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Stopping of ions with extended charge distribution in dense matter
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The stopping of partially stripped ions by a partially ionized target is investigated for the case of a
projectile with an extended electronic core. Long-ranged contributions to energy loss are evaluated
within an impact-parameter theoretical framework. Quantities correcting the standard pointlike re-

sults are given in analytical form with the aid of a Thomas-Fermi-like effective interaction. They
can be substantial for moderate projectile ionicity and for velocities relevant for inertial confinement
fusion driven by intense ion beams. As a rule, the stopping quantities pertaining to projectiles with

extended core taken into account lie above those computed for their pointlike homologs.

I. INTRODUCTION

The purpose of this work is to explore in a quantitative
way the stopping of the extended charge distribution
brought by a nonrelativisitic and partially stripped ion
projectile in dense and moderately hot matter. The latter
is taken as a collection of so weakly interacting partially
ionized atoms that the mean excitation energy involved
in the bound-state portion of the Bethe stopping formula
retains its isolated ion value. A previous and detailed
study shows that the corresponding target temperature
should thus remain below 10 eV. '

The basic motivation of our efforts lies in the possibili-
ty afforded by intense ion beams to successfully compress,
up to ignition, hollow pellets containing the thermonu-
clear D+T fuel contained within their interior. To
achieve this goal, one has to focus on the pellet target,
heavy ions transported at the smallest ionicity, e.g., 92U+
or Bi+ with an energy —50 MeV/nucleon. This particu-
lar situation led us naturally to question the usual point-
like projectile assumption used in nearly every stopping
formulation.

As far as we know, there is only scarce attention in the
literature paid to the dynamical inferences of the projec-
tile core electron on its stopping performance in a given
medium.

Nevertheless, certain attention has already been given
to the transfer of energy between electrons bound to the
projectile and those attached to the target ion. This point
has been discussed through form factors of inelastic pro-
cesses in Fourier-transformed space. Here we shall ex-
plore the so-called extended projectile core effect (EPCE)
in direct space within the standard impact formalism, by
modeling the incoming ion electromagnetic structure as
well as that of the target ion, through a Thomas-Fermi
description making use of pseudopotentials (Sec. II). The
latter are introduced in the impact formalism (Sec. III)
and yield analytic Bethe-like stopping expressions includ-
ing projectile, as well as target-ion, extended charge dis-
tributions. The present work is mostly restricted to the
distant impact contribution. The stability of the lower

parameter cutoff involved in the impact calculation is
then asserted in Sec. IV. The results (Sec. V) are then dis-
cussed in relation to their relevance to the stopping of en-
ergetic ions in thermonuclear targets. The significance of
a low ionicity for at least one partner in a given
projectile-target pair in connection with the resulting
enhanced stopping is also stressed.

II. IONS WITH EXTENDED
CHARGE DISTRIBUTION

Radial distributions for the remaining electrons bound
to the incoming ion projectile, as well as for those per-
taining to the partially stripped target ion, are derived
within a Thomas-Fermi-like theoretical framework.

The projectile charge distribution is worked out analyt-
ically through the so-called Green-Sellin-Zachor (GSZ)
parametrization. ' Recently, we have thoroughly inves-
tigated target temperature effects on stopping of energetic
incoming ions taken as pointlike. ' As a consequence, we
shall restrict our attention here to temperatures,
k~ T ~ 10 eV, in order to neglect any plasma effects on
the bound-state target stopping. Then, we focus our at-
tention on isolated and partially stripped target ions.

