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Laser cooling of a trapped ion: A unified approach to the classical
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In this paper we derive the Fokker-Planck equation that describes the motion of a charged parti-
cle, trapped in a static harmonic potential and cooled by radiation pressure forces exerted by a laser
beam. This equation is then discussed in both the classical and quantum regimes. The model
adopted here is a simple one, in which one-dimensional motion and a two-level atom are assumed,
and the time evolution of the system is described in the quasiclassical limit, in which the quantum
nature of the photon exchanged between the particle and the field plays no role. We report relevant
graphs for the loss of kinetic energy suffered by the particle in the cooling process and estimates of
the lowest kinetic temperature that can be reached in these experiments.

I. INTRODUCTION

Optical cooling of atoms has opened new fields of
research in atomic spectroscopy. By using laser beams
focused onto a sample of atoms confined in a small region
of space, it has been possible to cool them down to very
low temperatures, which prevents atoms from escaping
the confinement region. Spectroscopic studies were then
performed on samples that included several millions
down to a few atoms, and even single-particle spectrosco-
py was made possible. '

This field of research is so lively now that we do not
even attempt to give a complete list of references of the
work done in the last decade. The reader may consult
several review articles that appeared recently in the litera-
ture. '

The physical processes that lead to cooling of atoms
under the action of laser beams are by now well under-
stood. The force exerted by light onto the atoms can
be classified in either of two classes: radiation pressure
forces, also called scattering forces, and dipole forces,
also called gradient forces. Both forces can be derived
from the formula

F= g P, VE, (i =x,y, z),

where P; and E, are the spatial components of the atomic
dipole and the electric field, respectively, and V is the del
vector operator which acts on the spatial coordinates.
But they are generated by quite different processes.

Radiation pressure forces stem from uneven distribu-
tions of the photons absorbed by the atom from the im-
pinging field and the photons that are spontaneously re-
emitted into the vacuum. When an atom absorbs a pho-
ton from the laser field, its momentum changes by the
amount Ak in the direction along which the field propa-
gates. The subsequent spontaneous emission occurs in a

random direction n, and it happens that the probability
of emission along n equals the probability of emission
along —n. Thus, on the average, the emitted photon
does not carry any momentum away from the atom. The
resulting net momentum exchange between the field and
the atom manifests itself as a force, the radiation pressure
force.

The gradient force, on the other hand, originates from
stimulated processes alone. In the presence of a laser
field made up of several plane running waves propagating
in different directions, an atom may absorb a photon
from one wave and reernit it into another. In the process
the atom changes its momentum by A'(k —k'), where k
and k' are the wave vectors of the waves from which pho-
tons were absorbed and emitted, respectively. Again, the
change of momentum manifests itself as a force, the gra-
dient force.

Scattering forces saturate when the field is so large that
the rate of photon absorption equals the rate of spontane-
ous emission, and the optical transition is bleached. At
these intensities of the laser field, cooling of atoms by
scattering forces is too slow to keep atoms confined in the
interaction region for a sufficiently long time, and
precooling of thermal atoms becomes a necessity.

Another possibility is to trap particles by means of
some trapping mechanism. Then laser cooling may act
on the particles for enough time to bring the atomic ki-
netic temperature to its ultimate limit. Charged particles
(ions) can be trapped by the electric forces of a radio-
frequency' or a Penning trap.

Another way of trapping particles is through optical
effects. This is much more difficult to realize, but also
neutral particles can be trapped by these devices. It has
been reported recently that optical trapping has been
tried successfully. ' Here, thermal atoms evaporated
from a metal plate subject to strong laser radiation are
precooled and thereby confined by several laser beams.
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Another strong laser beam, focused onto a small region
of space inside this optical confinement area provides the
last mechanism of cooling: precooled atoms that happen
to enter the region where light is strongly focused are
caught and retained.

The residual motion of cooled particles plays an impor-
tant role in this newly opened branch of atomic spectros-
copy. On the one hand, this motion sets the ultimate lim-
it of the kinetic temperature that can be reached in these
experiments. On the other hand, the low velocities of
cooled atoms are associated with long de Broglie wave-
lengths of their probability distribution, and quantum
collective effects may emerge. Moreover, in recent exper-
iments, " carried out on a few particles confined in a
small region of space, sudden transitions between stable
atomic configurations were observed. In these experi-
ments, a small change in some cooling parameter (typi-
cally the laser detuning from atomic resonance) caused
sudden jumps of the atomic motion from one to another
pattern. These effects, which resemble ordinary phase
transitions, also manifest hysteresis effects. '

The aim of this article is to present a detailed analysis
of the laser cooling of a single particle in a radio frequen-
cy trap. We will describe the motion of the particle from
the beginning of the interaction with the laser field to the
final stage where the particle's residual momentum is
very low, and the particle is confined in a small region of
space near the center of the attracting potential. We also
discuss the relevance of quantum effects in both stages of
the interaction and several graphs will be shown to
represent physical quantities of interest. The paper is or-
ganized as follows.

In Sec. II we will derive the equations of motion. Al-
though most of these results are known, we have inserted
this section for the sake of completeness.

In Sec. III these equations are discussed in detail. We
will show there how to simplify them in order to achieve
a single equation in the quasiclassical limit. Approxima-
tions will be made in two cases of interest, and in both
these cases the ensuing equations will be of a Fokker-
Planck type.

We will then follow the dynamical evolution of the sys-
tem in both the initial and final stages of the process in
Secs. IV and V, respectively. In these two sections we
will discuss simplified equations that allow for a better
understanding of the relevant processes that are involved.

Finally, we will discuss the obtained results and possi-
ble generalization of this work in Sec. VI.

II. KINETIC EQUATIONS

Our model consists of a two-level particle trapped in a
potential well V(r ) generated by the radiofrequency field.

Cooling is provided by a laser beam propagating along
the z direction. The electromagnetic field of the laser is
characterized by the amplitude Eo and the phase P of its
electric component

Hz =g g [p ~P+~a exp(ik r)+H. c. ]+ QA'ck a a
J J

(4)

Here, g stands for a (real) coupling term which is as-
sumed to be the same for each mode of the vacuum field
and k is the wave vector of the jth mode. The term p is
a geometrical factor that depends on the relative orienta-
tion of the oscillating dipole and the direction of the
emitted photon. The field operators a and a are, re-
spectively, the creation and the annihilation operators of
the jth mode.

