/D = 19.7 (b); N =245 760, No =50; same experimental condi-
tions as Fig. 10.

tors was maintained at a fairly small value in order to
reduce the computation time. In a previous study the
number of pseudorevolutions was only 262 and no slope
saturation for increasing embedding dimensions could be
observed when v + 3. The maximum exp1ored embedding
dimension was d =32 (for an evaluation of the Kolmo-
gorov entropy, d was varied up to d,„=64)since the
Grassberger-Procaccia algorithm is known to give reli-
able results for correlation dimensions not exceeding 7 —8
(see, e.g. , Brandstater and Swinney ).

Experimental results. The slope in the correlation plot,
Fig. 11, is computed with a ten-point linear regression
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coherent structure can explain the low dimensionality of
the attractor. On the other hand, a decrease in the coher-
ence function can be attributed to a destabilization of the
helical structure and therefore corresponds to an increase
of the attractor dimension. The evolution of the spatial
phase shift [Fig. 14(b)] indicates that the helical structure
is still persistent even when the coherence is low valued.
Notice that the coherence function was computed from
several diff'erent time series obtained after a complete
switch off of the excitation mechanism and of the flow;
that the behavior of v and y(fo) is quite consistent is an
indication of the presence of deterministic dynamics in
the flow. Furthermore, it shows that the flow in-
stability —in a statistical sense —is a we11-reproducible
phenomenon in space.

In Fig. 15 we present the normalized Wiener-filtered

rms velocity fluctuations at frequency fo and 2fo as a
function of the axial position. The region where the at-
tractor dimension increases continuously (Fig. 13) corre-
sponds to the amplitude saturation region of the two
modes (Fig. 15) (we conjecture the same trend for the
higher harmonics). We evaluated the pseudoentropy
H =(1/n)g,",log, op;, where p; is the power of the ve-

locity component at frequency f, and n is the total num-
ber of frequency components chosen in the power spec-
trum. The pseudoentropy can be used to quantify the
power spectrum as a measure of the growth of new modes
in the dynamics: Fig. 16 shows that, in the region where
the main peaks at fo and its harmonics are amplitude sa-
turated (Fig. 15), a decrease in H comes from the growth
of the broadband noise level (see Fig. 10), i.e. , intermedi-
ate peaks fill in the valleys in the power spectrum. By
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a. C OE F

T) 6TO —7TO, an asymptotic value could be obtained.
In all our data reduction we verified this condition.
Despite these precautions, the second-order correlation
entropy was found to be very sensitive to small changes
in the averaging interval he, as illustrated in Figs. 18(c)
and 18(d). This sensitivity rules out the possibility of any
valuable correlation between H2 and the measured corre-
lation dimension. Nevertheless, the finite value of H2
confirms the existence of deterministic dynamics in the
flow.

-1- 0 I 1 I 1 I I I I t I

V. SPATIO-TEMPORAL TURBULENCE

AXIAL POSITION X/0

FIG. 16. Pseudoentropy H (see text) as a function of the axial
position X/D. The pseudoentropy is computed over the fre-
quency interval 0—450 Hz from power spectra averaged over 48
FFT's of 2" points each. Capital letters correspond to those of
Fig. 13. Notice that the large decrease of the pseudoentropy H
from F to I corresponds to the continuous increase of the corre-
lation dimension v (Fig. 13).

comparison of these results with those of the dimen-
sionality computation (Fig. 13) it appears that the in-
crease of attractor dimension is to be related to the
growth of the broadband noise level.

We estimated the Kolmogorov entropy by computing
the second-order correlation entropy H2. For increasing
embedding dimension, d, the correlation curves are shift-
ed in the log-log plane (Fig. 11) by a quantity H& drd-
where ~=~,p. If the dynamics has a finite entropy, H2 d
must converge asymptotically towards a finite value
given by the second-order correlation entropy
Hz=limd „H2d (for e~O). We conjectured that for
finite embedding dimension, the following empirical rela-
tion holds:

H =—+B2d d

where 3 and B are constants; then in the limit d~ ~,
the second-order correlation entropy should be given by
H2 =B. We tested the method with the McKay-Glass at-
tractor; the value of H2 so obtained is in agreement with
Termonia's analysis; see Fig. 17. We then applied the
method to the weakly turbulent jet, using a time series
measured at X/D =18.24. The results are given in Fig.
18. The maximum embedding dimension was set to
d =64 and the phase-space dimension was increased with
a step Ad =2. H2 d was averaged over a range Ae, where
a well-defined plateau of the correlation dimension could
be observed, i.e., H2 d