The Coulomb interaction between an electron bound to
a given nucleus in target and the extended projectile
charge distribution is conveniently taken in the GSZ for-
mulation '

V(r)=[N —Z NILE(r)]r ' a.—u.

where

A exp[ —(1+a)gr]
(1+a)

8 exp[ —
( I+P)gr]

(1+P)2
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Qz(r) = [H (e ~"—1)+1] (4)

valid for any r positive value. Finally, the radial distribu-
tions themselves are obtained through the Poisson equa-
tion, in terms of the second spatial derivative of Eq. (2) as

p(r) = QE'(r)
4mr

NH&
( g —

( 1+a)fr+a —
( ) +/3)fr+ C

—sr)
4wr

They are normalized with

dr 4~r2p r =+ .
0

Typical parameters featuring a few ionized species are
listed in Table I. They will be extensively used in the fol-
lowing.

Equation (2) and Table I enable us to treat quantita-
tively the ion core distribution of electron charge on a
symmetric footing for the projectile and the partially ion-
ized target. It should be kept in mind that we restrict our
present considerations to an improved Thomas-Fermi-
like approximation with melted shell structures. We
therefore expect the present formalism to be mostly ap-

D =(1+a) —(1+(3)

for a projectile with atomic number Z and X core elec-
trons. It should be noticed that in Eq. (1), the N —1

given in Refs. 4 and 5 has been modified into X to comply
with the fact that the projectile potential interacts with
the target and not with a projectile core electron.

Parameters H, a, and )t3 are taken from Ref. 4 while
/=go+/)(Z —N) with go and g) specified for a given
(N, Z) in Ref. 5. Equation (2) obtains as a long-range ex-
pansion (r ))ao, Bohr radius) of the compact and
Thomas-Fermi-like GSZ effective interaction,

e
~ ~ ~ ~ o ~ o ~ ~ ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ]~ ~ oo 1 F

/ ~
j

FIG, 1. Schematic of the ion projectile with an extended
charge distribution interacting with electrons bound to the par-
tially stripped target. The impact parameter b is assumed larger
than the average projectile distribution diameter.

propriate at evidencing average extended charge effect in
the forthcoming stopping calculation devoted to the large
impact-parameter contribution.

III. CLASSICAL IMPACT FORMALISM
FOR ION STOPPING

A. General theory

The modified Coulomb-like interaction (1) thus allows
us to proceed in a systematic way with the analytic and
impact formalism for the distant contribution to ion stop-
ping in a partially ionized plasma. The projectile diame-
ter must then remain far smaller than the average impact
distance (see Fig. 1). We thus restrict to the so-called dis-
tant stopping contribution. Working within a classical
conceptual framework rigorously equivalent to the stan-
dard quantum-mechanical one, one is led to picture a tar-
get bound electron as a harmonic oscillator (HO) ex-
periencing a force f(t, b) so that its displacement vector
g(t) fulfills

g( t )+co'g( t) =
mq

Species z
TABLE I. Parameters for the ion GSZ pseudopotential [Eq. (2)].

C4+
Al'+
Al'+
Al"
M 18+

M 2s+

Cs'+
Cs'+
Cs'

24+

6
13
13
13
42
42
55
55
55
54

2
5

10
2

24
17
54
52
50
30

0.892 13
1.194 96
1.211 28
0.845 845
1.459 90
1.463 52
4.5315
3.738 634
3.092 74
1.298 04

1.2996
4.970 20
3.146 50

16.9206
5.2618
6.853 00
1.1547
1.4562
1.8275
6.5924

1.514 16
2.354 55
2.4504
1.629 0264 4
3.086 69
3.088 26
9.3021
7.572 614 5

6.417 644
2.669 40

1.038 61
1.0088
1.009 00
1.018 40
1.054 78
1.0548
1.721 85
1.058 565
1.377 185
1.0255
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with

g'(t) =Re dt'f t' b e
mco

dE
dx

=—2~nN'F„db b8, ~, b

and where m, is the electron mass.
The target basic entity (ion or atom) is thus equivalent

to F oscillators with frequency cu. Actually, F denotes
the fraction of oscillators responding in the frequency
range between co and co+den. It is equal to g(co)des,
where g(co) is the differential oscillator strength normal-
ized such that

f g(co)den= 1 .
0

At time t, the target energy gain per electron can be
written as

—(g +co g )= W„(t,b)= f f(t', b)e'"'dt'
2 " 2m —oo

(8)

The corresponding stopping power thus reads as

with X' bound electrons per target ion of density n, . a„
denotes the minimum impact parameter fulfilling the di-
pole approximation.