Equations (3) and (4) do not contain terms oscillating
at twice the field frequency: the latter have been eliminat-
ed by using the rotating-wave approximation.

The last part of the Hamiltonian contains the atomic
operators for the internal and external (motional) degrees
of freedom

1
H~ =

—,'&~oa, + p2M

where o., is the diagonal Pauli operator associated with
the two-level system and p and M are the atomic kinetic
momentum and mass, respectively. Under the action of
the total Hamiltonian

H =H~ +H~ +HL + V

the density operator o. of the system evolves with time ac-
cording to the equation of motion

dO

dt
1

[H, o]. .

We are interested in the evolution of the atomic sys-
tem, not of the whole system (i.e., the atomic system and
the modes of the electromagnetic field). It is therefore
convenient to introduce a reduced density operator p as
the trace of o. over the radiation states

~o of the atomic transition.
This field is also assumed to be so large that it may be

treated as classical. Thus the interaction Hamiltonian be-
tween the particle and the field (2) is a purely atomic
operator:

HI = —
( P+ Eoe

'~+ H. c. ) .

In this equation, P+ represents the atomic raising opera-
tor (i.e., the operator that allows transitions from the
lower level to the upper level) multiplied by the atomic
dipole P. Coupling between the field and the atomic
external (motional) degrees of freedom arises because the
atomic position operator r appears as an argument of the
electric field E(r, t ).

Spontaneous emission is accounted for by the interac-
tion of the atomic system with the electromagnetic modes
in the vacuum. Thus the radiative part of the Hamiltoni-
an can be written as

E(r, t )
=Eo(r, t )exp[i/(r, t ) ]+c.c. (2) 0=Tri, [o.

I .

The field is assumed to be monochromatic, with a fre-
quency col resonant or quasiresonant with the frequency

Now we come to the representation of p. The density
operator depends on both the internal and the external
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&P ~~p~p )-'-)~ P p(p P (10)

The mixed representation is also widely used, and known
under the name of Wigner representation: we take
s =p+ u /2 and s' =p —u /2, where p = ( p'+ p" ) /2 and
u=(p' —p" ),

(
U Uv+ z, ~ a v

——,&)=s.oIv, ~I

and the Wigner representation is then the Fourier trans-
form of p ti(p, u):

degrees of freedom. Let s and s' be any valid couple of
labels that identify the external (motional) configuration,
and a and P two labels for the internal (electronic excita-
tion) configuration. The choice is obvious for the latter:
a and P may assume only two possible values, b for the
lower state and a for the excited state.

The external degrees of freedom, on the other hand,
may be represented in any of among several possible
choices. We may take s=r' and s'=r", and the density
operator has then the representation

&r', a p r",P) =p t3(r', r") .

We may also take s =p' and s' =p", to get

space (r, p) is normalized to 1, and its integral over r[p]
is the diagonal element p(p, p)[p(r, r)], i.e., the distribu-
tion function of p [r]. Equation (12) represents a useful
generalization of the Wigner representation to include
internal degrees of freedom.

Before passing to an explicit evaluation of the trace in
Eq. (8) we restrict the form of the electric field in (2) to a
special case. We will consider the field to be of the form

E( r, t ) =Eoexp[i ( k.r —cot t ) ]+c.c. ,

i.e., a running wave with constant amplitude propagating
along k.

According to the discussion in Sec. I, we are not taking
into consideration any deflection of the atomic motion
caused by the gradient force. Indeed, a single running
wave does not produce such efIect. The only cooling
mechanism allowed by (13) is due to (quasiresonant)
scattering forces.

The oA'-diagonal elements of p, in any spatial represen-
tation, namely, pb, (s, s') and p, b(s, s'), have a fast oscil-
lation with the field frequency coL, superimposed to their
intrinsic, much slower variation. The fast oscillation can
be factorized out by redefining the oft' diagonal elements
according to

1
W t3(r, p) = f du p ti(p, u)exp

(2~6')'
ir-u

(12)
p, „(s,s')=p, „(s,s')e (14)

When we deal with the motion of a structureless parti-
cle, there are advantages in using the Wigner representa-
tion. Indeed, the Wigner distribution function is real (al-
though not positive definite), its integral over the phase

Pb, (ss) Pb, (15)

The kinetic equations for the four components in the
Wigner representation can now be written as

p
at M ar

av .E
W, , (r, p) = —I W„, (r, p)+i

ar ap
o;k., — Ake' 'Wb, r, p—

2
—e ''Wb rp—

p
at M ar

av a
Wb b(r, p) = I d n q(n) W, , (r, p+iiikn)

ar ap

(16a)

-Eo —Ek.r W
Ak

e ',
b rp

2

haik—e' 'Wb, r, p+ (16b)

p
at M ar

av a — . r
W, b(r, p)= ib, ——

al ap ' 2

P E() Ak
W, b(r, p) —i W, , r, p+ Ak—Wbb r, p— ik-r

i3 +~ cl

at M ar
aV a — . r — . &E.

Wb, ( r, p ) = — i 6 ——Wb, ( r, p ) +i W, , r, p+ar ap ' '
2 ' '

A " '
2

Ak
Wbb r p

(16c)

e
—ik r

(16d)

In Eqs. (16), b, o represents the detuning of the laser fre-
quency from the atomic resonance Mp,

I = ~g'~ g p (g, )5(co, —coo)
J

Ao —COL COp (17)
and the function q(n) is the square of the factor p, nor-
malized to unity

I represents the rate of spontaneous decay from the
upper atomic level,

q(n)= p, '(n)

fd np, (n)
(19)



40 LASER COOLING OF A TRAPPED ION: A UNIFIED. . . 3109

These are the generalized Bloch equations that include
effects of the exchanged momentum on the atomic
motion. In the limit of large laser wavelengths, k~0,
they reduce to the ordinary Bloch equations. These equa-
tions have been derived by several authors, ' '' and we do
not report details of this derivation here. However, a few
remarks are in order.

Spontaneous emission coupled the upper level to the
lower level, whereas interaction with the laser field may
induce transitions in both directions (i.e., from the lower
level to the upper one, and vice versa).