= (H2 d )z, . The smallest embed-
ding dimension d;„used to establish the linear regres-
sion was such that for increasing d ~ d;„,the plateau of
the correlation dimension was always within the same
range Ae. Caputo and Atten have shown that the
second-order correlation entropy depends on the obser-
vation window T=(d —1)pr, and that only for

It is known that large aspect ratio systems in their
transitional regime are governed by spatio-temporal in-
termittency, where laminar spatially coherent regions are
trapped between turbulent zones. Such a behavior can
be interpreted as a mechanism of mode competition
whose strength increases with the nonlinearities. Conse-
quently a local temporal analysis is not su%cient to de-
scribe the overall velocity fluctuating field and a dimen-
sionality analysis performed from a single time series
must be related to the flow dynamics in the neighborhood
of the probing point. In an ideally accurate measure-
ment, every point of the flow field contributes to the fluc-
tuating dynamics at the measurement point. The one-
point correlation dimension, computed from a local mea-
surement, is thus an extensrve quantity, depending on the
"length" of the system. In order to define an intensive
quantity —the information density, which represents, e.g. ,
the number of degrees of freedom per unit length for a
1D flow —a two-point correlation dimension has been in-
troduced by Pomeau. This technique applies to homo-
geneous turbulent flow, and is based on the existence of a
characteristic length over which two separated points in
the flow are mutually dependent (the characteristic
length is a function of the experimental resolution). Re-
cent numerical simulations performed on a 1D coupled-
map lattice ' have shown that this characteristic length is
comparable to the zero cross-correlation distance be-
tween two points and to the zero spatial mutual informa-
tion between two points.

We tested the two-point correlation method in order to
obtain the information density per unit length of the jet
column. The two-point correlation function was comput-
ed from a reconstructed time series obtained by interleav-
ing the velocity fluctuations taken at two separate points
along the jet axis. No clear scaling region could be ob-
served, which is most probably a consequence of the flow
nonhomogeneity: large differences in the velocity fluctua-
tions at the two points produce a steplike correlation
function curve.

In a spatio-temporal flow, two points are spatially
correlated if the time required for a disturbance to travel
from one point to the other is smaller than the inverse of
the largest Lyapunov exponent p, which represents the
rate at which the information carried by the disturbance
is lost. It is thus possible to define a spatial coherence
length g—:c/p where c is the transmission velocity of the
information. A finite value of ( characterizes an interac-
tion range smaller than the typical length I, of the sys-



40 CHAOTIC DYNAMICS IN OPEN FLOW: THE EXCITED JET 3339

CO

O

log

O
cfog

CU

tog
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~ log&pe 2. 65, H2 =(0.0088+0.0023)s

tern, and so indicates the presence of chaotic dynamics
over local length scales. For a given finite-valued g, the
number of degrees of freedom is thus given by (L/g)
where d stands for the spatial dimension where the Aow
takes place. Because of the difhculty of computing accu-
rate Lyapunov exponents from experimental time series,
we define instead a local spatial correlation length based
on the local phase speed and coherence,

kio =fo
'c h(fo)l'(fo)

where c h(fo) is the phase speed of the disturbance at the
excitation frequency fo and y (fo ), the local coherence at
frequency fo (see Sec. III). The local phase speed is
determined by measuring the phase shift 0(fo) between
two neighboring probes in the Aow

2rrfob, x
Ph fO g(f

where Ax, the separation distance between the two
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probes, is much shorter than the mean wavelength. The
phase shift and the coherence were evaluated from cross-
power spectra averaged over 64 FFT's directly from the
spectrum analyzer (HP 3582-A).

The behavior of the local correlation length as a func-
tion of the dimensionality is presented in Fig. 19. The ex-
perimental results show a linear behavior in the log-log
plot, wherefrom a power law can be inferred:

loc

where 13= 1.82( m ) and a = 1.78 (obtained by linear re-
gression). Moreover, since the helical structure is still
persistent even where v= 6 we can assume that the Aow
remains one dimensional. The information density is

thus given by

p
—1- 1+a

An analysis was performed along the same lines, intro-
ducing a global spatial correlation length, defined with
the mean local velocity U and the coherence y(fo) be-
tween the velocity fluctuations and the displacement sig-
nal. The same power law was found to hold with
a=2. 28 and 13=4.2(m).

