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Super-transition-arrays: A model for the spectral analysis of hot, dense plasma
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A method is presented for calculating the bound-bound emission from a local thermodynamic
equilibrium plasma. The total transition array of a specific single-electron transition, including all

possible contributing configurations, is described by only a small number of super-transition-arrays
(STA's). Exact analytic expressions are given for the first few moments of an STA. The method is

shown to interpolate smoothly between the average-atom (AA) results and the detailed
configuration accounting that underlies the unresolved transition array (UTA) method. Each STA
is calculated in its own, optimized potential, and the model achieves rapid convergence in the num-

ber of STA's included. Comparisons of predicted STA spectra with the results of the AA and UTA
methods are presented. It is shown that under certain plasma conditions the contributions of low-

probability transitions can accumulate into an important component of the emission. In these cases,
detailed configuration accounting is impractical. On the other hand, the detailed structure of the
spectrum under such conditions is not described by the AA method. The application of the STA
method to laser-produced plasma experiments is discussed.

I. INTRODUCTION

The unresolved transition array (UTA) model intro-
duced by Bauche, Bauche-Arnoult, and Klapisch '

presented atomic spectroscopists with a powerful new
method for characterizing hot plasma. The model inter-
prets the unresolved spectroscopic structures often ob-
served in laser-produced plasma experiments, as a super-
position of many overlapping, Doppler-broadened emis-
sion lines. Distinct features correspond to transitions be-
tween pairs of electron configurations. Each con-
figuration-configuration transition array is then charac-
terized by average quantities that are obtained analytical-
ly, such as total intensity, average transition energy, vari-
ance and, in principle, any higher moment of the spectral
distribution. (The same problem has been treated by
Bloom and Goldberg, using a collective-vector ap-
proach. ) The sole approximation made in applying the
UTA model to plasma emission is that population is dis-
tributed statistically amongst the terms of an emitting
configuration. This assumption is appropriate to hot,
dense plasma, where collisional population transfer is
efficient, and the Boltzmann factor is nearly constant,
within a configuration.

The UTA model is an efficient solution to the problem
of unresolved spectral structures when a relatively small
number of atomic configurations are significantly popu-
lated. But the model becomes intractable in hot plasmas
at high density, where local thermodynamic equilibrium
(LTE) is approached, since the number of emitting
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FIG. 1. Emission spectrum of Pr in a laser-produced plasma
(Ref. 3).

configurations, and thus the number of calculations re-
quired in applying the UTA model, becomes immense.
This situation is demonstrated by the spatially integrated
spectrum in Fig. 1, obtained in a typical laser-produced
plasma experiment. Here, relatively resolved structure,
consisting of individual lines and UTA s, sits atop a
broad background. The discernible features originate in
lower-density regions of the plasma, while the unresolved
background is attributable to a dense, LTE emitting re-
gion.

The average-atom (AA) model is presently the only
tractable approach to analyzing unresolved LTE emis-
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sion. In this model the transition array moments can be
analytically summed, including in each one-electron tran-
sition array the contributions of all configurations and
charge states in the plasma. The price paid for this strik-
ing simplicity is that all these contributions must be com-
puted in a single potential and end up subsumed in a
single-Gaussian spectra distribution. Since many
configurations in 'many charge states contribute to an ar-
ray, the accuracy of the first approximation is problemat-
ic and there is no possibility of its being controlled or
tested. The latter approximation entails a total loss of the
spectral structure that is typically observed, as in Fig. 1.

In this paper we present a new technique for the mod-
eling and analysis of unresolved plasma emission that in-
troduces the concept of a super-transition-array (STA).
This is a transition array between "superconfigurations"
that contain many ordinary configurations lying
sufficiently near in energy to be accurately treated in a
common potential. In this approach, the single potential
and Gaussian of the AA model is replaced by a superpo-
sition of Gaussians that can reveal the internal structure
of an array when it exists, each computed in its own,
more accurate, potential. On the other hand, the number
of transition arrays for which the moments must be cal-
culated is reduced by many orders of magnitude from
what is required in directly summing configuration
UTA's. The STA technique is a general approach that
interpolates smoothly between the AA and UTA models,
which reappear as special cases. It is applicable where
the UTA model proves too detailed, but the AA model is
an oversimplification.

In the next section, we introduce several concepts and
definitions required to derive and apply the STA model.
In Sec. III, STA's are defined and a representation for
their moments is derived in terms of "generalized" parti-
tion functions. These partition functions are explicitly
evaluated using recursion relations in Sec. IV, to obtain
explicit formulas for the various moments of an STA.