When a photon is spontaneously emitted from the
upper level, the probability density of the excited state at
(r, p) is depleted, hence the damping term in (16a). The
ground level, on the other hand, gains population at (r, p)
when a photon is spontaneously emitted, but this may
happen only if the density of the upper level at
(r, p+Akn) (where n is the unit vector in the direction of
the emitted photon) is different from zero, see Eq. (16b).

Stimulated processes occur via the atomic coherences,
as in the ordinary Bloch equations. Here, the emitted or

W, &(r, p) =exp( —ik r) W, &(r, p), (20)

W„,(r, p)=exp(ik r) Wb, (r, p) . (21)

Because of the commutation relations

e +ijr p p =+1 e+ikr —- p +ikr
M ar M

(22)

Eqs. (16c) and (16d) transform into

absorbed photon has a well defined momentum Ak, which
is transferred to the atom. Notice that the change in
atomic momentum is only one half of Ak. This is due to
the fact that only p' or p" of Eq. (10), but not both, are
changed in the process, and p is defined as (p'+p" )/2,
see Eqs. (11)and (12).

The atomic motion affects the interaction between the
field and the atom through the terms exp(+ik r) in Eqs.
(16). This can be seen if these terms are included in the
definition of Wb, and 8' b. We define

p
Bt M 0r

av a = .— r = . PEo &k
W, ~(r, p)= ib, ——W, &(r, p) —i W, , r, p+

Br Bp '" '
2 ' '

A " '
2

A'k—Wbb rP

(23a)

p
8t M Br

BV 8 — I — P Eo haik
W„,(r, p) = — i b ——W&, (r, p) i — W, , r, p+0r Bp

A'k—~bb rp—

(23b)

where the detuning Ao has been redefined by i.ncluding
the Doppler shift p.k/M,

p k
M

(24)

Equations (16a), (16b), (23a), and (23b) represent a sys-
tem of kinetic equations for the particle trapped in the
potential V(r) and cooled by a laser beam. They contain
all the quantum features of the process, but in their
present form they are far too complicated to be solved,
even numerically. However, we can simplify them
without sacrificing generality.

Even when the particle has eventually reached a sta-
tionary regime, its kinetic momentum is much larger
than the momentum Ak exchanged with the field in each
elementary process of absorption or emission. We can
therefore pass to the quasiclassical limit of these equa-
tions. Namely, we assume that A'k is always a small
quantity when compared to p. Thus we can replace
W &( r, p+A'k ) by its Taylor expansion

=I W, , (r, p)

a'm. .+I QA' k J d nq(n)n, n
Bp; Bp.

(26)

where we have used the normalization of q ( n).
In order to maintain a closer parallelism with the ordi-

nary Bloch equations, we introduce the three components

U(r, p) = W', ~(r, p)+ W~, (r, p), (27)

sign for a space inversion, and the integral vanishes. This
is a manifestation of the fact that, on the average, the
spontaneously emitted photon does not carry any
momentum away from the atom. We need to keep the
second-order term, which will take care of the diffusion
processes induced by fluctuations of the direction of the
emitted photon

I f d n q(n} W', , (r, p+Akn)

a W. ~(r, p)
W &(r, p+fik)= W &(r, p)+A'k ' + . (25)

Bp

V(r, p) =i [ W, &(r, p) —W&, (r, p)],
W'(r, p) = W, , (r, p) —W»(r, p),

(28)

(29)
The first term of the series suffices everywhere, except

in the equation for W&„(r,p), Eq. (16b). Here, the in-
tegral that appears in the right-hand side is zero at first
order, because of the above mentioned symmetry of the
geometrical factor q(n), namely, q(n) =q( —n). Thus the
first-order term in the integrand function in (16b) changes

along with the particle spatial probability distribution,
which is the trace over the internal states of p,

f(r, p)= Tr~ [p(r, p)]= W, , (r, p)+ W~ ~(r, p) . (30)

The quasiclassical equations then read
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8 + +
at M ar

p
at M ar

av a — I
ar ap 2

av
ar ap

(31a)
A'k i) V 8 (f+ W)
2 ap ap

where we have expressed Q3 3 as a(A'k ), a being a
geometrical factor that depends on the spatial distribu-
tion of the spontaneously emitted photon.

In (35) we have introduced the vector X, defined by

= —b. U ——V+ 0W+Q
2 2 ap

(31b) %=(U, V, W),

the tensor

(37)

a p
at M ar

av a W= —QV —I (f+ W)
ar ap

a'(f+ W)
Bp, Bp,

—I /2

0

and the vector

0
—I /2 0,
—n —r

(38)

p a
at M ar

av a
ar ap

erik 0 V 8 (f+ W)
2 ~)p, . 'J

Bp, Bp

(31c)

(31d)

Y—= O, n f, —rf
2 ap

The difFerential operator in Eqs. (35) and (36) is

+ +zp a a
at M az ap

(39)

where we have introduced the diffusion tensor

Q, =(irik) f d nq(n)n, n

where the trapping potential has been explicitly written
as the harmonic potential

and the Rabi frequency
ZV(z)=y
2

(41)

Eo0=2 (33)

a p
at M ar

av a
W = —fI V —I (f+ W) . (34)

ar ap

III. FOKKER-PLANCK EQUATION

We will derive now a Fokker-Planck equation for the
process, with its possible simplification in the various
stages of the cooling.

The calculations will be carried out in a one-
dimensional space, in the direction along which the field
propagates. Moreover, we will assume that the trapping
potential is a harmonic potential. In the one-dimensional
space the equations have the same form as those derived
in the previous section, except for the diffusion term,
since now we consider only the axial projection of the
momentum taken by the atom when it emits spontane-
ously. The generalized Bloch equations are then written
as

We have seen the origin of the diffusion term, Eq. (26).
This appears in the equations for W and f. However, we
are interested only in the dynamical evolution of f, and
at the lowest order in Ak. Thus the quantum diffusion of
W, which brings a term in (irik) in the equation for f,
may be neglected in the quasiclassical limit. Equation
(31c) can then be replaced by

g=Z(z, p, t ),
irP(z, p, t),

(42a)

(42b)

(42c)

and we require that g and ir are constant along a classical
trajectory described by a point particle in the harmonic
potential. This is the same as requiring that the
transformed operator 2) should not contain 0/~3/ and
~)/Bit. Using this condition we find that Z and P in (42a)
and (42b) must satisfy the differential equations

c)Z p BZ BZ
at M az ap

—Xz (43a)

We will now find a formal solution to Eq. (35), and dis-
cuss it in the semiclassical limit we have adopted.

