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Dynamic evolution of above-threshold ionization spectra
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Above-threshold ionization (ATI) by a smooth laser pulse is investigated in terms of the
essential-state approach. Time evolution of ATI spectra is demonstrated. It is shown that the size
of the electron peaks grows with the interaction time, and the peaks' bell-shaped envelope in the
spectra moves to higher electron energies during the rise of the laser pulse.

I. INTRODUCTION II. MODEL DESCRIPTION

The recent discovery' of many novel features in
above-threshold ionization (ATI) has invoked a great
amount of theoretical interest. A zero-rangle potential
model was first studied by Muller et al. and Muller and
Tip, and the simultaneous inAuence of a ponderomotive
effect and an AC Stark shift was stressed. In addition,
Crance has proposed a simple statistical model and she
has also studied the space-charge effect. '

Another line of thought is represented in a series of pa-
pers by Bialynicka-Birula, " Edwards et aI., ' and Deng
and Eberly' '' who used the so-called "essential-state"
approach (ESA) and pointed to the importance of satura-
tion in continuum-continuum transitions. This approach
has been widely used and extended to calculate angular
momentum distribution of photoelectrons' and to in-
clude the diagonal couplings between different continuum
states. ' In these studies, the nonperturbative description
in terms of ESA proves to be successful in explaining
many common features of ATI, such as peak switching of
ATI spectra, significant suppression of lowest-order
peaks with increasing laser intensity, and roughly the
same order of nonlinearity, etc. However, as all these au-
thors neglected the temporal shape of the laser pulse,
they could not offer an adequate account of the dynami-
cal evolution of ATI electron spectra, such as the forma-
tion of the bell-shaped envelope characterizing peak
switching in ATI spectra.

In this paper, we extend previous work of the ESA by
considering ATI by a smoothly switched-on laser pulse
and investigate how ATI spectrum evolves in time. Our
results indicate that the peaks' envelope in ATI spectra
move to higher electron energies during the rise of the
pulse, while the size of these peaks grows with the in-
teraction time. These results underscore the importance
of accounting for the temporal laser shape and are help-
ful to the understanding of the dynamic behavior of ATI.

We consider a model atom irradiated by a smooth laser
pulse which is described by I ( t ). As in standard ESA
treatments, " ' the model space of the atom plus field
system consists of essential states: the ground state ~0)
and a set of continuum bands ~cot & (l =1,2, . . . ). The
ground state is connected to the first continuum ~to, & via
N-photon absorption; the dipole moment is described by
an effective matrix element Do . In addition, transition

matrix elements between two successive continua are
denoted by D,„.Note that all these matrix elementsI' "l + 1

are proportional to the square root of the laser intensity
and thus are time dependent.

Under this model, the equations of motion governing
time evolution of the state probabilities are given by

luo: dc'&DO t u (la)

iu„—b(co, )u =D„o(t)uo(t)

+ dm2D t u

iu —b(to, )u„=Idtot, D„(t)u„(t)
(lb)

+ dcoI+l,D„ t u„ t

l=2, 3, . . . , (lc)

where

b, (co, ) =co, —(N +1 —1)coo, (2)

are energies of the continuum states ~cot ), and coo is the
laser frequency. Though Eqs. (1) are of the same form as
those given by Deng and Eberly, ' there is an essential
diff'erence between theirs and ours. In Eqs. (1), all dipole
couplings are time dependent, so that it is generally for-
midable to derive their exact solutions. However, as will
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Ki(t) = f dc@(u„(t) (3)

and to rewrite Eqs. (1) under the assumption of flat con-
tinua as

be seen hereafter, they are soluble if the continua are as-
sumed to be flat, i.e. , D„„=DII+, and Dp —D0l
are assumed. "

To obtain these solutions, it is helpful to introduce a
new set of quantities:

with R +&(t)=0. They are able to be expressed as a
finite-continued fraction (see, e.g. , Ref. 14). On substitut-
ing K, (t) into eq. (4a), the ground-state population reads

Po(t)= duo(t)i

=exp —2~ d~ D,0 'T R2

It is straightforward to derive probability amplitudes of
continuum states,

iuo =Do, (t)K, (t),
iu —b(~, )u =D)o(t)uo(t)+D)2(t)Kq(t),

iu„—b. (co()u =D, (,(t)K(, (t)

+D, t+ i(t)Kt+t(t),

1=2,3, . . . .