In Sec. V, the STA model is compared with the AA
and UTA results in a simple case, and then applied to a
laser-produced plasma experiment. The STA spectrum is
constructed for plasma conditions determined by a hy-
drodynamic simulation code and then compared to the
observed emission. A discussion and summary of our re-
sults is given in Sec. VI.

II. DEFINITIONS AND THEORETICAL
BACKGROUND

is the Einstein coefficient for spontaneous emission, with

k =(87r eao) /3h c (3)

and the dipole reduced matrix element,

db=~ a gr, b 2 g, .

N, and g, are the population density and statistical
weight, respectively, of the initial level.

When the 3 ~B transitions form a distinct unresolved
pattern, its shape can be characterized by the first few
moments of the spectral distribution

S~B E E"dE

S~B E dE
(5)

etc.
In hot plasma, the width of the line profile P(E —Eab)

is negligible compared to the width of the total array and
it can be replaced by a 6 function, yielding

a ab ab ab

(„) a& A, b&B
p

N, d, bE,b
aH A, b&B

+a dab Ea'b
aE A, bEB

N, d, b
aH A, b&B

where we have approximated A, b by

, —kE~Bdab .

The total photon intensity of the array is given by

Iqq —k g N, d,b(E,b )

ac A, bEB

—=k(E„~)' g N, d, b .
a6 A, bEB

A special case of the general definition given here is the
j-j configuration transition array. This covers transitions
between the levels contained in a pair of j-j
configurations, C and C', that we can denote by

In terms of these array moments, the average transition
energy is p =E~B; the variance is(1)

(2)
(

(l))2
( gE )2

A. Spontaneous-emission transition arrays

We define a spontaneous-emission transition array as
the spectral distribution of photons emitted in transitions
between two groups of levels, 3 and B

S4~(E)= g N, A„bP(E E,b), —
aE A, bEB

where P (E —E,b), the normalized line profile, is assumed
to be equal for all transitions, and

~ ab kEab dab

where q, and q,
' are the electron occupation numbers of

the shell j, = In„l„j,I (for nonrelativistic configurations
j, =—In„l, ) ). A specific one-electron transition from or-
bital j to j& will be denoted by a~P. In this case,
q' =q —I, q&=q&+ I, q,'=q„s&a,P. The general for-
mulas introduced above apply to the configuration array,
with the obvious substitution of C and C' for 3 and B.

The UTA model' is based on the configuration transi-
tion array, with the added approximation that the level
populations %, of the upper configuration are related to
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each other by statistics, i.e., by relative multiplicity. This
assumption allows Eqs. (6) and (8) to be evaluated analyti-
cally.

The collection of all configuration transition arrays
with specific a~P form the total one-electron transition
array for that transition. It is clear that this collection
can become very large when the contributions of all pos-
sible spectator electron configurations in all charge states
are included. In non-LTE plasma, few of these
configurations and charge states are heavily enough pop-
ulated to contribute significant emission, and the
configuration-by-configuration approach of the UTA
model is sufhcient. It is the one-electron transition array
under LTE conditions, where the number of
configurations yielding non-negligible contributions is im-
mense, that we propose to treat by the STA model.

B. LTE plasma conditions go=a '

gs
X '

s (15)

atomic physics, this approximation is equivalent to using
zero-order configuration-average energies,

E~o'= y q, e, ,
s6C

where e, is the energy of an electron in shell s. (It is pos-
sible to obtain a "best, "or perturbation-theory-improved,
value for Ec ', and this is discussed in Appendix B.) Use
of this 'best" zero-order approximation in the Boltzmann
factor that appears in partition functions is crucial to the
STA method. A detailed justification will be elaborated
in the discussion in Sec. VI.

Using Eq. (14), we can rewrite the ion's partition func-
tion as

Under LTE conditions, not only are the level popula-
tions within a configuration statistically distributed (as-
suming a constant Boltzmann factor), but the relative
populations of any two groups of levels are related by the
ratio of their partition functions. Thus the ionization
balance is determined by the Saha equation,

Ng N

Ug U' (10)

where N& is the partial density of ions with Q electrons,
and

QP IkT+gea

N =gNg,
Q

U =JUL .
Q

(12)

(13)

The sum in Eq. (11) is over all atomic energy levels E, of
charge state Q. Although it is formally infinite, the sum
is actually truncated for ions in plasma by continuum
lowering. This effect leads to a reduction of the ioniza-
tion potential, and, thus, a maximum principal quantum
number n, „above which an electron is not bound. In
our calculations, we will use the ion sphere model to es-
timate n „.This model does not include plasma effects
on the potential except for lowering of the ionization po-
tential. However, the theory developed in the present
work is applicable for any potential.