The right-hand side of Eq. (35) splits into two parts:
the first describes the free evolution of the generalized
Bloch vector, while the second represents a source
(nonhomogeneous) term. The hydrodynamic derivative
on the left side indicates that the internal evolution
occurs following a point particle that moves classically
under the action of the trapping potential. Then we can
replace the differential operator 2), as given by (40), by a
total time derivative if we transform the phase-space
coordinates z and p accordingly.

To this end, we map the z-p plane onto the g ir plane-
by means of the transformation

2)%=A 9+Y (35)
aw p aw ae
at+M a, a,

='Xz (43b)

and the equation for the particle distribution function f is with the boundary conditions assigned on the t =0 plane
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Z(z, p, O) =z,
P(z,p, O)=p .

The solutions to (43) and (44) are

(44a)

(44b)

7

X(r, )=5(r, , r, ). f '5 '(-r, r, ) Y(r )dr+X(r, )

0

Z(z, p, t }=z cos(vt )
— sin(vt ),

vM

P(z,p, t ) =p cos( vt )+vMz sin( vt ),

(45a)

(45b)

where v=&(y/M) is the angular frequency of the trap-
ping potential.

Equations (45a) and (45b) represent the two invariants
for a point particle moving along each characteristic line
of the differential operator 2), namely, the lines defined by

5(r, , ro).5 '(r', ro)=5 '(r', r, ) . (52)

Hence, for
~ r, —ro large enough in comparison with

I
—

1

Since W contains dissipative terms, 'Ll(r, , ro)~0 when

~r, —ro )) I '. Hence the infiuence of the initial condi-
tions on the value of X at time r, becomes vanishingly
small when ~, increases. Furthermore, by using the semi-

group property of V/, we can write

z =icos(vr)+ sin(vr),
vM

(46a} (53)

p =~ c o(sv r)
—vM( sin( vr ) . (46b)

It should be noted that (46a) and (46b) represent the in-
verse transformation of (42). In the new coordinates the
generalized Bloch equations read

d =A(g, ~, r) 8+Y(g, ~, r)
d7

(47)

and Eq. (36) is changed into

Bf Rk

a. 2

+ I a(haik )

sin( vr) 8 c}

2

sin(vr)
vM

sin(vr)cos(vr) 8
vM a(a~

+cos (vr) (f+ W) .2
a'

a772
(48)

d 5(r, ro) =A, (r) 5(r, ro) . (49)

This matrix is also called the fundamental matrix of
the system (47). If there were only the homogeneous
terms in (47), then X at the time r& would be linked to the
vector X at the time ~o by the relationship

9(r, )=5(r, , ro).9(ro) . (50)

In the presence of the nonhomogeneous terms, % is given
by

To solve (47) and (48) we must assign X and f on the
plane g, n at the initial time and then follow their evolu-
tion. However, the particular form of Eq. (47) allows for
its formal solution: we can express % as a function of the
vector Y, i.e., of f, and substitute it in Eq. (48) to find a
unique equation for f, which will result in a Fokker-
Planck equation.

This is made possible by the fact that the coordinates
g, n enter Eq. (47) as parameters.

Let 5(r, , ro) be the matrix that describes the free time
evolution of the vector X, i.e. , the matrix which is a solu-
tion of the equation

The lower limit of integration may also be taken as —~.
The fundamental matrix S' cannot be given an analyti-

cal expression when the matrix W depends on time, or,
more precisely, when for ~'W ~" the commutator
[W(r'), A(r" )] is different from zero. It can, however, be
evaluated numerically, by integration of the homogene-
ous system. In fact, it can be shown that each column
vector v—:(('M), , (5)2, (5)3 ) (j= 1,2, 3) of the ma-
trix 5(r, , ro) is the solution of the homogeneous system
that has initial conditions

[5(ro, ro)], , =6, ,
To find 5 '(r', r&) that appears in (53), one must in-

tegrate the homogeneous system from r, to r' (i.e., back-
ward in time), evaluate 5(r', r, ), and take its inverse ma-
trix. In this process, large numerical errors may easily
occur since S(r', r, ) grows exponentially with time. It is
advantageous to use a general property of these rna-
trices, " according to which the transpose of 5 '(r', r, )

is the fundamental matrix of the system adjoint to (49).
This has been done in the calculations described below.

The form (53) in which the generalized Bloch vector is
expressed in terms of Y and hence of the distribution
function f, is particularly useful in the discussion of the
quantum effects on the motion of the particle. We distin-
guish two cases. In one case, the particle's kinetic
momentum p changes appreciably during one lifetime of
the atomic transition. This is likely to happen in the ini-
tial stage of the process, in which the particles are inject-
ed into the region of space where the trapping potential is
active. The particles then have enough kinetic energy to
move around relatively fast, spanning most of the region
where trapping is active. As we will see later, in this
stage the quantum effects are negligible.

In the other case, the momentum of the particle is
small and does not change appreciably in an atomic life-
time. This occurs at the end of the cooling process, when
the particle is confined in a tiny region of space around
the center of the attracting potential, and its momentum
is close to its limit value. In this case, quantum effects
are relevant.

The kinetic momentum or its changes are large or
small depending on the effective detuning 5 associated
with it. According to (25) and (46b), the change 5b, of
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the frequency detuning in an atomic lifetime is given by

5b, =k +vg
M I

(55)
[a (~',~, ]]

I

0.5

(a)

We first discuss the form of the equation during the ini-
tial stage of the cooling.

At the startup of the process, the particle occupies re-
gions of phase space with g and 77 large enough to make
66)) I . Since the cooling mechanism works through
resonant absorption of photons, it is effective only for a
short time interval in which ~5b,

~
I . When the particle

crosses the region of phase space in which the latter con-
dition is satisfied, it is kicked off by the laser photons. In
the rest of the phase space, cooling action is much less
effective, or may even turn into a slight heating. Equa-
tion (53) shows that the generalized Bloch vector X at
time 7, depends on the distribution function f at earlier
times, the link being provided by the fundamental matrix

'(7', 7, ). In Fig. 1, we show the graphs for some ma-
trix elements of G '(7', 7, ), see Appendix A for a de-
tailed description of the parameters used in the numerical
calculations.

