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Screening effect on the inverse bremsstrahlung in a plasma
in the presence of two laser fields
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The effect of Coulomb screening on the inverse bremsstrahlung heating process in a plasma il-
luminated by two laser fields is discussed. It is shown that, although the screening effect actually
lowers the Coulomb interaction, one might accomplish a reduction of the weakening effect and con-
sequently an enhancement of the collisional plasma heating, by illuminating the plasma with the
two electromagnetic waves having a difference in frequency close to the plasma frequency.

I. INTRODUCTION

There has been increasing interest in the study of the
interaction of intense radiation fields (e.g. , lasers) with
plasmas, ' regarding, for instance, laser fusion experi-
ments. In particular, the investigation of the rate of ab-
sorption, by inverse bremsstrahlung, of two laser fields
(namely, weak and strong fields) has been done by Fonse-
ca et al. , who have found the important result that the
rate of energy absorption is nonvanishing but rather large
in the regime of ultrahigh intensity of the strong laser,
contrary to the case in which only one laser is present.
They have shown that plasma heating by two laser fields
via inverse bremsstrahlung may be one of the most
e%cient mechanisms for heating a plasma to the desired
thermonuclear temperature. In their calculations, how-
ever, the effect of the screening of the Coulomb interac-
tion between the electron and the nuclei has been neglect-
ed. As is well known, the interaction of a charged parti-
cle with electrons is substantially lowered by Coulomb
screening, thereby affecting the energy absorption rate.

Therefore, the purpose of this paper is to consider the
effect of Coulomb screening on the collisional absorption
of two laser fields in a plasma, and to investigate the con-
ditions under which the weakening effect of screening
could be reduced.

The plasma is assumed to be infinite and homogeneous,
and we neglect the effects of external magnetic fields.
The laser fields are treated as classical plane electromag-
netic waves in the dipole approximation. This is
justifiable if the distance over which the amplitude of the
electromagnetic waves changes is large in comparison
with the size of the charges placed in the plasma, the ini-
tial Debye screening radius, and the amplitude of the
electron oscillations in the wave fields. The electron
states are described by the solution to the Schrodinger
equation for an electron in the fields of classical elec-
tromagnetic waves. The inverse bremsstrahlung process

is treated using a first-order perturbation theory, as in
Ref. 6.

In Sec. II we shall give the derivation of the screened
potential of a static charge Ze placed in a plasma subject-
ed to two electromagnetic waves. The transition proba-
bilities for the electron collision with a nucleus are calcu-
lated in Sec. III, and are used to write a kinetic equation
for the electrons. In Sec. IV we calculate the rate of
change in the kinetic energy of the electrons, and com-
pare it with the one of Ref. 6. Finally, in Sec. V we give
our conclusions.

II. SCATTERING POTENTIAL

The modification of Coulomb screening due to the
presence of two electromagnetic waves has been dis-
cussed in Ref. 7. Here we shall briefly outline the main
results. We begin by writing the Hamiltonian of our sys-
tem as

2

H (t) = g Pip+ —A( t) C,C~
—e g P(k, t)C, +„C~,

2&l C
p, k

where

A(t) =(cleat)Eicos(toit)+(c/co2)E2cos(co2t )

describes the two laser fields, and the scalar potential P
describes the field of the static charge and the self-
consistent fields. The Fourier components of this scalar
potential are given by the Poisson equation

k P(k, t)=4irtp(k) —4tre g(Cp kCp), , (2)
P

where p(k) is the Fourier component of the static charge,
and ( ), denotes averaging with the complete Hamiltoni-
an. Constructing the equation of motion for ( Ct, —kC~ ),
within the usual random-phase approximation (RPA),
solving it with the initial condition ( C kC& ), „=0,
and substituting into Eq. (2), one gets'

p(k )
4trp(k)

p
P

(E~—
e~ „)(t—t')

Xexp[ —ik a, [sin(co, t) —sin(co, t')] I

X exp[ —ik a&[sin(co2t) —sin(co2t')] I (3)
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Here a, =eE, /m~, is the electron oscillation amplitude
in the field of wave i, e =A' p /2m and f is the electron
occupation number. If we now define

P(k, t)=P(k, t) exp[ik a&sin(co, t)]

Accordingly, treating the electron scattering with a nu-
cleus as a perturbation and using first-order perturbation
theory, the transition-probability amplitude for a transi-
tion from state 1 (p, ) to state 2 (p2), due to the collision
with a nucleus, is found to be

X exp [i k a&sin( cozt )],
p(k, t) =p(k) exp[ik a&sin(co&t)]