Clearly, Eq. (10) can apply also to any subset P of levels
within a charge state, when N& and U& are replaced by
the corresponding density and partition function Np and

Up of the subset. This case will be essential to the devel-
opment of super-transition-arrays.

It is well known that a profound simplification of the
partition function (11) is obtained in the non-interacting
limit, where E, is a sum of single-particle energies. In

is the ionic partition function at plasma chemical poten-
tial p. The total ion density and partition function are,
respectively,

where

(16)

The sum in Eq. (15) is over sets of orbital occupation
numbers Iq, I that obey the constraint g, q, =Q. This
sum can, of course, be further restricted, so that U&
refers to a subset of configurations, rather than an entire
charge state.

III. SUPER- TRANSITION-ARRAYS

The problem in applying transition array methods to
LTE plasma emission spectra is that a huge number of
configurations, from a range of charge states, contribute
to each specific one-electron transition. For charge state
Q, these configurations arise from all possible partitions
of the Q —1 spectator electrons among the shells in Eq.
(9). All of these partitions will lead to transitions in a
common spectral region. The occurrence of n, „&10 for
typical laser-produced plasma gives rise to over 10'
configuration-configuration contributions to any particu-
lar one-electron transition. Although many of these in-
volve high-lying levels with small Boltzmann factors,
their large statistical weights and shear abundance easily
accumulate to a significant contribution. This prolifera-
tion of configurations can be handled by grouping them
into "superconfigurations, " and defining a super-
transition-array as the collection of all the possible transi-
tions between a pair of superconfigurations. We will
demonstrate that, under LTE conditions, where each
configuration is populated according to an equation
analogous to (10), the moments of an STA, like those of a
UTA, can be obtained in closed form.

A. Definitions and general expressions

An STA is defined as the collection of all transitions
between a pair of superconfigurations characterized by
the same one-electron excitation (a~f3). A supercon-
figuration comprises many individual configurations.
These can be chosen arbitrarily but, in general, the choice
will be motivated by physical considerations, such as en-
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ergetic propinquity. Using a nonrelativistic description,
a general superconfiguration can be expressed symbolical-
ly as

gn, 1, (17)

:-N, =(ls) (2s2p) (3s3p3d4s4p4d4f)' . (18)

:-N, comprises 14 configurations (36 j-j configurations)
and 88 levels. Clearly this multiplicity increases geome-
trically as electrons (or holes) are added to supershells.
For example, to describe the emission from LTE plasma
in the spectral region of transitions between =N, and the
Ne-like ground state, we must include also transitions in-
volving a spectator electron in the third supershell:

Here, the term in large parentheses, indexed by o. , defines
a supershell. The fixed occupation number of each super-
shell is k and the index s runs over all the shells in the
supershell 0.. The superconfiguration is the collection of
ordinary configurations obtained by distributing the k
electrons to the shells of the supershell o. in all possible
ways (consistent with the Pauli principle, of course).

As a simple example, we consider the neonlike
superconfiguration

where the sums are over all configurations C that are con-
tained in the superconfiguration =, and include at least
one electron in orbital a and one hole in orbital f3, and C'
is determined uniquely from C by the a~P transition.

The quality dc ~' is the configuration average of the di-
pole reduced matrix element defined in Eq. (4):

d (aP)
C g.d.b g g. =q. (g(3

—q, )(r.,)', (23)
aEC, bEC' aEC

with r &=(n) ri~P) and q, g&
—

q&, respectively, the
number of electrons and holes in orbitals a and P of
configuration C. Ec ~' is the first-order average transition
energy between C and C'. Its dependence on a, /3 and the
shell occupation numbers of C is presented in Appendix
C. [Note that Ec( ~) has replaced E,b, a E C, b E C' in Eq.
(6)]. It should be noticed also that Eq. (20) for the aver-
age energy is obtained from Eq. (6) with no approxima-
tion, whereas in Eq. (21) for the variance the width of
each configuration can also be taken into account exactly
but we have neglected it here compared to the STA total
width.

Under our LTE assumption, Nc, the total configura-
tion population, is given by the Saha-like equation

—(E —Qp) lkT
X& g, e

:-N, =( ls) (2s2p) (3s3p3d4s4p4d4f),

:-N,. =( ls) (2s2p)'(3s3p3d4s4p4s4f)' .

