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Localized structures in surface waves
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An amplitude equation in the form of a perturbed nonlinear Schrodinger equation is derived for
parametric excitation of surface waves in an extended system. Continuous symmetries of the unper-
turbed system are used to identify critical modes. Dynamical equations for the latter are derived us-

ing singular perturbation theory. The existence of a stable nonpropagating kink solution is predict-
ed. The solution connects two uniform states whose phases of oscillations differ by ~, and should be
observable in wide enough cells. A stable nonpropagating soliton solution is found for subcritical
excitation.

I. INTRODUCTION

Localized structures, such as envelope kinks and soli-
tary waves, have been recently observed in a number of
extended physical systems. Examples include the system
of parametrically excited surface waves, ' elastic media,
electroconvection in nematic liquid crystals, and binary
mixtures under thermal gradients. " Besides the immedi-
ate interest that such self-sustained structures raise, '

they also provide a clue for understanding spatiotemporal
chaos in extended systems, for complex patterns may
arise from the interactions among many such simple
units. ' A satisfactory theory of localized structures
should address the questions of existence, stability, and
dynamics, and of the effects that a perturbing field may
induce. The latter can be external or due to other local-
ized structures. In this paper we propose such a theoreti-
cal framework for the system of parametrically excited
surface waves. ' The approach introduced here is quite
general and can be applied to other systems as well.

The system we study consists of a Quid layer in a long
channel which is subjected to vertical oscillations. Para-
metric instability occurs when the forcing amplitude
exceeds some threshold value and generates waves at the
free surface of the fluid. The response frequency is com-
monly half the driving frequency. Recently, a nonpro-
pagating envelope solitary wave has been observed in that
system. ' Following this observation two theoretical stud-
ies have appeared. In the first, ' the solitary wave is attri-
buted to a soliton solution of a nonlinear Schrodinger
(NLS) type amplitude equation, derived for an unforced
inviscid fluid. The second study" includes the effects of
dissipation and periodic forcing and results in a per-
turbed NLS equation. An exact solution representing a
stable nonpropagating solitary wave is found. In this
work we extend the analysis to include dynamical as-
pects. We pursue an approach in which the dynamics of
localized patterns are dictated by the continuous sym-
metries of the system. The symmetry group of the NLS
equation contains four such symmetries. Consequently
the evolution of any localized structure is determined by
dynamical equations for four group parameters. We
demonstrate this approach with the example of the soli-

tary wave that has been considered in Refs. 10 and 11,
thereby rederiving the results reported therein, and apply
it to a different kind of localized structure, the envelope
kink wave, predicted to appear in wide enough cells.

II. THE AMPLITUDE EQUATION

V /=0 for —d ~z ~g, (lc)

where P(x,y, z, t) is the velocity potential, g(x, y, t) is the
(vertical) z coordinate of the free surface, N& and Nz are
nonlinear terms, and g, p, y, 5, and co are, respectively,
gravitational acceleration, density, surface tension, ampli-
tude, and frequency of the periodic forcing. The sub-
scripts in (1) denote partial derivatives and V and V~ are,
respectively, the I aplacians in the three-dimensional
space and in the (x,y) plane. To third order in g and P
the nonlinear terms read

N, =v,g VA gy„,'g'y„, +—,'v, g—' vy, , -
N, = ,'(V~)'+~~,.+ ,'-r(v~),'+- (2a)

+ V [(Vg) Vg]
2p

(2b)

Equations (1) are supplemented by the boundary condi-
tions t(), =0 at z = —d, and P~ =g =0 at y =O, b where b

and d are the width and depth of the cell, respectively.
The unforced linearized system corresponding to (1)

has the solution (P, g) =Uo(k)+c.c. where

z(k, z)
Uo(k) =exp(i toot + ik„x )cos( kry ) 4,

Consider a coordinate system which moves with the
cell such that (x,y) is the horizontal plane and the free
surface of the fluid, in the quiescent state, is at z =0. For
an incompressible and inviscid fluid the hydrodynamic
equations for the free surface take the form'

g,
—P, +N, (g, g)=0 at z=O,

P, + (g —5 costot )g —(y lp)v~j+ N2(g, g) =0

at z =0, (lb)
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Here, k=(k„+k )', r(k, z)=cosh[k(z+d)]/
cosh(kd), cr(k)=k tanh(kd)/4cvo, and the natural fre-
quency ~o is given by the dispersion relation
cvo=gk tanh(kd)(1+yk /pg ). We shall confine our-
selves in this paper to the simpler case where k„=O.
Thus k =k =n~/b where n is an integer. The forcing
frequency cv is chosen such that the (0, n m/b ) mode
responds with half the driving frequency. These choices
with n =1 correspond to the experimental conditions of
Ref. 1.