The measurements performed locally and globally
(with respective distances between the probe and the
reference of about 1 mm and over the whole range of the
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jet) yield correlation dimension exponents a that do not
differ by more than 30%. From this observation, one can
conjecture that the correlation dimension computed from
a local time series is to be related to the flow dynamics
over a local spatial correlation length. Furthermore, the
phase speed and coherence were measured independently
from the time series used for dimensionality computation;
the fact that we obtain consistent results from indepen-
dent data sources gives us confidence in the dimensionali-
ty analysis performed in the transition region.

VI. NONLINEAR QUADRATIC INTERACTIONS
AND LONGITUDINAL EVOLUTiON

As discussed in Sec. III, provided that the normalized
velocity fluctuations do not exceed 2%, the linear ap-
proximation holds for an azimuthal mode decomposition

of the fo component. We now analyze the nonlinear pro-
cess of generation of the harmonic components along the
jet axis and the mechanism which is responsible —partly
at least —for the growth of the noise level in the power
spectrum. Our analysis relies upon the bicoherence junc
tion which quantifies quadratic nonlinearities between
modes. The bicoherence function has been used exten-
sively by Miksad et al. to study free turbulent transi-
tion in a 2D mixing layer. In the amplitude saturation
region of the main peaks, these authors have shown that
the growth of the noise level can be explained through a
cross-interaction mechanism between sidebands. This
nonlinear interaction transfers energy into the empty val-
leys of the power spectrum which are located between the
main peaks, and shifts the power to low frequencies.

As long as one considers a process consisting of a
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linear superposition of independent modes, the (second-
order) power spectrum is sufficient to describe the pro-
cess. However, second-order power spectra are
insufhcient for a correct description of processes dom-
inated by nonlinear interactions, due to the loss of phase
information. In fact, in a nonlinear process, a mode can
be generated through a nonlinear interaction between
modes, in which case the phase of such mode cannot vary
randomly as for a self-generated mode.

Polyspectra of order larger than 2 do not "lose" the
phase coherence between modes and therefore can be
used to describe nonlinear processes. In particular, the
cross bispectrum can be used to evaluate the quadratic
transfer function in a nonlinear process as can the
coherence function in a linear process. Here we consider
the self-bispectrum which is the 2D Fourier transform of
the third-order moment R (r, , r2) =E[x (t)x (t
+ ) r(t x+r2)], where x (t) is a weakly stationary ran-
dom variable, at least up to order 3,

B(f,,f&)= f f R,„,(r&, r&)e ' ' ' 'dr, dr2 .

By setting ~, =~2=0 and taking the inverse Fourier
transform, we note that 8 (f&,fz ) represents the contri-
bution of the frequency components f, and f~ to the
simple third-order moment E [x (t)].

For a three-wave resonant process where the resonance
frequency relation holds f, +fz

=f, +2 (we assume also
colinear and nondispersive waves), Kim and Powers have
shown that, provided x (t) is stationary and has a zero
mean value,

E[X,X,X*, ]+=8(f, ,f2)
where E[ ] is the expectation value of the product of the
Fourier amplitudes X, of x (t) at frequency f, . From the
relation given above we see that if the three modes are in-
dependent, the ensemble average vanishes because of the
noncoherence of the phase between the modes.

The bicoherence is the normalized bispectrum
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When b(ft, t f2)=l, the wave at frequency f, +2 is gen-
erated from a quadratic interaction between f, and fz
waves, while when b (f&, f 2 ) =0, the three waves are in-

dependent. The bispectrum is evaluated through the
third-order periodogram

M

(B(f,,f~)) = gX', X&X', +zM

where X, is the ith Fourier amplitude computed over a
time series of length T- = T/M, T being the total observa-
tion time. The ensemble average was taken over M=480
fast-Fourier transforms of 512 points each, with a fre-
quency resolution b.f=2.4 Hz. The value of M was
chosen su%ciently large to ensure good convergence of
the bicoherence estimator. For all the present results, the
maximum width of the bicoherence fluctuation interva1,
observed for M ~ 285, is smaller than 0.1.