(19a)

(19b)

Nc
aEC

—(E —Qp)/kT
g, e

all C a & C

AE p=

~ X d( P)(E(~P) F)~—
C C C aP

CE"
d (a/3)

CE=

(21)

I p
= g Icc =kE

p g Ncdc( ~

Ce=CE=
(22)

Already at this level of complication, the super-
configurations =N, and:"~, comprise 864 and 432 indivi-
dual j-j configurations, respectively.

The moments of the STA are given in terms of Eq. (6),
with 3 and B referring to any particular super-
configurations. We assume, in common with the UTA
model, that the total population in any ordinary
configuration is distributed statistically among its levels.
The approximation of a constant Boltzmann factor over
each configuration is appropriate to hot plasma emission.
Note, however, that we do not assume a constant
Boltzmann factor over a superconfiguration, but allow in-
stead a thermal distribution of population among its
configurations. We also take level energies by their first-
order configuration averages. This efT'ectively allows us
to treat the configurations within a superconfiguration on
a level equivalent to the levels of an ordinary
configuration.

From Eqs. (6) and (8) we can obtain the average ener-

gy, variance, and total intensity of an STA for the one-
electron a ~((3 transition:

d (aP)E(aP)
C C C

& &=tu'' (,j3)= (20)

Ce=

= (Ng /Ug )gee (24)

B. The moments in terms of formal partition functions

The first step in reducing the STA model to a useful
tool is to render the moments, Eqs. (20) —(22), in terms of
"formal" partition functions of the form in Eq. (15). (The
meaning of "formal" will be clarified below. ) We will
then show that these formal partition functions can be
evaluated analytically using recursion relations.

Following the discussion leading up to Eq. (15), we
adopt the approximation of using the "best" zeroth-order
configuration-average energy in the Boltzmann factors of
the moments. This gives

We have neglected the spread in level energies compared
to kT, within configuration C, here, in introducing the
configuration-average energy Ec.

From Eqs. (20)—(23) it is clear that configurations play
much the same role in STA's as do levels in UTA's. This
coarser level of averaging is one of the keys to treating
the vast number of configurations that radiate in LTE.
But the analogy fails in a crucial detail: in the STA mod-
el the distribution of population among configurations is
thermal and not statistical. It is necessary to retain the
Boltzmann form for Nc precisely because it cannot be as-
sumed that the range of energies Ec within a
superconfiguration is small compared to kT. There is a
further, practical, difference: for superconfigurations, the
number of terms in the sums over C easily becomes enor-
mous, as opposed to the more measured proliferation of
levels in a configuration UTA. In the following sections,
we show that both of these complications are tractable.
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2
Ja & JpI p=k(N/U)E p, O, r pW
. 2 2.

(ap)F (ap) y ~(ap)
ap ~~c c

(25)

(26)

That is, in the "formal" partition function entering Eq.
(29), the statistical weight of shells a and p are reduced
by one from their physical values. In deriving (29) we
have also made use of the binomial relations:

gE2 —~ ~(a/3)(E/a/3) E )2/grlaP)
ap ~~c c ap

C

where
r

gs

(27) q
g —1

=g
q

—l

=g
q

g —1
(31)

u)c) P'=q (gp —
qp) Q X, ',

,~c.q .
~)a/3) g~)ap) —X g g U (gap)

c

(28)

(29)

The expression for the first-order average transition ener-
gy between the configurations C and C' is'

El p'= E„,—= y(q, —s,.)+D, +D„,
sEC

apg )gl g2 ' ' ' gs —
1 gs as /3s gs+1 (3O)

and the 2X3 matrix in Eq. (25) is a 3-j symbol. In Eq.
(29), U& )(g P) is defined by Eq. (15), generalized such
that the set of statistical weights appearing there is given
by

where Ds and Do are independent of q, and can be ob-
tained in terms of the Slater integrals F' '(ct, p), G'"'(ct, p)
(see Appendix C) and s runs over all shells in C.

These relations lead to the following expressions for
the moments of the super array:

Ja & JpI p=k(N/U)E p O
r pX g gpUg 1(g ),

2 2.

Ep= X
}Xv,=Q} — . U(2 1(g )

g(q„—6„)D„+Dogs sa sp
5 .SA

q, —5, s

=Do+QD„X„g„PUg 2(g P")/U(2 )(g P), (34)

where gr P=g, —5,—6p„,
apr (g lgl g2 ' ' ' rgs —lrgs as Ps sr'gs+1 ' ' ' I (35)

and

AE'p= g(D, X,g, p)(D„X,g„p')U&, (g p) +g( D,

'
Xg, p)U& 2(g p')

U(3 )(g P) (E p
—Do)—

where

a tr
g Ig 1 g2r r' ' ' gs —

1 gs ~as ~/3s ~s) sr gs+1 ' (37)

Eqs. (33), (34), and (36) represent the STA moments in
terms of formal partition functions with no further ap-
proximations than the use of zeroth-order configuration-
average energies in the Boltzmann factors. The problem
that remains is to compute the partition functions.
Clearly, though, this will involve summation over enor-
mous numbers of terms. One solution to this problem is
the average-atom model, and before presenting a new ap-
proach, we review this model and its limitations in the
next section. We will then describe our STA results

which overcome the limitations of the average atom
while retaining its simplicity.