(4a)

(4b) and the total population of the 1th peak,

(4c)

P, (t)= f iu (t)i d~,
0

2 I
S) 7 P0 7 dT

u,„(t)=( i)'—lrr f SI(r)Po(r)e ' dr, (12)

(13)

It is worth stating that the terms on the right-hand side
of the above equations are independent of continuum en-
ergies cu&, whereas those on the left-hand side rely explic-
itly on co&. Thus it is reasonable to define the right-hand-
side terms as GI(t) The state. amplitude u (t) satisfies

I

iu„b(coI )tt„=G—t(t),
I I

where the threshold effect is also ignored, and SI(t) is
defined as the part inside the large parentheses of Eq. (9).

Equations (11) and (13) are two of the main results of
the present work. They determine the dynamic behavior
of the system and can be applied to the ATI of atomic or
molecular systems with arbitrary continuum-continuum

which can be solved formally. According to the
definition of KI(t), we have 10 (a) t=—2. 5T

K, (t) = —f G((t) f den(e
—i 6( tt)( )( I —w) d7, (6)

where the integration over mI runs from ~& =0 to infinity.
Ignoring threshold effect, we obtain from Eq. (6)

K((t)= —i~G, (t) .

This is an important result which directly stems from the
assumption of flat continua and which greatly facilitates
the solution of the problem.

Taking advantage of this relation, we lead to an infinite
number of algebraic equations determining KI(t),

—45x10

-3
4x10

cd —22x10

(b) -2.0T

(c) —1.6T

iK, (t) =~D»(t)u, (t)+~D»(t)K, (t),
iKt(t) =rrDI (t)tKtr, (t)+rrD( I+ )(t)K(+,(t)

(I =2, 3, . . . ) .

(&a)

(&b)

—27x10 (e) -0.8T

For a sufficient large m, the ~co +&) continuum has a
neglibible effect on the lower continua, so that we may
cut off the infinite set of equations by taking
D +,(t)=0. The analytical expressions of K&(t) are
then

—12. 5x 10 0.5T

6 7

Electron Energies (arbitrary units)
1

K, (t) =( —1)' Q rrD. . .(t)R, (t) u, (t),

were R satisfies recursion relation

R, (t)=
1

I+Z +,(t)R ~,(t)

Z, (t) = rr'~D. . .(t) ~',

(9)

(10)

FIG. 1. Time evolution of ATI photoelectron spectra, show-
ing how the peaks' bell-shaped envelope is switched from low
continuum states to higher ones. The temporal shape of the
laser pulse is given in Eq. (16). t is the interaction time. Note
that the vertical lines are total populations for some given con-
tinuum states, and the scales in these boxes are increased from
the top to the bottom. Parameters are N =2, T =20, i3=2, and
I =80.
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transition-dipole moments D& &+, by a laser pulse with ar-
bitrary pulse shape and laser intensity.

If we ignore the temporal effect of the pulse shape and
describe I(t) as a square pulse, ' then R&(t)=R& and
S&(t)=S& are constant during the interaction time. In
this simplest case,

—2vrD2 R
p (t) — 10 1 (14)

is simply an exponential decay function, and

III. RESULTS AND DISCUSSIONS

Although Eqs. (11) and (13) are applicable to arbitrary
pulse shape, we will deal with, in this paper, a Gaussian
laser pulse described by

(16)

where Ip is the peak intensity of the pulse and T is the
characteristic time of the pulse which relates to the pulse
width 70 by 1"p:2Tln2. In addition, in view of the fact
that matrix elements D& &+ &

decrease slowly as the index l
increases' we choose them to be a decreasing function
according to the simple empirical rule'

D( (+, /D(+, (+2=@ (1=1,2, ) .

Displayed in Fig. 1 are the photoelectron energy distri-
butions for different interaction times. The vertical lines
are areas of consecutive electron peaks and the dashed
lines are envelopes of the electron distributions. The
maximum of Z&z(t) is defined as the peak laser intensity
I0 and is chosen in this figure to be 80 to ensure that
continuum-c'. ontinuum saturation giving rise to peak
switching is set up in the end. We aim to understand
how such peak switching is formed in time. At the begin-
ning (the uppermost box) when the instantaneous laser in-
tensity is small, a decrement of peak areas with I is ob-
served, which is consistent with perturbation prediction.
However, as the instantaneous intensity is increased dur-
ing the rise of the pulse, it is seen that the peak with max-
imum peak area is switched from the first continuum to
the second, and then from the second to the third, and so
on. Hence the bell-shaped structure of the photoelectron
spectrum, which is a striking feature of ATI, is formed
during the rising time of the laser pulse, and higher-lying
continuum states successively become most populated.