As already stressed above, the target temperature is
taken low enough (kii T, & 10 eV} that the isolated mean
excitation energy does not get perturbed through collec-
tive or excitation plasma contribution. The target plasma
is thus viewed as a collection of isolated and noninteract-
ing ions. The geometry of the projectile —bound-electron
interaction is depicted in Fig. 1. The condition b )a
entitles us to use the corresponding effective potential un-
der the asymptotic form (2), a superposition of three
Debye-like expressions. Now, we modify in a straightfor-
ward way the usual Coulomb treatment by replacing the
electric field —r/r with —(r/r )(1+fr)e ~" and similar
terms pertaining to a statically screened Coulomb in-
teraction.

Next, we concentrate our attention on the distant col-
lision contribution with an impact parameter b (Fig. 1)
larger than ao. Upon introducing Eqs. (1}, (2), and (3)
into the standard impact formulation, one gets the
force acting on a target electron (Vis the linear projectile
velocity)

e 2
{[b +g(t) ]i—[ Vt —

g, (t) )j I
f(t, b)=

j[b +g„(t)] +2[ Vt —
g, (t)]2]3"

(
—

b,. I [b+g„(t)) +[vt —
g (t)) I' )

X (N —Z) Ng a, ex—p
i =1

X(l+b, I[b+g, (t)]2+[Vt —
g (t)]2]''2} = fo(t, b)+Af(t, b), (10)

pertaining to the geometry of Fig. 1. In this work we limit ourselves to fo(t, b), and the ensuing Bohr-Bethe-Bloch term
proportional to (Z N), which a—mounts to neglecting first-order corrections in g'(t), the displacement of target elec-
tron.

Equation (10) is finally explained with

ai = A (I+a), a2=B(1+P), a3=C

b, =(1+a)g, b2=(1+/3)g, b3=( .

The last term on the right-hand side (r.h.s.) of Eq. (10) fulfills the requirement g (b + V t )
' «1. Recalling

that a given (N, Z) pair specifies a given projectile species, one can write

b (p2+ V2t&)1/2
fo(t b)=e (N Z) Ng ae ' — —[1+b(b +V t ) ](b2+ V2t2)3/2

(12)

and

bf (t, b)=e [[( 2b + V t—)g +3bVg ]i+[(b 2V t )g +3bVg ]j]—
(b + v t2)1/2

X(b +V t ) (N —Z) —N g a, e [1+b,(b'+ V't')'~2]

bi —Vtj 2
—b(b +v t )'"

+e (bg„—Vtg ) g a;b, e (13)

Equation (13) is derived through the replacements
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[(b +( )2+( yt g )2]1/2 b (b2+ y2t2)l/2
e X =e b, (bg —Vtg, )1—

( b 2+ V2t 2)1/2

b „—Vt,
[(b +g )2+ ( Vt g )2]1/2 (b 2+ V2t2)1/2+

( b 2+ V2t2)1/2

B. Analytic calculation

Setting X =0 yields the pointlike treatment due to Jackson and McCarthy. In this work, we pay thorough attention
to the terms proportional to the Z term. The corresponding co-indexed stopping power thus reads as

2mn, —N'F f. db b(W]+ W2), (14)
dx CO

where

be 1 Q)t —b. (b +u 1 )
2mB'] = f dt (N —Z) Ng—ae ' [1+b(b +v t )' ]

i =1

2

(15)

and

I Ql] 3

i=1

2

(16)

W] is easily evaluated analytically through the quadratures (x = vt /b) (Ref. 9)
2 2

f dtbe' ' 4 2 cob cob
—- (b'+ 't')'" b'v' (17)

i cut —
b,. b(1+x )