We see that the matrix elements oscillate wildly in the
first stage of the cooling. This is due to the large values
taken by A. Although 6 may change its value in the time
interval of a few lifetimes in which G (7,7, ) is worth
being calculated (is appreciably different from zero), the
oscillatory character does not change. It is therefore
plausible to assume 6 to be constant during the time in-
terval in which we integrate the system. This allows us to
give an analytical expression for Vl '(7', 7&):

6 (7,7i ) —exP[P(7t )(7i 7 )] (56)

7

%(7t)= f ex p[P( 7)( 7,

—7')]d7' .Y(7, ) . (57)
co

Although the proof is too lengthy to be included here, it
can be shown that the matrix JR(7&) has eigenvalues
whose real part are always negative and this in turn
implies that at the lower limit of integration
exp[&(7, )(7, —7')] vanishes and the integral in (57) con-
verges. Thus X follows adiabatically Y; the linear opera-

where the matrix A, is evaluated at the final time 7 &.

The large oscillations of the matrix elements of
'(7', 7, ) at times prior to 7t allows us to neglect

changes in Y that might have occurred in a few lifetimes
preceding T&. The history of Y is made less influential by
the erratic oscillations of '9 '(7', 7t). We are then led to
the conclusion that X can be expressed by
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FIG. l. (a) The matrix element [Vl '(7', 7, )], , as a function
of I 7' at a fixed value of 7, . The values of rr and g at 7'=7, are
20 and 0.5 in our units (see Appendix A. ) The solid line a
represents the behavior as given by full integration of the equa-
tion of motion for V/, Eq. (49), while the dashed line 6 represents
the behavior gi ven by Eq. (56). (b) The matrix element
[8 '(7', 7))]2 2 as a function of I 7' at a fixed value of 7, . The
parameters are the same as in (a).

tor that transforms the vector Y into the vector X can be
evaluated analytically, and we find

f exp[A(7, )(7, —7')]d 7'= —[P(7, )] ' —=$(7, ) . (58)

Equation (57) can then replace the vector X in the
equation for the Wigner distribution function f, Eq. (48).
To the lowest order in (A'k ) (i.e. , in the quasiclassical lim-
it discussed in Sec. II) we find that f satisfies the partial
differential equation of the Fokker-Planck type:

t) A'k sin( v7)=rn —cos(v7) (S)z 3f + I a(ttik ) cos(v7)a 2 a
r)7 2 vM a~ —23

a7T

sin( v7)
vM ag

2

[ I —r(~), , lf

A'k II
2

a
cos( v7)

sin(v7)
vM t)(

2

(g), g, (59)
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(&)2 p=
4A + I +20 (60a)

where (4')2 2 and (g)z 3 and (4)3 3 are elements of the in-
verse matrix of —JR, see Eq. (58), and are given explicitly
by

the lowest order in the parameter Ak, which is the small-
est amount of momentum exchanged by the field and the
particle in each elementary process.

Let us first derive the equation for f to the first order
in irik, by writing the source vector Y(r& ) in terms of f(r)
to zero order in Ak. We find

(&)p 3=
4A +I +2Q

(g) = r'+4K '
I (4Z + I +20 )

(60b)

(60c)

Y(r, )=(0,0, —I f(~))
since f(r, ) differs from f(r) by terms in A'k. Inserting
this expression into (53) and the result into (48), the equa-
tion for f reads

Using these formulas we can write the Fokker-Planck
equation in a compact form,

r)f Rk sin( vr ) 8 8

a fikA (r—)f(r)
a7.

where A(v. ) is the operator

(62)

+I (erik) (a+ —,') A(~) =—
2

acos(vr) sin(vr) 8
vM Bg

cos(v~) sin(v~)

ag

2

X [1—I (eV)q 3]f . (61)

In the last stage of the cooling process, on the other
hand, the kinetic momentum of the particle is very small,
and the particle Auctuates around some point which is
very close to the center of the attracting potential. Fluc-
tuations are caused by quantum diffusion, which plays an
important role in this stage of the process.

When the particle has reached this stage, Eq. (57) does
not apply any more: the Bloch vector X at time r, does
depend on the values it assumed at times prior to ~„and
% does not follow adiabatically the vector Y. This is be-
cause the evolution matrix Vl '(r', r, ) does not oscillate
in time any more, so that correlations of 23 at different
times may arise. In spite of these difficulties, we can still
determine a Fokker-Planck equation for the process at

7
X [Vl '(r, , r)]~ 3dr, .

Next we determine the diftusive terms in the equation
for f by keeping the vector Y(r, ) up to the first order in
A'k,

Ak a
Y2(~, ) =0 cos(vr, )

2 a7T

sin( vr, ) f(r), (63a)

Y3(w))—:—I f(r))

= —I 1+irik f A(r2)dr, f(r) .
7

(63b)

The expression of Y3 comes directly from Eq. (62) and in
both (63a) and (63b) we have replaced f(r') by f(~) be-
cause, as remarked above, this introduces corrections of
higher order in Ak.

Substituting (63) into (53) we obtain the Block vector %
to the first order in Ak,

X,(r)= —I f [8 '(r„r)], dr, f(r) —fikI f [8 '(r„r)], f A(w )dw dr, f(r)
QO QO VI

AAk a+ [Vl '(r„~)];2 cos(vr, )
QO a7T

sin(vr, )
dr, f(~) . (64)

Although we managed to find an expression of X;(r) in terms of the distribution function f at the same time r, the
effects of the past history off manifest themselves in the second term in (64), whereas the first and third terms are a nat-
ural generalization of the adiabatic following approximation discussed above.