X exp[ik a&sin(co~t)]

and substitute thetn into Eq. (3), we get

P(k, ~)=4~p(k, ~) /k'e(k, co),

where e(k, co) is the usual dielectric constant in RPA. It
then follows from Eqs. (4) and (5) that P(k, t) can be writ-
ten

a (1—+2) = ——f f d r dtgz (r, t)[ —e&0(r)]g&(r, t),

where $0(r) is the static component of Eq. (6) and g, (r, t)
are the solutions to the Schrodinger equation for an elec-
tron in the field of classical electromagnetic waves

i p ri p a(. t) '~p i/3(r)
v'V

P(k, t)=
n, S, l, m = —oc

J„+,(Z, )J„(Z, )J,. + (Z, )J, (Z, )

4'(k )exp[i (Ice, + m cu2)t ]
X

k e(k, ncu~+sco2)
(6)

where

e ~, eE] eE2a(t)= dt'3 (t') = sin(co, t)+ sin(~, t),
mc m co] mu&

where Z, =k a, (i = 1,2) and J„(Z& ) and J, (Zz ) are
Bessel functions of order n and s, respectively. Equations
(6) tell us that in the presence of high-frequency fields, the
potential, besides becoming anisotropic, has components
at the fields' frequencies and their harmonics. In particu-
lar, the static component $0(r) (i.e., where 1 =m =0) will
be

(7)

e'3 (t) fi'r
f3(t) =

4mc h 2m

Substituting Eqs. (7) and (10) into Eq. (9), and performing
the integrations, as in Ref. 6, we can write

+ oc J„(Z, )J,, (Z2 )47rZe
a (1~2)=2vri

2i."—— I ~p2 pi ee&p& pi n~i+sa' )

where

(27r) k e,it X6(e~ —e, —ph'co, voice, ), —(12)

+ J„(k a, )J, (k a~)

e tt „(ek,( nc01 +cso2 ) )

That is, the effect of two laser fields on the static potential
of a point charge can be taken into account by introduc-
ing an effective dielectric constant dependent on both the
frequency and the polarization of these fields. In the
zero-field limit (a, =0) only the n =s =0 term in Eq. (8)
survives, so that e,z reduces to the usual static dielectric
constant e(k, 0).

2w 2 2
4wZ, ,T(1~2;p, v)= J„'(Z, )J',, (Z, )

~

I'(P2 Pi) e,~,
X I l( E2 e ( ittAM i

—
vACO2 ) (13)

with Z, =(p2 —
p&) a, . From the well-known relation be-

tween the scattering amplitude and the T matrix, we can
then use Eq. (12) to obtain the transition probability per
unit time T(1~2;p, v), for the transition from state 1 to
state 2 with absorption (p, v) 0) or emission (p, v&0) of
~p~ photons co, and v photons ~z. One obtains

III. TRANSITION PROBABILITIES
AND KINETIC EQUATION

In Sec. II we have obtained the modification of the
Coulomb potential of a fixed-point charge in the plasma
due to the presence of two electromagnetic fields. Let us
now consider the electron scattering by these static
charges. In doing so, however, we shall consider only the
static component $0(r) of the potential (i.e. , l =m =0).
This is justifiable, first, because the alternating corn-
ponents of P(k, t) are weaker than the static one, and
second, in order to make a comparison with the usual in-
verse bremsstrahlung problem in one or two laser fields in
which only static potentials are considered.

BN, (p, )

at g T(p2 p&'p v)[N (pi) X;(pz)]

(14)

where we have assumed that the electrons are far from
degeneracy [i.e. , N, (p) « 1]. Letting the sum over p& be-
come an integral, assuming a maxwellian distribution for
the electrons, and using Eq. (13), Eq. (14) becomes

The kinetic equation for the number of electrons of
momentum A'p2, X„,(p2) is given in terms of the transition
probability as
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&f, (p~) " y, 2~ J„'(k a, )J'„(k a, )
=f(Pz) g i f d k "

2 2
(4~Ze ) [exP(Pirico, +vficoz)lksT 1—]„(2ir) & V k e,gk)

AkP2x5 Ak
PACO

~
VAC02 (15)

where we have written p& as pi =pz —k. In Eq. (15)f, (p) is the electron distribution function.