2

2 223/2 '+" '+"''" =
2 2(b2+ 2t2)3/2 b v

2b 2
+b2b2 Q2

v
2

1/2

+b 2b 2
2

(18)

with K, (z) the modified Bessel function of the second kind of order l. It can be written with

4e4 3

2m& —= (N —Z) K (z)z + g N a (z +b b )K ((z +b b )' )
b 2v 2

i =1

3—2(N —Z)N g a, K, (z)(z +b b, )' K, ((z +b b )' )

+2N a(z'+bb )' K((z+bb )' )a(z+bb )' K(( +bb )' )

+a (z'+b'b')'"K ((z'+b'b')'")
( +b2b2 )]/2K (( 2+b2b2 )1/2)

Xa (z +b b )'/K ((z +b b )'/)

where z =nb/V.
The corresponding contribution to the r.h. s. of Eq. (14) is further analytically expressed in terms of the quadratures

2

f dbb K, (ab)= Ko(aa ) —K](aa )+ 2KD(aa„)K, (aa )

aa
(20)

f dbb K, (a,b)K](a2b)= 1

, [+a]a Ko(a]a„)K](a2a~)—a2a Ko(a2a )K](a]tv)] .
Q1 CXP

(21)

Ko(x) is the modified Bessel function of the second kind of orders 0.
Similarly, Eq. (16) is processed analytically with

2

f x sin(zx)
0 ( 1+ 2)3/2 =K]](z)z (22)
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2

f x sin zx —bb (&+~ )
'

i
( 1 +bb ( 1+ 2)1/2) 2K 2(( 2+ b2b )1/2)

(1+x )
(23)

where (z =b /V). The corresponding contribution to Eq. (14) is reached through

f dbb Ko(ab) =
2

[K, (aa )
—Ko(aa ],

(a, —a2) f dbb Ko(a, b)KO(a2b)= —a,a K, (a,a )Ko(a2a~)+a2a Ko(a,a„)K,(a&a ) . (25)

Putting together the W, and W2 contribution into the right-hand side Eq. (14) finally yields the stopping expression
with X =~a /Vand Y, =X +b; a„under the form

dE
dx

4n, Z, F„e I(X),
m, V

(26)

with

3 b a
I(X)=(N Z) XKO—(X)K&(X)+N g a, Y Ko( Y;)K&( Y, )+ [Ko( Y, )

—K&( Y;)]
i =1

3—2(N Z)N g —a, [X(X + Y, )Ko( Y, )K&(X)—2YX K&( Y, )Ko(X)]

+2N I C) [ —Ko( Y2)K)( Y) )(X + Y2) Y, +Ko( Y, )K)( Y2)(X + Y, ) Y2]

+ C2 [ —Ko( Y3 )K, ( Y, )(X'+ Y3 ) Y, +Ko( Y, )K, ( Y, )(X + Y, ) Y3 ]

+ C3[ —Ko( Y3 )K)( Yq )(X + Y3 ) Yq+Ko( Yq )K, ( Y) )(X + Yq ) Y3] } (27)

where

b2 b2~ 2 b2 ~2' 3 b2 b2

It should be appreciated that the effective interaction
(1) results in enhanced stopping in accordance with a re-
duced core electron interaction proportional to
N[l —Az(r)], Qz(r) being a positive definite quantity.

Therefore, the sum of terms beyond the first one, in the
right-hand side of Eq. (27), brings in an additional posi-
tive contribution to the standard pointlike one. ' ''

The usual pointlike limit is recovered with TV~0. It
corresponds to the first term on the r.h.s. of Eq. (27). On
the other hand, in the opposite neutral limit Z =N, we
are left with a nonzero contribution -N due to the
finiteness of the charge distribution. It remains up to us
to perform the co summation in the usual fashion with

TABLE II. Stopping numbers L (a.u. ) for the projectile-
target system Al' -Al'+ as a function of projectile velocity
(a.u. ). TABLE III. As in Table II for Al +-Al +.