Replacing the components of the generalized Bloch vector in (48) by their expressions (64), we find the Fokker-Planck
equation for the process in the quasiclassical limit

af acos(vr)
7 am

sin(vr) 8 aFf + cos(vr) sin(vr)
vM Bg

a
cos( v~)

sin( vr)
vM Bg

a+ cos(vr) sin(vr)
vM Bg

cos(vr) +Mv sin(vr) C&f, (65)

where the coefficients are given by

Ak QIF= [Vl '(—r, , ~)]2 3d~, , (66a)
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D—:1 a(A'k) 1 —1 f [VÃ '(r, , r)]3 3dr, +
2

f ['9 '(r„r)]2 ~cos[v(r —r, )]dr,

t2
AkAI [5 (r„r)]~ 3 cos[v(r —r2)] [5 (r3y12)]p 3dr3dr2dr, ,

2 Qo 7 ] oo

2

[8 (r„r)]~ 2sin[v(r —r, )]dr,
Mv

2

(66b)

A'k AT

2
[6 (r, , r)]~ 3 sin[v(r —r2)] [6 ( r3, rz)] 2,d r,d rzd r, .

—
1

Mv 7 oo
(66c)

The Fokker-Planck equation (65) will be worked out in
Sec. V, where approximate analytical expression for the
matrix elements '9 '(r', r&) will be reported for two
cases of physical interest.

It should be noticed that we could have derived the
basic equations in both classical and quasiclassical cases
by using the "old" variables z and p instead of the "new"
ones g and rr Howe. ver, it turns out that the description
of the process in the initial stage is much simpler if car-
ried out in the variables g and n as we will show in Sec.
IV. Moreover, the new variables have allowed us to treat
both stages of the process in an unified manner, pointing
out the physical meaning of the various approximations
made in this paper.

Generalization to include several particles or three-
dimensional motion should also be possible in the new
coordinates.

IV. INITIAL STAGE OF THE COOLING PROCESS

The Fokker-Planck equation (59) derived in Sec. III
conserves the total probability f ff d~dg during the
motion of the particle in the trap. This can be seen by
rewriting the equation as a continuity equation,

potential. The motion would be periodic if there were no
perturbation, namely, if there were no cooling mecha-
nism. For a periodic motion, g and n would be constant
in time.

Notice that g and rr play an interchangeable role in this
treatment. Indeed the same orbit in the harmonic poten-
tial can be characterized by different couples of values for
g and w, the only difference being the phase of the parti-
cle along the same trajectory. We will see a consequence
of this fact later in this section, when we discuss the
motion of the particle subject to laser cooling. Suffice it
to say now that we can always take the initial conditions
in such a way that (=0 and 7r equal to the maximum ki-
netic momentum of the particle in its first orbit in the
harmonic potential.

The light pressure force acts on the particle as a small
perturbation. Its action is so small that we can consider
g and rr to be constant in a time of the order of the period
of the harmonic trap. This allows us to evaluate the
effects of drift and diffusion on the particle motion by
averaging over one harmonic period. Thus we define the
averaged drift coefficients

1 rz2 sin(vr)—X)((,~) =—— 2)dr
T —r» vM

Qf C)2( 8J
a+ay a

+ =0, (67)

sin(vr) a2)f + cos(vr)
vM a7T

sin(vr)
vM ag

(68)

where the probability current 2—= ( J&, J ) in the phase
space has the components

II I Ak &&2 sin(vr) d7,
TvM —r)2 A( g, vr, r)

T/2
2) (g, ~) = ——f cos(vr)2)dr

T —T/2

fl 1 haik r» cos(vr)
7 )T —T /2 &(g, rr, r )

and the averaged diffusion coefficients
1 &i2 sin (vr)

Dr ((g, ~)—:—f D dr

(72a)

(72b)

aJ = —cos(vr) X)f + cos(vr) sin(vr)
vM ag

(69)

2A I (A'k) (a+ —,') rq~, &( )

Tv M —ri2&(g, ~, r)

(73a)
and 2) and D are the drift and diffusion coefficients

"nr(z), ,

D =r(ek)'(a+-,')[I —r(g), , ] .

(70)

(71)

1 f &» 2cos(vr)sin(vr)
T —rid vM

—4Q 1 (A'k) (a+ —,')
TvM

When the particle is first injected into the trap, it starts
an oscillatory motion under the action of the harmonic

sin v7 cos v7 j )&(g, ~, r)
(73b)
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D (g, ~) —= —I cos (vr)D drT/2

T —T/2

2Q I (A'k )'(a+ —,') Trz cosz( ) d1
T —T/2 ) W, 7

(73c)

narrow region around ~=0. At sr=0 it diverges. The
spread of the particle's momentum when a is small is
given by

I /2

(78)

+ I +20, (74)

From Eqs. (72) and (73) we can get an estimate of the
point where quantum-mechanical effects sets in. Let us
assume (=0 and m. =~o at the initial time, i.e., the parti-
cle is injected at the center of the harmonic trap with a
velocity V=+0/M. Due to the cooling effects, ~ varies
with time following the law

(75)

In Eqs. (72) and (73), T is the period of the harmonic
trap and g and 7r are kept constant in the integrand func-
tions. The function A(g, rr, r) is defined as

A(g, rr, r)=46, +I +211
2

k=4 bo — [rr cos(vr) —Mvgsin(vr)]

in which the momentum initial spread has been neglect-
ed. When (hm) is of the order of vr, quantum-
mechanical effects cannot be neglected any longer.

Figures 3(a) and 3(b) show the graph of [(bvr) ]'~
versus ~ and its crossing point with the line
[(Am) ]' =rr. With the numerical values used in our
calculations (see Appendix A) we see that quantum effects
can be neglected as far as ~ is much larger than m, . We
will now discuss the equations of motion in this range of
validity, deferring the discussion of the quantum effects
until Sec. V.

In the initial stage of the cooling process, the motion of
the particle under the combined action of the harmonic
potential and the radiation pressure, is described by a

0.3

where 6t is assumed much larger than T, so that we can
use the expression (72b) for 2) in (75). The spread (Arr),
in the same time interval 5t, increases according to

(76)

The ratio of these two equations gives the incremental
spread when the particle's momentum ~ varies by 6~

0.225

0.15

0.075

5( ~sr )'
5vr

D
(77)

In Fig. 2 the ratio D „/2) is plotted versus rr. This
ratio, as expected, is very small everywhere except in a

1 2.5 25 37.5 50

0.3

Dx, n

0.8

0.225

0.15

0.5

0.075—

0.3

0.06 0.12 018 "c 024 0.3

0.25 0.5 0.75

FIG. 2. The ratio of the particle momentum spread to the
particle drift, as a function of the particle's kinetic momentum.
g is taken equal to zero, the laser detuning ho is —2. 5I, and the
Rabi frequency B is 0.5I .