—2 AD R t
P, (r) =R, g Z, R,'(I —e

q =2

It turns out from Eq. (15) that all the continua exhibit the
same time behavior. Obviously it is an unrealistic result
which leads to the conclusion that peak switching, if it
happens, is formed at the very moment when the laser
pulse is switched on.

On the other hand, as is apparent in Eq. (13), different
continua will have difterent time behaviors as long as
S&(t) in the equation is a function of time, i.e. , when the
pulse shape is taken into account. Therefore, the detailed
temporal shape of the laser pulse is essential to the under-
standing of the dynamics of ATI.

10
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In addition, note increasing scales from top to bottom in
these boxes; the populations of all continuum bands in-
crease with the interaction time. Thus the whole en-
velope itself grows with the interaction time as it is
switched to higher electron energies.

A detailed dynamical evolution of ionization probabili-
ty is shown in Fig. 2 ~ The parameters are the same as in

Fig. 1. The dashed line is the time behavior of the
ground-state population and the solid curves are popula-
tions of different continuum states corresponding to the
absorption of different numbers of excess photons. The
crossing points in these curves have the evident meanings
of critical time when the l, th peak area starts to exceed
the lzth peak. Therefore it is very clear to see how the
population of higher-order ionization states gradually
exceeds those of lower-order ones and finally forms a sta-
tionary distribution. In addition, it is also interesting to
observe that dynamic behavior of various continua are
difterent. For instance, with increasing interaction time,
the ionization to higher continuum states becomes faster
as compared to lower ones. Finally, the time behavior of
the ATI for larger values of N is easy to study, although
here we have only discussed the case of N =2. It can be
shown that the qualitative results will be the same except
that the population of higher continuum states will
exceed lower ones at an earlier time.

The time evolution of ATI spectra given above may be
understood as follows. At the beginning when the laser
intensity is so weak that all continuum-continuum transi-
tion channels are not "open, " the lowest-order perturba-
tion description is valid and the first continuum is most
populated. This is the case of t = —2. 5T in Fig. 1,
where a fast decrement of the size for consecutive peaks
is visible. By increasing the interaction time during the
rising of the pulse, the resulting instantaneous laser inten-
sity is increased. When it is strong enough to make
Z, ~(t) approach to unity, the coherent coupling channel
between the first and the second continuum states is

Interaction Time t (arbitrary units)

FIG. 2. Detailed time behavior of the photoelectron energy
distribution. The dashed curve is the ground-state population
and the parameters are the same as those in Fig. 1.
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open' and the second continuum is then quickly popu-
lated. When the laser intensity is further increased, so
that even Zz3(t), which is equal to Z, z(t)//3, is greater
than unity, the corresponding continuum states are
strongly coupled and the transition channel is open.
Meanwhile, the co, —co& transition may be saturated so
that more population current is accumulated in the third
continuum, as argued by Deng and Eberly. ' In this way,
more channels of coherent transition between two succes-
sive continuum levels are open when the laser intensity is
increased during the rising of the laser pulse, and the
most populated continuum is changed from low energy to
high-electron energy.

It is necessary to point out that, in the limiting case
when the laser intensity is very close slowly time depen-
dent (adiabatic), the picture given above regarding the
formation of the bell-shaped envelope may be deduced
directly from the results of Deng and Eberly. ' Under
the circumstance, the decay rates are described by the
square pulse results, ' ' ' but they vary with time
through the laser intensity. The relative instantaneous
ionization rates then change with the interaction time
and the peak switching is formed during the rise of the
pulse. In spite of the above equivalence in the adiabatic
limit, however, our results are not restricted to adiabatic
approximation, as the only assumption we have made is
that the pulse varies in time much more slowly than the

laser frequency, i.e., (dI/dt)/I «coo, which is often the
case for optical frequency. As a consequence, the present
results are more generally applicable than the adiabatic
results. Finally, the diagonal continuum-continuum cou-
plings may be included in the present work to deal with
the regime of higher field strengths, but the qualitative re-
sults will be unchanged. We will return to this problem
in future research.

In conclusion, we have extended previous theories of
ESA by considering the temporal effects of the laser pulse
in ATI ~ Neglecting the detailed continuum structure,
analytical expressions for ground-state population and
the photoelectron spectra are available for arbitrary pulse
shape and continuum-continuum couplings. In particu-
lar, we have taken Gaussian pulse and decreasing cou-
pling coefficients as an example to discuss the time evolu-
tion of ATI spectra. It has been found that different con-
tinua have different time behavior, as expected, and with
the size of the whole electron distribution growing, the
center of the peaks' envelope in ATI spectra is switched
successively from the lowest peaks to a certain higher one
during the rise of the pulse.
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