In a quadratic interaction process, a mode can arise
from a sum interaction B (f&,f2) or from a difference in
teraction B( f, ,f2). In our —analysis we focused on
sum interactions between modes. In order to evaluate the
quadratic nonlinearities between the main peaks we ex-
ploited the same time series as used in Sec. V. In Fig. 20
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FIG. 20. Bicoherence as a function of the axial position for a
quadratic interaction between modes: (fo,fo) (a), (fo, 2fo) (b),
(fo, 3fo) (c), (2fo, 2f~) (d). The bicoherence is evaluated over
480 FFT's of S12 points each. Capital letters refer to those of
Fig. 13; same experimental conditions as for Fig. 10.
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we show the bicoherence as a function of the axial posi-
tion, for sum interactions between modes (fp fo ),

(fo, 2fo), (fo, 3fo), and (2fo, 2fo), respectively. We ob-
serve that in the region X/D ~ 10 where the pseudo en-
tropy H decreases slightly (Fig. 16) and where the modes

fo and 2fo have a spatial exponential growth (Fig. 15),
the bicoherence is high valued. In the amplitude satura-
tion region of the main modes, X/D ~ 18 (Fig. 15) where
H decreases abruptly (Fig. 16), the bicoherence is low
valued. A low bicoherence is an indication of weak quad-
ratic coupling and therefore of poor energy exchange be-
tween modes, which prevents amplitude growth.

From bicoherence isovalue plots (not shown) in the fre-
quency plane (f&,fk ), we observed, for increasing down-
stream positions, (i) an increase of the number of quadra-
tic coupled modes, and (ii) a broadening of the isovalue
regions around these main modes when they saturate in
amplitude. More precisely, for a sum interaction, the
bicoherence isovalue contour in the plane (fl, f& ) coin-
cides partly with the line f&+fk =nfo+5 (n, integer),
where the mode (nfo+5) is located in a valley of the
power spectrum, between the main peak at fo and its
harmonics. This shows that the sum interaction process,
in the amplitude saturation region, is between lfo+p and

kfo+p modes, with l+0 =n and p+p=6. This mecha-
nism which corresponds to a quadratic cross interaction
between power spectrum lobes, is similar to the one ob-
served by Miksad et al. and seems to be responsible for
the broadband noise growth in the power spectrum.

The attractor dimension was found to grow in the
mode amplitude saturation region (see Figs. 13 and 15);
but in this region the quadratic coupling between the
main modes is weak (see Fig. 20). Consequently, no rela-
tionship could be deduced between the longitudinal evo-
lution of the bicoherence and the correlation dimension.
This observation corroborates that the correlation dimen-
sion correlates best with the local linear correlation
length, as Fig. 19 shows, rather than with a "nonlinear"
correlation length based, for example, on the bicoherence
function b (fo,fo ).

VII. SUMMARY

We studied the transition to turbulence in an open,
axisymmetric flow far from the critical threshold. We

first analyzed the spatial development of the jet instability
in the regime of small fluctuations; we found that in this
regime (i) the jet is viscously unstable and (ii) the simple
helical mode is the most unstable mode in agreement
with the linear spatial viscous stability analysis.

We showed that, in the transitional region where the
helical mode is amplitude saturated, the instability can be
described by a low-dimensional chaotic attractor. This
low value is a consequence of the persistence of the heli-
cal mode as evidenced by the power law between the spa-
tial correlation length and the attractor dimension. Our
experimental results demonstrate that in open systems a
one-point dimension computation characterizes locaOy
the flow instability only on a local range. Despite the
regular increase of the correlation dimension v (Fig. 13),
the irregular downstream decrease of the correlation
length g (Fig. 19) indicates that the dynamics in the jet
should be nonuniform, which is possibly a consequence of
a local relaminarization of the flow. Although no accu-
rate evaluation of the entropy could be obtained, the
finite nonzero value of H2 appears as a clear indication of
the presence of deterministic chaos in the How.

Finally we notice that the longitudinal evolution of the
helical coherent structure bears striking analogy with re-
cent numerical simulations by Deissler for a 1D
Ginzburg-Landau equation with a convective term. In
the presence of external random noise, the convective in-
stability sequence is the following: (i) a linear domain
where, according to the marginal stability curve, the
noise is selected and amplified to generate spatially grow-
ing waves; (ii) a transitional region where nonlinearities
are important and where amplitude saturation of the
waves occurs; and (iii) a turbulent zone dominated by lo-
ca/ nonlinearities (no correlation of the fluctuations with
external noise).
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