FIG. 3. (a) The particle's momentum spread vs the particle's
kinetic momentum. The parameters are the same as in Fig. 2.
(b) Magnification of (a) in the region of small particle momen-
tum (graph a). The straight line b crosses the curve in a point
~, where the particle's momentum spread equals the particle's
kinetic momentum, defining a threshold for quantum eA'ects to
set in.
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linear partial differential equation of the first order for
the Wigner distribution function. This is to be dis-
tinguished from a Liouville equation for a classical distri-
bution function, however, since in the latter case the dis-
tribution function keeps a constant value along the trajec-
tories in the phase space (which are the characteristic
lines of the Liouville equation), whereas the Wigner dis-
tribution function does not.

A linear, first-order differential equation, such as (59)
after cancellation of the second order derivatives, may be
solved by the method of the characteristics. Starting at
the initial time ~=0 with the distribution function
fo(g, n), we can follow the time evolution of f by solving
the system of total differential equations

and g, for which

yg + =2E =const .
M

(82)

f T/2 gvM cos(vr)+7r sin(vr)
d7—rr~ &(g, ~, r)

1 I T/2 d['rrcos(vr) —jvM sin(vr}]
V —T/2 A(j, ~, r)

Hence

(83)

In Eq. (82), E is the energy of that orbit.
As a consequence of this fact, Xl& and 2) in (81a) and

(81b) are not independent of each other. This can be
shown by first noting that

dg II I Rk
sin v7

d r vM&(g, rr, r)
n'rek

dr &(g, vr, r)
df 0 I haik k
dr A(g, rr, r) M

where, in (79c), %'(g, rr, r) is defined by

(79a)

(79b)

(79c)

(80)

1 — 1—2) = —2) —=2) T
7T

(84)

d~ =~-
dg

(85)

The functions 2)&, 2), and 2)r are evaluated in Appendix
B.

Because of (84), the path in the phase space (g, ~) fol-
lowed by the particle can be found by solving the
differential equation

=X)((g,vr), (81a)

=2),(j,rr),
d7

(81b)

with 2)- and 2) defined in (72a) and (72b).
To maintain probability conservation, Eq. (79c) must

also be replaced by

df 22)g B2)+
dr Bg B~

(81c)

Equations (81a) and (81b) can be interpreted as the classi-
cal equations of motion of the particle's center of mass.
They are written for the slowly varying coordinates ~ and
g, rather than the usual coordinates x and p. Numerical
solution of (81a} and (81b) is much faster since the rhs of
these equations do not contain terms oscillating at the
harmonic frequency.

As noted above, a single orbit in the phase space can be
characterized by infinitely many couples of coordinates ~

and &(g, w, r) is defined in (74).
Along the characteristic line g(r), ~(r) which is the

solution of (79a) and (79b) with initial conditions go, ~o,
the distribution function f varies according to (79c), with

f=fo(go, ao) at the initial time. Total probability

I ff d ~ d g is conserved because of the continuity equa-
tion (63), with the probability current J' given by (67) and
(68), with D =0.

As noted earlier in this section, radiation pressure acts
on a time scale that is much longer than the period of the
harmonic potential. Hence we can take the average over
the trap period of the right-hand side (rhs) in equations
(79a) and (79b). These equations then become

which has the solution

~ =const .
7T

(86)

The particle's coordinates ($, 7r), therefore, under the ac-
tion of the radiation pressure, change while keeping their
ratio constant.

The orbit in the phase space is a straight line passing
through the center of the attracting potential. Cooling is
achieved when the particle moves towards the origin,
heating when it moves outwards.

We can choose any of these straight lines to describe
the particle's motion. They just differ by the phase of the
harmonic oscillations, i.e., by the choice of the initial
time taken as ~=0.

Our choice is (=0 at the initial time. This allows us to
derive the rate of change of the particle's energy

dE
d7-

=2%z-E . (87)

We would have arrived at the same equation also by
choosing ~=0 as the initial condition. This is obvious
from the fact that 2)r depends on E rather than on g and
~ separately, as shown in Appendix B.

In Fig. 4 we show Xl (/=0, rr) versus 7r. The detuning
Ao is chosen negative. We see that ~ and w have opposite
signs everywhere. Thus ~~~ decreases in time, i.e. , the
particle gets cooled. Changing the sign of Ao results in a
change of sign of 2)„, and the particle's kinetic momen-
tum ~vr~ increases at all times, i.e. , the particle gets heat-
ed.

From Fig. 4 it is apparent that the maximum rate of
momentum transfer from the field to the particle is
achieved when n=b, /(ko/M). This fact has a simple ex-
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FIG. 4. The drift coefficient N vs ~ in the classical regime.
The parameters are the same as in Fig. 2, i.e., /=0, ho= —2. 5I,
and 0=0.5I .

FIG. 6. Energy damping rate vs energy in the classical re-
gime. We see that the damping rate gets its largest value when
the Doppler shift due to the particle velocity compensates for
the laser frequency detuning. Parameters are (=0,
Ap= —2.5I, and 0=0.51 .

planation. The kinetic momentum p oscillates between—~ and ~ in one period of the harmonic motion. The
peak at vr=b, o/(k/M) arises because the particle spends
the largest fraction of the period in a condition of reso-
nance with the field, i.e., in a condition in which the
Doppler shift compensates for the frequency detuning of
the laser field. At resonance, momentum transfer is max-
imum.

The resonance peak in Xl is broadened when the laser
intensity grows, as shown in Fig. 5.

In Fig. 6 we show the function 22)T(E) versus E, for
b, o negative. The function MT(E) is the instantaneous
rate of change of the particle's total energy. Here, too,
the resonance peak is evident. The rate at which energy
decreases (when the laser detuning is negative) is not con-
stant ~ As a result, the energy does not decay exponential-
ly with time. Rather, it falls ofF to zero with an approxi-
mately linear behavior with time, as shown in Fig. 7. In-
creasing the laser power does not modify appreciably this
feature.

When the detuning is negative, i.e., when the radiation
pressure force acts on the particle as a cooling force, all
the dynamical variables in this approximation goes to
zero when the time goes to infinity. But of course this ap-
proximation breaks down well before this ultimate limit
is reached. The last stage of the cooling must be treated
quantum mechanically, as discussed above. Section V is
devoted just to these problems.