4
6
8

10
12
16
20
26
30

Lext( V)

1279.60
1546.24
1735.07
1882.00
1999.80
2186.53
2330.86
2500.10
2592.22

Lp, ( V)

1267.80
1534.0
1722.60
1868.40
1987.14
2173.83
2318.13
2487.33
2579.44

(L,x,
—L, )100/L, „,

0.92
0.79
0.71
0.67
0.63
0.58
0.55
0.51
0.49

4
6
8

10
12
16
20
26
30

Lext( ~)

110.12
129.71
143.35
153.81
162.30
175.55
185.77
197.73
204.23

Lp, ( V)

89.565
108.30
121.57
131.83
140.18
153.31
163.46
175.37
181.85

ext pt ) ~ ext

0.186
0.165
0.152
0.143
0.136
0.126
0.120
0.113
0.110
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Lext ( V) L„(V) (L,„,—L„,)/L, „,

TABLE IV. As in Table II for Al +-Al +.
cop(r)a

L(V)= fdrp;(r)I a~=
2m, cop(r)

4
6
8

10
12
16
20
26
30

222.93
262.26
289.62
310.57
327.53
354.07
374.52
398.43
411.43

178.28
215.71
242.24
262.74
279.44
305.70
326.00
349.80
362.73

0.200
0.177
0.163
0.154
0.147
0.136
0.130
0.122
0.118

f drag(cp)=1, F =g(~)dip
0

N'g (cp) = f dr p, (r)6(rpp(r) —cp),
(28)

happ(r)
= [iphyd(r)+rp~(r)]' '

1/2
4~p, (r)e

=&2co (r)=&2
P m

p, (r)=
N'fI F' ( r )

(29)

N' bound electrons to the target ion, derived from the
Poisson equation applied to Eq. (1).

From Eq. (26) one thus derives the cp average

with

dE
dx

4~n, e4
L(V),

m, V
(30)

The last line of Eq. (28) refers to the standard frequency
average where co (r) is the local plasma frequency per-
taining to the stopping bound electrons. The required

p, (r) may again be treated with an adequate GSZ
effective interaction, fulfilling"

(31)

and p, (r) specified with the adequate parameters [Eqs. (3)
and (5)] for target ions. Equation (31) is tabulated (see
Tables II, III, and IV) for' a few projectile —target-ion
pairs of interest for particle-driven fusion. ' The stop-
ping numbers L ( V) are respectively displayed as L,„,( V)
for the whole r.h.s. of Eq. (27), the extended projectile
charge distribution contribution, while L, ( V) refers to
the first term, i.e., the pointlike limit. The last column in
these tables displays the difference between L,„, and L „
which is negligible (Table II) for a highly stripped projec-
tile.

On the other hand (Tables III and IV), substantial
discrepancies seem to arise for ions with a small ionicity,
which retain most of their core electrons. The noted
discrepancy decreases slowly and steadily with projectile
velocity V.

We should consider as highly satisfactory the fact that
projectile and target-ion structure could be treated in the
same fashion.

Higher target temperature effects (k&T, ) 10 eV) will
be taken up in a forthcoming work.

IV. LOWER IMPACT-PARAMETER CUTOFF

The analytic, impact formulation displayed in Sec. III
requires additional investigation of its stability with
respect to numerical modifications of the lower cutoff pa-
rameter a,„. Toward this goal, we have given in Tables V
and VI the stopping numbers [Eq. (31)] pertaining to
cutoff values a„, a /2, and 2a for a few projectile-target
pairs. The given L values are not changed by more than
10%. Moreover, the relative discrepancies L,„,—L pt
remain practically independent of the lower cutoff' value.
These comforting results clearly demonstrate that the
present treatment of long-range contributions to the stop-

TABLE V. Variations of short-range cutoff and impact stopping numbers L,„,( V) and L~t( V) in terms of the projectile velocity in
a.u. for a projectile with an extended charge distribution and with a pointlike one, respectively. The considered projectile-target pair
is Cs'+-Al'+.