C. The average-atom model

In the average-atom model all the contributions from
all configurations in all ionization stages constituting a
single, total one-electron transition array, are accounted
for using a single set of one-electron orbital energies. The
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moments of this array are obtained by summing over a11

Q in Eqs. (33), (34), and (36). Since the single-electron en-
ergies are independent of Q, the total partition function
of the system can be evaluated:

IV. RECURSION FORMULAS
FOR THE PARTITION FUNCTION AND WORKING

FORMULAS FOR THE MOMENTS OF AN STA

The partition function of a superconfiguration is obvi-
ously the product of the partition function for its occu-
pied supershells. In Appendix A we derive the following
recursion formulas for the partition functions for a super-
shell o having Q electrons:

X, ' =Q(1+X, ) ',
s

(38) Uo(g) =1,
Q

U(3 (g)= QX„U(3 „(g)/Q

(42)

where we have used the sum over Q to remove the re-
striction g, q, =Q and obtain a product of independent
sums over shells s. Thus, in the average-atom model, the
moments of the total transition array reduce to

where

(43)
uPr

E
/3

=D +QD„X„g„~g(1+X, )
'

aP

Q(1+X, )
'

saba

For example,

and

=Do+ QD„n„g„~ (39)
U, (g) =X)

U (g)=(X, U, +X, )/2, (44)

b,E
/3
= QD„g„~n„(1—n„),

where

n„=X„I(1+X„)= [1+exp(e, —
/i/, ) IkT]

(40)

(41)

and so on. Thus the partition function for Q electrons
is obtained in Q steps. (A similar recursion formula is
used in the single-particle ideal-gas model ~ )

In Appendix A we also derive a relation between for-
mal partition functions differing in the value of one of
their weights g:

is the Fermi-Dirac population probability for the single-
electron energy level e„. Equations (39)—(41) reproduce
the results of Ref. 4, where they were derived from purely
statistical considerations.

This derivation shows that the sum over the immense
number of terms in Eqs. (34) and (35) can be carried out
in the average-atom approximation, yielding the
average-atom formulas that contain summations only
over shells (numbering a few tens). The price paid for
this striking simplification is that the entire one-electron
transition array is represented by a single Gaussian with
no additional structure. Furthermore, since only one set
of orbitals serves for all configurations in all ionization
stages the accuracy of this Gaussian is highly cir-
cumscribed.

To improve on the average-atom approximation, one
must perform the sum over a limited set of transitions,
rather than the entire one-electron array. Each separate
sum, or super-transition-array, forms a distinct Gaussian,
and different orbital energies can be used in each STA.
Thus the moments of each STA are more accurate, and,
depending on how the set of STA's is chosen, the model
will reveal as much spectral structure as required. In the
next section we show how the STA model can be easily
applied using recursion formulas for the formal partition
functions. These produce simple analytical expressions
for the STA moments and eliminate the extremely labori-
ous summations.

Ug (g)= Ug (gr)+X Ug, (gr) (45)

where the set g~ is obtained from g by reducing the
weight of shell y by 1,

(46)

Using the formulas (44) and (45), the STA's moments
reduce to

I /3=k (X!U)E
/3 i

. 2

XQU, (g ~),

1 jp
2

p l ag a~a~f3
2 .

(47)

(48)

The ratio N /U is equal to the corresponding ratio
N-/U- for each superconfiguration.