IV. RATE OF ENERGY ABSORPTION

The rate of change of the average kinetic energy of the electrons should now be evaluated. This is done using Eq. (15)
for the kinetic equation of the electrons. The result for the rate of change d(s) Idt is given by

d(z) c)f(pz) +" y 3 2ir J„(k a, )J (k a2)(4irZe )

X t exp(p, irico, + vfico2) Iks T —1]

p2 %2k
X 5 4 —P~~, —~~2—

m 2m
(16)

Upon taking the classical limit of Eq. (16) by letting
0, such that" d(s), , mu2f(v2) (co+)dk dU2

dt 2(2ir) (kii T)
A'p ~v, $( . . )f(p)~1' d'u( . )f(v),
m

P

(4vrZe )

/k gek)/

'2 '2
k a, ) k.a2

2 2

Eq. (16) becomes

d ( s ) + ~ mu2f (v2) (pcoi+vco2)
d u2 d3k

2(2ir) (ks T)

J„(k a, )J,(k az)
X(4vrZe )

k e,ir(k)
'

X5(k vz
—@co,—vcoz) . (18)

Expressions for the effective rate of energy absorption,
Eq. (19), can now be evaluated for the different regimes of
the two laser fields, namely, laser frequency co, weak and
laser frequency co2 weak, laser frequency co, weak and
laser frequency co2 strong, etc. Since we are mainly in-
terested in looking at the effects of screening on the col-
lision absorption rate, we shall restrict ourselves here to
the simple case of two weak-laser fields for which
k a; «1. In this case, the Bessel functions can be ap-
proximated by

X6(k v2 —co( —co2) (co+:—coi+co2) .

(20)

&ea

2J&(k a&)Jz(k. az)

1 co& /co

(k a, ) (k a2)

4 1 co& /6)
(21)

Replacing f (vz) by

In order to perform the integration in Eq. (20), we
should first specify e,Qk). Going back to Eq. (8) we see
that e,z simplifies noticeably when the two laser beams
have a difference of frequency nearly equal to the plasma
frequency, i.e., cu =co, —~2-co~, where ~~ is the plasma
frequency. In this case we recall that the high-frequency
dielectric constant is @=1—co /co, and since the dom-
inant term in Eq. (8) is the resonant one, we can approxi-
mate

J (k a)= ( —'k a) ~ x=p, v,1

(x!)
(19)

no(~vT )
' exp( —u i Ivr ),

where UT=2k&T/m, and performing the integrations in-
dicated in Eq. (20), one gets

and, consequently, only the p, v=+1 terms should be re-
tained; i.e., in the weak-field regimes only single-photon
processes are significant. Using Eq. (19) and retaining
only the p, v=1 terms (we neglect photoemission terms),
we get the following expression for d ( s ) Idt:

d(z) & irZ e no(a, kD) (azkD)

mvT(1 —co Ico )

where

(22)



314 O. A. C. NUNES AND A. L. A. FONSECA 40

1 2 —1/xx'(1 —x')e '~ dx,
0

and kD =m /UT is the Debye wave number.

V. CONCLUSIONS

Equation (22) is the expression for the effective rate of
energy absorption of the two weak-laser fields, which we
want to discuss. In order to compare Eq. (22) with the
results obtained previously without screening effects, we
have to find the expression for dc. /dt corresponding to
the limit of weak fields for the two lasers (here assumed
to be both weak fields). The expression for d E/dt in Ref.
6 is for strong and weak fields, respectively. In the case
of two weak fields, dc/dt is easily obtained, considering
Eq. (11) in Ref. 6 and the expansions of Bessel functions
in which the arguments are small, namely, I,, ((fico; (i.e.,
considering the terms for which p, v=+1). Solving the
indicated integrals we find that dc/dt ~ I&I2 I& I2 being
the field intensities. Comparing Eq. (22) of the present
paper with this new result (d(e) /dt is proportional to
the intensities of the two laser beams), we notice that they
differ essentially by the extra factor of Eq. (22), namely,

(kDa, ) (knai) /[I —co /(co, —coi) ] .

In the first place, when screening effects in the electron-
nucleus interaction are taken into account, the effective

collisional-energy-absorption rate varies with the intensi-
ties of the two laser fields squared, rather than being
linearly proportional. Second, as co =co, —~~2 gets
closer to the plasma frequency, d(E)/dt becomes in-
creasingly large, whereas, as one gets away from reso-
nance, Eq. (22) indicates that collisional absorption be-
comes a negligible heating mechanism. Physically, all
these features may be understood as follows. The intro-
duction of screening effects should, actually, weaken col-
lisional absorption. This is because the first consequence
of screening is a reduction in the strength of the Coulomb
interaction, and thereby a reduction in the effective num-
ber of electron-nuclei collisions. However, if the plasma
is illuminated by two radiation fields having a difference
of frequency nearly equal to the natural frequency of os-
cillation of the screening cloud cu, a resonant condition
is reached, with the result that the screening cloud is des-
troyed. This screening breakdown in turn ensures that
the electron-nuclei interaction will then regain strength,
and, therefore, an enhancement of the plasma heating by
the two radiation fields should be expected.
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