V (a.u. )

6
8

10
12
16
20
30

Cutoff'

L,„, (a.u. )

284.54
310.29
326.63
338.52
347.85
362.06
372.76
391.75

L~t (a.u. )

89.56
108.29
121.56
131.82
140.17
153.30
163.46
181.84

L„, (a.u. )

306.77
329.82
344.867
356.027
364.90
378.60
389.021
407.69

a /2
I „(a.u. )

105.57
124.27
137.476
147.68
156.00
169.062
179.18
197.51

L,„, (a.u. )

259.05
288.52
306.77
319.78
329.82
344.87
356.03
371.55

L„(a.u. )

73.70
92.27

105.57
115.87
124.27
137.47
147.68
166.13
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—(a.u.)L
VR

5.5

4.5

(a)
—&(a.u. )
L

V2

45.0

40.0

35.0

30.0

2.5

1.5

0.5

0.0

0.0
L
&&(au,)

120.0

100.0

10.0 20.0 30.0 40.0 V(a.u. )

(c)

25.0

20.0

15.0

10.0

5.0

0.0

0.0
—(a.u.)
L
V2

100.0

10.0 20.0 30.0

(e)

40.0 V (a.u. )

80.0

60.0
60.0

40.0
40.0

20.0

0.0 ,

0.0 10.0 20.0 30.0 40.0 V (a.u.)

—(a.u.)
L
V2

(d)

0.0

OQ %.0 20.0 30.0 40.0 V(a.u.)

Al'-Cs'

30.0

20.0

L

0.0

0.0 10.0 20.0 3).0 400 V (a.u.)

FICx. 2. Stopping powers L/V for Al'+ in a dense and partially ionized target made of (a) C +, (b) Mo', (c) Cs', (d) Cs', and
(e) Cs+, in terms of incident velocity V. The dashed upper curve refers to the full Bethe-like stopping expression (26) taking into ac-
count the projectile extended structure. The solid curve reproduces the usual pointlike and structureless result arising from restrict-
ing the r.h.s. of Eq. (27) to its first term. Note that the ECPE is nearly vanishing in (a) and (b) where the dashed and solid curves
overlap strongly.
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» (a.u. )
L

I

t

5o I

I

a.o

t

3.0

l

2.0

3+ 4+

50.o I

45.0 '

coo I

350

300

25.0

20.0

1 5.0

(b)

C '-Al'

'I.O .

0.0

0.0

L (a.u.)
V2

50.0

!

450 .

~0o

35.0

30.0

250. I

20.0 .

10.0 20.0 30.0 40.0 V(a.u.)

(c)

C '-A['

10.0

5.0

0.0 ,

0.0

—(a.u.)
L
V&

70.0

60.0

40.0

30.0

I '~

10.0 20.0 30.0 40.0 V(a.u.)

C 'Mo"'

150 .

10.0

5.0

0.0

0.0 'l0.0 20.0 30.0 400 V(a.u. )

—(a.u. )
V2

50.0 (e)

20.0

10.0

0.0

0.0 10.0

I

20.0 30.0

I

40.0 V(a.u.)

40.0
C '-M "'

30,0

20.0

10.0

0.0

0.0 10.0 20.0 30.0 40.0 V(a.u. )

FIG. 3. Stopping powers L/V' for Cs'+ in a dense and partially ionized target made of (a) C +, (b) Al'+, (c) A)'+, (d) Mo", and
(e) Mo +, in terms of incident projectile velocity. The remainder is the same as in Fig. 2.
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TABLE VI. As in Table V for the pair Al'+-Al'+.