The average energy of the STA is given by

E g
=Do+ g 6' /3,

o. =1
(49)

where, here, o runs over supershells. The charges Q' are
given by Q' =Q —1, Q for aHcr, aEcr, respectively,
and obey the constraint
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Q,„
& f3= y rt„(D)UQ „(g ~)IUg (g ~),

n=0
(50)

2.0—

I I I I
I

&)&(
I I I I I

/
II I I I I II I ]

I I I I
/

I II I
t

I I I

where JV is the number of supershells, Q is the number
of electrons in the supershell IY, and

(51)
1.0—

In a similar way, we obtain for the variance

b.E„is= g-5 is, (52)
I t & i i I I

600 650 700 750
~1 I

800 850 900 950 1000

where Energy (eV)

0„
b, p= g 71„Ug „(g ~)IUg (g ~) —(8 g)

ri„= g P„(D)P,„„(D)+ng„(D ),
in =1

(53)
FIG. 2. Comparison of the average-atom, UTA, and STA re-

sults for the total one-electron transition array 3d, z, —2p, z, in

iron, at T,, =200 eV, NI =8.5X 10 ' cm '. The intensity is in

arbitrary units.

where P„(D ) is given by Eq. (51) with D, replacing . D,
In the above equations we have taken the "best"

zeroth-order energies in the Boltzmann factors. Howev-
er, these equations are valid also if all the configuration
energies are shifted by a constant. This allows us to im-
prove the Boltzmann factors by adding the average first-
order correction to the zeroth-order energies of all the
configurations within the superconfiguration. Clearly,
this correction will not effect the average energy and vari-
ance of the STA, but the intensity of each STA and there-
fore the shape of the total one-electron transition array
will be improved. The expression for this correction is
given in Appendix B.

V. RESULTS

We have developed a computer code based on the
parametric potential atomic structure model' to evaluate
the working formulas given above. We have used it to il-
lustrate the differences between the AA, UTA, and STA
methods, and to demonstrate the advantages of the latter,
by working a relatively simple example involving only
about 40000 configurations: not yet so many that an ex-
plicit UTA calculation is prohibitively expensive and
time-consuming. The example is the transition array
a=3ds&2~/3=2p, &~ in iron, at solid density and a tem-
perature of 200 eV. For these conditions, the ion sphere
model predicts n „=4.

The predictions for this transition array of the
average-atom, STA, and UTA methods are shown in Fig.
2. The UTA spectrum, containing the highest level of de-
tail, shows several distinct peaks that are completely
missed in the average-atom model. However, the UTA
structure is reproduced almost exactly in the STA spec-
trum, in which only eight STA's for each of the charge
states included in the example (Fe —Fe '+), were used.

Thus the 40000 Gaussians of the UTA model can be ac-
curately represented by a small number of STA's. We
will demonstrate below that even in cases where the num-
ber of UTA's exceeds 10, and their explicit calculation
becomes impractical, still only several tens of STA's are
required for an accurate spectrum.

In the iron example, the definition of supershells is
guided by simple physical considerations: only shells
with similar energies are collected into the same super-
shell. Thus the large energy gap between the n =2 and
n ) 2 shells suggested that the superconfigurations be
defined as follows:

:-„q=( ls) (2s2p)'"(3s3p3d4s4p4d4f)

where m =0, 1, . . . , 7 and k =Q —m for each charge
state, Q. This choice yielded eight superconfigurations
for each charge state. Indeed each peak in Fig. 2 arises
from different initial superconfigurations. Further subdi-
visions of these supershells did not reveal further details
of the spectral structure.

In Fig. 3, the accuracy of the moments obtained using
the AA method is tested by comparing the AA result
for the iron example (trace a), with two similar cal-
culations that each involves a single STA [i.e. , in-
cluding all shells in one large supershell:
=—(ls2s2p3s3p3d4s4p4d4f) 1 for each charge state. In
this comparison, the STA method allows us to choose a
separate potential for each charge state. In the STA re-
sults, the energy in the Boltzrnann factor is calculated in
either zeroth-order (trace b) or first-order (trace c) ap-
proximations. The first-order result was obtained by ex-
plicitly constructing the STA's rnornents by summing de-
tailed configuration arrays, an approach made possible
only by the small number of contributing configurations.
The inaccuracy associated with taking average first-order
energy corrections in the Boltzmann factor is clearly
much smaller than the effect of using different potential
for each STA. The STA result can therefore always be
further improved by refining the definition of the
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set of supershells was
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FIG. 3. EA'ect of the first-order correction to the energy used
in the Boltzmann factor of the STA model, for iron under the
condition of Fig. 2. Curve a, average-atom result (zeroth-order
energies); curve b, with a single STA for each charge state and
zeroth-order energies; and curve c, with a single STA for each
charge state but using first-order energies.

superconfigurations, to include smaller number of
configurations, with its own appropriate potential (see the
discussion).