The full solution to (1) is sought in the form

U(x, t; k) = A (x, t)UO(key )
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+V( A (x, t)exp(i cvot ), c), ,y, z, t;5)

+c.C. (4)

co-
cos(k y)

4coo

3r exp(3i cut )
XA 16i o exp( —3i cut )

—4i o exp(3i cut )

+c.c. +O(A ),
where A satisfies

i A, = i q A 5cr( k—
) A—exp( i vt)—

+a(k )A +P(k )~ A
~
A+c, (6)

where c represents higher-order terms. In (6), v=2cvo —cv

is a detuning parameter and a —= (1/2k )c)cvv/c)k is posi-
tive. We do not display here the explicit form of the
coefficient P, but instead, present in Fig. 1 a graph of
P(k ). The damping term igA has been introduced to
account for dissipation in the real system (mainly due to
friction at the walls of the cell). We assume that q is
small and of O(5). Equation (6) is equivalent to the per-
turbed NLS equation that has been derived in Ref. 11.
The dissipation may have the additional effect of intro-

where V is 2'/k -periodic in y, 2~/co-periodic in t, and is
assumed to have a Taylor expansion in A, A, Ax, . . . .
Along with (4) we look for an amplitude equation for
A(x, t): A, =V( A, A, B,t;5) where the bar denotes the
complex conjugate. The functional form of 7 is dictated
by the symmetries of (1).' Time reversal symmetry,
( t, P)~( —t, —P), implies the invariance of the amplitude
equation under the transformation (t, A ) ~( —t, —A )

and, consequently, that all coefficients in the amplitude
equation should be pure imaginary (see, however, the
discussion below). Discrete time translation symme-
try, t ~ t +2~n /co, which implies invariance under
A ~ A exp(i7r), suggests that a term proportional to 5A
should exist and that even powers of A and A should not
be allowed. In addition, space reflection (x~ —x) and
translation (x ~x + ct ) symmetries exclude odd space
derivatives and explicit x dependence, respectively.

Using (4) in (1) we find the solution

B~/Bk
cos(k~y )exp(i cvot ) A „XX —) g

kid

FIG. 1. A graph of the coefficient p in Eq. (6) as a function of
kid where the depth d of the cell has been taken to be 2 cm.
The solid and the dashed curves correspond, respectively, to
zero surface tension and to surface tension of water.

= —i r/A —5o. A exp( —i vt )
=5P . (7)

In the following two sections we shall distinguish between
two cases corresponding to p being positive or negative.
The range of applicability of each case is implied by Fig.
1.

III. THE SURFACE-WAVE SQLITQN

For p positive, the unforced (5=0) amplitude equation
(7) admits a soliton solution A, =exp( —it /2)sech(x).
The most general one-soliton solution of the unforced
system is obtained by acting on A, with the symmetry
group of the NLS equation. This group corresponds to
the following four transformations.

Dilatation: x~kx, t~k t, A ~kA.
Galilean transformation: x ~x + ut, A ~ A exp(ivx

+iu tl2).
Rotation [i.e. U(1)]: A ~ A exp(i Pc).
Space-translation: x ~x +pp.