Cutoff
V (a.u. )

4
6
8

10
12
16
20
30

L,„, (a.u. )

222.93
262.26
289.62
310.57
327.53
354.07
374.52
411.43

L~, (a.u. )

178.28
215.71
242.24
262.74
279.44
305.70
326.00
362

L,„, (a.u. )

256.61
295.17
322.06
342.71
359.48
385.78
406.08
442.82

a /2
L~, (a.u. )

210.27
247.66
274.05
294.44
311.05
337.2
357.41
394.05

L,„, (a.u. )

188.65
228.70
256.61
277.93
295.17
322.06
342.72
380.01

2a~
L~, (a.u. )

146.6
183.71
210.27
231.00
247.66
274.05
294.41
331.1

ping calculation is robust and accurate enough to be tak-
en as a self-consistent one. The remaining task of
evaluating the short-range impact contribution will be
taken up in a forthcoming work.

care of in many recent calculations. ' This explains why
we focus emphasis on the projectile. If we consider a
given A-B projectile —target-ion pair, one witnesses the
approximate relationship

V. RESULTS AND DISCUSSION

Equations (26) and (27) are now systematically por-
trayed in Figs. 2, 3, and 4. We graphed the reduced stop-
ping power L/V in atomic units (a.u. ), in terms of the
projectile velocity (a.u. ). The extended projectile core re-
sults pertaining to the full expression (27) lie systemati-
cally above their pointlike and structureless homologs
given by the first term in the r.h.s. of Eq. (27). The given
discrepancy strongly decreases when projectile ionicity
increases. A similar trend arises from enhanced target
ionization [e.g. , Fig. 2(c)j. Quadrature (31) makes it clear
that the extended charge distribution of the target ion
plays a quantitative role similar to that of the incoming
projectile. The target-ion structure is routinely taken

—(a.u.)
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FIG. 4. As in Fig. 2 for the ion projectile Mo"+ stopped in a
dense and cold plasma (k& T ~ 10 eV) made of partially stripped
Cs'+ ions.

dE( A B)-
dx

dE (B A)-
Z~ dx

The extended projectile core effect (EPCE) with its re-
sulting enhanced stopping appears mostly significant for
projectile velocity ratios V/c ~0.3. Therefore the EPCE
is likely to be relevant for much of the range of the ener-
getic and intense ion beams envisioned for pellet
compression toward achieving the burn of the thermonu-
clear D+T fuel.

In view of the crucial relevance of the beam-target in-
teractions near the end of the projectile range, it is cer-
tainly worthwhile to explore the existence of any EPCE
beyond the Bethe-like formulation used in the present
work.

It is also to be noted that any quantitative assessment
of the EPCE modifications of the usual particle-driven
scenarios for inertial confinement fusion should require a
full numerical code simulation. The considered enhanced
stopping is likely to be strongly correlated to an increased
ionization which can markedly reduce the EPCE for
many projectile-target pairs. The present results are de-
rived within a general Thomas-Fermi-like (TF) frame-
work for the ion structures (Sec. II) considered as melt-
ed, with no shell organization.

The considered GSZ potentials are extrapolated to
few-electron systems such as C +. Despite those
simplifications, we expect the present modeling to exhibit
the basic trends of the EPCE, especially for heavy ions
for which a Thomas-Fermi-like picture becomes increas-
ingly accurate for a larger number of core electrons. As a
rule of thumb, we have witnessed that a non-negligible
( ~ 5%) EPCE demands that within a given
projectile —target-ion pair, one of the partner ionicities
remains smaller than 5. Also, the given EPCE is the
larger when the two ionicities within the considered
projectile —target-ion pair are the smaller. It should be
pointed out that the present stopping calculations are



3218 C. DEUTSCH AND G. MAYNARD 40

performed at fixed projectile velocity.
Finally one may notice that the EPCE provides one

more enhanced stopping contribution, which is present
all along on the projectile trajectory in target, and not
especially concentrated near the end of the range.
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