Figure 4 shows STA predictions for the LTE spectrum
of Pr in the laser-produced plasma of Fig. 1. The plasma
conditions attained in this experiment were obtained us-

ing a detailed one-dimensional hydrodynamics code. 5

Since the experimental results are time integrated and in-
clude non-LTE contributions from low-density outer re-
gions, we intend this comparison to be suggestive only
and have chosen typical temperatures T, =200 eV,
T,, =250 eV and density of Ni = 10 cm . Under these
conditions, n „=12, but the results are insensitive to
small changes in this value. We have successively in-
creased the number of STA's used in this example, by re-
ducing the number of shells in each supershell, until con-

with 2+ k + m + n =Q for each charge state Q. The
number of superconfigurations thus obtained is a few
hundreds.

The sensitivity of the results to the temperature
demonstrated in Fig. 4 could serve as a diagnostic in
space- and time-resolved plasma experiments.

The one-electron transition that dominates the Pr spec-
trum is 4f 7~2 3d~&2-. In Fig. 5 the spectrum of this transi-
tion alone is shown for three cases. The STA1 prediction
is obtained by combining shells into a single supershell
for each charge state, as in the iron example (Fig. 3).
Again it is clear that the STA model, even at a minimal
level of detail, improves significantly over the average-
atom method.

The UTA method takes into account only
configurations whose contribution is estimated, a priori,
to be most significant. Since the STA method can easily
include all contributions, it provides a test of this approx-
imation, as well as the means of successively improving
upon it. We have found that under certain plasma condi-
tions, contributions estimated individually to be small,
and thus neglected in the UTA model, may in fact dom-
inate when they are summed. As an illustration, we cal-
culated the UTA spectrum for a group of 48
configurations that were estimated'' to dominate the Pr
emission at a temperature of 250 eV and a density of 1020

ions per cm'. The partition function for this group
turned out to constitute only one-fifth of the total, lead-
ing to the striking difterences in predicted emission spec-
tra shown in Fig. 6. The trace labeled 6 represents the re-
sult of the 48-configuration model, that assumes that all
population is distributed among these 48 configurations.
The a trace is the total contribution of all possible
configurations as calculated in the STA model, and the c
line is the partial contribution, in that model, of the 48
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FIG. 4. STA results for the Pr spectrum at LTE with

Nl = 10 cm ', T,, =200 and 250 eV.

FIG. 5. Emission spectra for the one-electron transition

4f, ~, —3d, ~, in Pr at N, =10' cm and T, =250 eV. AA, aver-

age atom; STA, convergence with increasing number of STA's;
STA1, single supershell for each charge state.
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APPENDIX A: RECURSION FORMULAS
FOR THE PARTITION FUNCTIONS

The partition function of Eq. (15) is

lJM I I t I I i i i I j i i i l. I I J J L L I I I [ I k. t I

8 9 10

Wavelength ( A )

i Li
12

Ug= g g X, ',
!Qe, =Q!

where

(Al)

FIG. 6. Comparison between (curve a) the converged STA
spectrum, and the spectrum obtained by a detailed calculation
involving only the 48 configurations expected to dominate the
emission, with (curve b) this contribution normalized to its own
partition function for each charge state, or (curve c), normalized
to the total partition function in each charge state.

configurations.
The difference between the a and b lines demonstrates

that the contribution of all the configurations excluding
the 48 main configurations cannot be accounted for by
normalization alone.

X, =exp[ —( E, p) /k —T] (A2)

and g, q, =Q. In this appendix we derive two kinds of
recursion formulas for the partition function of a super-
shell o.. For simplicity of notation we omit the subscript
0. hereafter.

The first formula, similar to one obtained for the ideal
gas, is a recursion over the number of electrons Q in a
supershell. It is derived as follows.

We begin by defining the generation function

F(z) —= gz~Ug =Q(1+zX,. )
' .

Q .s

(A3)

By equating powers of z in the Taylor-series expansion of
F (z) we obtain

VI. SUMMARY AND DISCUSSION Ug =F'~ (z =0)/Q! =(B~/Bz~)g(1+ X, ) '~,

In this work we have presented a new method for
analyzing unresolved spectra of hot, LTE plasmas. The
method includes both the UTA and AA models as spe-
cial, limiting cases. For most situations where the UTA
method is impractical and the AA method is not detailed
and accurate enough, the STA model provides a tract-
able, yet accurate analysis. Furthermore, in contrast to
the AA model, the approximations of the STA model can
be successively improved to obtain convergence. The
STA model includes all the contributions to a transition
array in terms of only a few tens of superarrays. It allows
the identification of the dominant set of configurations,
which can then be treated, if necessary, by more detailed
UTA or line-by-line calculations. In previous analyses, '

it was necessary to decide a priori which configurations
dominate and ignore the rest. We have shown that this
procedure cannot be corrected by normalization alone.