(Notice that in our case time translations are equivalent
to rotations. ) Applying these symmetry transformations
to A, (x, t) we obtain

A, (x, t;A) =A. sech[A(x+yo+vt )]

Xexp[i(u —
A, )tl2

+iv(x +go)+inc],
where A —= [A, , u, go, go I is the set of group parameters. In
the presence of a perturbation (5%0) the group parame-
ters A become slow dynamical variables. One can there-
fore look for a solution to (7) in the form

ducing small imaginary parts into the coefficients in (6).
We shall discuss the implications of this effect in Sec. V.
Introducing the scaling x~[(1/k~)Bcvc/c)k ] ' x and
A ~~P~ ' A, we can rewrite Eq. (6) in the form of a
perturbed NLS equation:

i A, —
—,
' A,„—sgn(P)

~

A
~

A
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A = A, (x, t;A(T))+5R(z, T)

=[Ao+5RO(z, T)]exp(ig), (9)

where R is a correction term, T—=5t, z =x+g,
y=yo+ut, and g—:go

—(u +A.')t/2.
Substituting (9) in (7) we obtain to leading order in 5

QR„=exp( —i P) {P—i()r[ A„exp(if)]] = W,

where

(10)

Ciao =0, QB, 3o =0 .

Equations (11) imply only two solvability conditions. The
critical modes associated with the dilatation and galilean
symmetries are zero modes of (iQ) rather than of i2 (or
g).

0 —= ( u +i (},) /2+ A, /2 —2 A o ~

—A oz C~

and C& is the conjugation operator 5B =B. Dynamical
equations for the group parameters A are obtained by
demanding that W in (10) is orthogonal to the null space
of the adjoint of 0, where the inner product is defined to
be (F, , F2 ) =Re f dz F,F2. Realizing that 0 is self-
adjoint we need to find the zero modes of h~ itself. These
are, respectively, the rotation and translation modes, i Ao
and 0, ~0..

for v & 0 and satisfy A, „=v, u ~ =0 and sin(2$, ) =ri/(5o ).
There are two such solutions: 2$„=arcsin(rt/5o ) and
2P„=m —arcsin(ri/5(r ). They correspond to nonpro
pagating solitons whose amplitudes and phases are fixed
but whose positions in space remain arbitrary. Stability
analysis of (14) results in the condition cos(2$„)& 0 for
stability. Thus one soliton is stable while the other is un-
stable. Strictly speaking the stable soliton is only margin-
ally stable since the perturbed system (7) is still transla-
tionally invariant. Any perturbation which breaks this
invariance may induce motion. These results are in ac-
cordance with the experimental observations in the ab-
sence of translational symmetry breaking perturbation
the observed soliton is stationary, however, when the cell
is tilted or two solitons are created, soliton dynamics sets
ln.

The next step in the analysis is to solve (10) for Rz.
We do this for the case where the group parameters
attain their fixed-point values A„. Equation (10) then
reads QR 0

= —(r cos( 2P, ) A o. Using (12) we find R 0
=ok, „cos(2$„)()&„Ao. Inserting this expression in (9)
we get the first-order approximation to the soliton solu-
tion:

A(x, t;A„)=[A (x;A„)+5ol,, 'cos(2$„)() A (x;A„)]

X exp(i P, i vt /2)—.
iQ( —k '() A )=i A

iQ(u '(), Ao —
A, '()~AO)=u '(), Ao .

(12) Equation (15), being the first term in a Taylor expansion
of the soliton amplitude around 5=0, suggests that an
exact solution to (7) exists in the form

The freedom that (11) leaves can be used to simplify the
dynamical equations for y and g. These can be written as
y= v+5(}ry and f= —(u +k )/2+5()z-g, where the
overdot denotes total time derivative. Setting
()ry=()ran=0 would not aff'ect the equations for A. and v

and would merely modify R accordingly through (10).
This stems from the observation that the terms in W [see
(10)] that contain ()ry and ()rg belong to the image of Q.
The conditions that 8 is orthogonal to the zero modes
i A o and 0, Ao lead to the equations

()rk=Im f dz exp( —i P iuz)PA, se—ch(Az ), (13a)

()ru =- —Ref dz exp( —ig ivz)Pk—sech(l, z)tanh(k, z) .

(13b)

i = —2~5o v k 'sin(2$)csch(arum '),
P=(v —u —k')/2,
A. = —2r)k+ 2vr5(r v sin(2$)csch(nut, '),

(14a)

(14b)

(14c)

(14d)

where ((—= (tt+vt/2. Fixed-point solutions of (14) exist

We stress that we have not used yet the specific form of
the perturbation P. The analysis until now is quite gen-
eral and applicable to any system which is described by a
perturbed NLS equation.

For P given by (7) we find the following dynamical
equations:

A (x, t; A„)=X„sech[A,„(x+go)]exp(iP, —i vt /2),
(16)

where A. „=[v+25o.cos(2(t, )]'~ . Indeed, (16) is an ex-
act solution of (7) for all v values greater than—25(r cos(2$, ). An equivalent solution has been found
in Ref. 11. The two soliton solutions in the range of posi-
tive v values have different amplitudes: the amplitude of
the stable soliton [cos(2$„)&0] is larger than that of
the unstable one [cos(2$„)& 0]. In the range 0 & v
& —25(r cos(2$„) the uniform quiescent state is unstable.
Consequently the soliton solution is expected to be unsta-
ble as well. We recall that in the above analysis P [in (7)]
is positive. This and the condition v& 0 (v &0) imply a
subcritical (supercritical) bifurcation. ' We conclude that
a stable (large amplitude) soliton solution exists only in
the case where the onset of surface waves is subcritical.

IV. THE SURFACE-WAVE KINK

We now proceed to the case of P negative. As P is de-
creased below zero the NLS soliton solution gives place
to a stable traveling wave solution (Benjamin-Feir insta-
bility' ). For v&0 the unperturbed (5=0) NLS equation
has, in addition, a kink solution of the form
A((x, t) =v' —v/2tanh( v' —v/2x )exp( —i vt /2). The
values of Ak as {x~~ 00 are related by the discrete sym-
metry, A ~ —A, of (7). The kink solution is therefore
equivalent to a topological defect.
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Acting with the NLS symmetry group on Az we write
a solution in the form

Ak(x, t; A(T)) = [tc tanh(tcz )exp(iuz )

+5R(z, T)]exp(ilit), (17)

u = 2tr5rr u K sin( 2f )csch( tru K )

P=(v —u +2tc )/2,
K ——2ritc+ 25crtc sin( 2P )I( u, tc )

(18b)

(18c)

(18d)

where (b=lb+vt/2 is as before and l(u, tc)=lim, or /
(e +4u tc ). Fixed-point solutions of (18) should satisfy
tc„=v' —v/2, u, =0, and sin(2$„) =g/(5o ). Again,
there are two such solutions: 2tb„=arcsin(g/5o ) and

2P~ = m
—arcsin(q /5o ). The condition for stability is

now cos(2$, ) & 0, implying that only one kink solution is

stable.
The correction term for the kink solution, calculated

for the fixed-point parameter values, is found to be
R =2cr cos(2$, )B,Ak(X, O;A„). This form suggests the
existence of the exact solution

2 (x, t; A„)=tc tanh(tc„x )exp(iP„—ivt /2), (19)

where tc„=[—v/2 —5o cos(2$„)]'~ . As in the soliton
case, the amplitude of the stable kink solution
[cos(2$„)& 0] is larger than that of the unstable solution.

where T=6t, z =x+g, and y=yo+Ut remain as before,
g= go

—(u 2tc )t—/2 and tc —= A,v' —v/2. Similar con-
siderations to those used in the soliton case lead to the
dynamical equations

(18a)

Another implication of (19) is that a kink solution
exists for positive v values as well, provided v
& —25o cos(2$„). This solution is expected to be stable
since the two uniform states it connects are stable. We
may conclude that a stable kink solution exists in the re-
gions v&0, cos(2$, ) &0, and v&0, v/2+5cr cos(2$, )

&0.

V. DISCUSSION

The kink solution found in Sec. IV connects two states
whose phases of oscillations diA'er by ~ and exists for neg-
ative /3 values. As implied by Fig. 1, this condition for
existence translates into nerd/b &K, where K, = l. The
exact value of K, depends on the surface tension y of the
Auid. The stable kink solution should therefore be ob-
servable in cells whose lateral aspect ratio b/d is large
enough.

As already noted, one may expect to find small imagi-
nary parts in the coefficients a and I3 in (6) due to dissipa-
tion. In fact, such components have been recently evalu-
ated experimentally' and theoretically. ' We can study
their e6'ect by absorbing them in the perturbation I'. The
outcome of such a calculation is the appearance of unsta-
ble propagating localized structures in addition to the
stationary ones discussed above. The eftect of any other
perturbation can be studied in a similar manner. In par-
ticular, one may study in this way the dynamics of many
interacting localized structures.
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