We have demonstrated the STA method in two exam-
ples. We have shown that the zeroth-order (plus average
first-order correction) approximation to energies in the
Bolo tzmann factor is improved for cases where different
potentials are taken for different STA's. This can be ex-
plained by the fact that the STA potential is obtained by
minimizing the first-order superconfiguration average en-
ergy (see Appendix B). Finally, we have presented calcu-
lations which reconstruct the experimental spectrum
from a laser-produced plasma and indicate an application
of the method as a plasma diagnostic.

(A4)

Performing the derivatives in Eq. (A4), and defining

(A5)

we obtain

Uo(g) =1

U, (g)=F"'(z =0)=gg, ,XF(z) (/I+zX, )~, o=X, ,

U2(g) =(X)U) +X2)/2,

Ug(g)=+X„Ug „(g)/Q .

(A6)

(A7)Ug(g) = Ug(gr )+X Ug, (g~),

where the set [g~] is obtained from [gj by reducing by 1

the weight of the y shell, i.e.,

(A8)

Thus the partition functions are obtained in Q steps in-
volving the single set [g] =(g&,g&, . . . , g„. . . ], indepen-
dent of the actual occupation numbers, Q. The partition
function (A6) is a formal mathematical function of the set
[g], whose elements do not necessarily obey the physical
relation g, =2j, +1.

The second recursion formula is over [ g]:
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This recursion follows simply from an application of the
binomial relation,

E'''=g(P, Ho+H) ~)/)c ) Ig,
&c

g —1 g 1
+

q
—1

(A9) SEC r, sCC
= y q, (s )+ y q, (q„—f)„, )(r, s ) . (B2)

in Eq. (Al) for any chosen shell y, as follows:
In (B2), Ho is the central field Hamiltonian, H) is the
electron-electron interaction Hamiltonian, and

gs
Ug(g)= g Q X, '

(X~, Q)

gs
g =Q, g, =2j, +I .

S

The one- and two-electron matrix elements are

(B3)

X '
5

g, —6,„

(s ) =E, + (s —Zlr —V(r) s ),
(r, s ) =F' '(r, s)+[g, l(g„—5„, )]

(B4)

X'
5 (A10) js

Xg
k

k j„
G)/ )( )

2

(B5)

It is easily seen that (A10) can be rewritten as Eq. (A7).

APPENDIX B: FIRST-ORDER CONFIGURATION
AND SUPERCONFIGURATION AVERAGE ENERGIES

where F' ' and 6 are the usual direct and exchange
Slater integrals, respectively.

The average energy of a superconfiguration is defined

Ec)' = y q, E, ,
5EC

(B1)

The zero-order energy of a configuration defined as in
Eq. (9) is X gcEc

CE=

Ce=

(B6)

where cs is the orbital energy of the s shell. The first-
order configuration-average energy is

Using the binomial relation [Eq. (31)] the following ex-
pression is obtained:

gg, (s&
E(1) y g

5&lT

oE" o

g g, (g, —6, , )(s,s')
56o. '

I

X Qcr(&ct lT', rr )
G (Go, o.'E = o a o, o'

(B7)

where Q =g, E q,. and G =g,. ~ g,. are the supershell
occupation number and statistical weight, respectively.

The first-order average correction to the zeroth-order
configuration energies is therefore

gs~s

E (1) E(. 1) y g o goE= o
(B8)

Ec=Xq E +E

APPENDIX C: THE CONFIGURATION TRANSITION
ARRAY {UTA) {REF.1)

and for the configuration energy in the Boltzmann factor
we thus take

Ec =Ecc = g (q.
—6. )D. +Do

5EC
(C1)

(C2)

D, = (s, /3) —(s, a) +r)(a, /3)(6, g o, ), .
—

.

where r)(a, /3) can be obtained in terms of the Slater in-
tegrals F' '(a, /3), G' (a, /3), and is independent of q, . In
Eq. (C1) the configuration C' is defined uniquely by
a~f3, i.e.,

is obtained'1') from Eq. (6), assuming statistical level pop-
ulations in C:

Let us denote by a —j„and f3—:j& the initial and final
orbitals involved in the radiative transition. The average
transition energy between two configurations with a~/3,

(C3)
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with q' =q —1, qtj=q&+1 and q,'=q„s&a, f3

The total intensity of the configuration transition array
obtained from Eq. (8) is

Icc =&&ccNcdc ~'

where Nc is the total configuration population and

dc =(1igc) X g, d, b =q (g& q—&)«&,
aEC
beC'

(C4)

(C5)

(C6)

and p 13
is the radial transition integral. The explicit ex-

pression for the variance of the configuration transition
array is not be needed here.
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