V. QUANTUM EFFECTS

The Fokker-Planck equation derived in Sec. III [Eq.
(65)] describes the quantum behavior of the ion in the last

0

In(E }
-2

0.00035 -4 (e)

0.000175 -6

-8
1.5x10 3x10 4.5x1 0

r~

Sx10e

-0.00035
40 80

FIG. 5. Same as in Fig. 4 but in the strong-field regime (Rabi
frequency Q =7.5I ).

FIG. 7. Cooling of the particle motion in the classical re-
gime: the logarithmic plot of the particle energy vs I ~. We see
that cooling occurs over a period of time of the order of several
millions atomic lifetimes. In this graph the energy would go to
zero for any negative value of the laser detuning, regardless of
the initial kinetic parameters of the particle. Here, 0, =0.5I
and Ap = —5I (graph a ), Ap = 3.5I (graph b ), Ap = —2. 5I
(graph c ), Ap= —1.5I (graph d ), and hp= 0.5I (graph e ).
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stage of the cooling process, where the kinetic momen-
tum of the particle is so small that diffusion effects play a
major role. However, the coefficients (66) in Eq. (65) have
a complicated dependence on the variables g, ir, , and r
to make Eq. (66) impossible to be solved analytically, and
even difficult to be solved numerically.

Useful limit cases can be readily derived from Eq. (65),
and the form into which it has been cast makes such
derivation simple enough. We discuss in this section two
limit cases, which have been worked out by other au-
thors. For the second case we also describe a method of
solution that deals directly with the physical quantities
that are related to the data measured in the experiments.

r))v .

(ii) The Doppler shift must change, in a time I ', at
most by a fraction of I, what yields

r')) p v
k
M

(88b)

in the assumption that 5 is made up mostly by the
particle's velocity p/M. When both conditions (88) are
satisfied, the free, damped evolution of the vector %, as
given by Eqs. (50) and (49), can be evaluated at a fixed
value of 6, what makes W independent of time. The fun-
damental matrix Vl '(r, , r) is then found by integration

5 '( ,r, ~)=e px[A( r)( r r, )] . —

Since the matrix Vl '(r„r) relaxes to zero in a few
lifetimes I ', and, as assumed in (88a), I is much larger
than v, we can expand the slowly oscillating functions
cos(vO) and sin(vO), in the expression (66) for the
Fokker-Planck coefficients, in power series of vO, and re-

A. The limit case of a heavy ion

This limit case has been worked out in the literature'
in an attempt to describe the particle's motion in all
stages of cooling, keeping the quantum features, such as
diffusion, in it. Not surprisingly, the main approximation
made in this limit case resembles the one we made in Sec.
IV to find the classical motion in the early stages (large
kinetic momentum) of the cooling process.

The heavy-ion limit case is defined as the case in which
the particle's mass M is so large that the forces acting on
it are unable to modify appreciably its kinetic momentum
in a time of the order of a few lifetimes. If this is the
case, the absorption and reemission of a photon from and
to the electromagnetic field occurs while the Doppler
shift, associated with the particle's velocity, is practically
unchanged, i.e., its change is much smaller than the natu-
ral width of the optical transition.

C)f the two forces acting on the particle, i.e. , the radia-
tion force and the trapping force, the latter is, by several
orders of magnitude, the largest one. Thus we need to
consider only variations in the Doppler shift induced by
the harmonic (trapping) force. Two conditions need to be
satisfied.

(i) The change of the Doppler shift 6b, in a time I
must be much smaller than 6 itself, i.e. ,

We find the following expression for the coefficients in
the Fokker-Planck equation: the drift coefficient is given
by

(91)

and the diffusion coefficients are

D =la(kk ) [1+1 [W '(r)), 3]
2

[W '(r)]

2

+ [W (r)], 3[% '(r)]~ 3, (92a)

AkAI
M

[A. (r)]~ 3[%, '(r)]~, . (92b)

When we transform back to the "old" variables z, p,
and t, we see that W and its inverse depends only on p.
The Fokker-Planck equation reads

—+ —Mvz fP 0 2 (3

Bt M Bz Bp
)

a2 a2Ff+ Df+ 4f .
Bp Qp Bp Bz

This equation has been found and discussed by several
authors '' ' for the free ion (v=0). The case of a
trapped ion (v&0) has been treated in Refs. 13 and 17.
We have derived it here for the sake of completeness.
The reader may consult these articles for greater detail.

Although Eq. (93) might serve as an investigation tool
for the behavior of the trapped ion in all stages of the
process, its utility is limited by two factors.

(i) In the early stages of cooling, when the kinetic
momentum is still very large, Eq. (93) introduces un-
necessary features such as quantum diffusion, which play
a marginal role in the process at that stage, as pointed
out in Sec. IV.

(ii) When the cooling process has reached its ultimate
limit, Eq. (93) can be replaced by another equation, which
does not suffer from any limitations, except that it is valid
only near the equilibrium point.

B. Quantum eKects in the last stage of cooling

As shown in Sec. IV, the particle, in the regime where
the classical equations of motion do apply, is pushed to-
wards the center of the attracting potential, losing its ki-
netic energy by scattering photons of the impinging laser

tain only the first nonvanishing terms. The integrals in
(66) can be evaluated by using the relationship

f exp[A( r)( r r—
, )](r—r, ) dr,

=( —1) +'m ~[A '(r)] +' (90)
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beam. According to the classical laws, the particle will

eventually sit at the center of the trap with zero kinetic
energy; and this point in the phase space is stable under
all conditions.

But of course classical mechanics breaks down well be-
fore such configuration is reached. The breakpoint
occurs for values of the kinetic momentum that attain to
the Lamb-Dicke limit, ' i.e., to the limit case in which
the residual Doppler effect induces a shift of the reso-
nance condition, which may be considered small when
compared to the natural linewidth.

Within our theoretical framework, this means that the
fundamental matrix V/ will follow a law of the type

0 —1 0
1 0 0
0 0 0

(95)

and g(r) is the residual Doppler shift,

kg(r)= [~ cos( vr) —vMgsin(vr)] .
M

(96)

Ordinary techniques in perturbation theory allow us to
write the first order solution to (94) as

T5,(r, rp) =Sp(r, rp). 1+ d~'g(r')5 p
'(r', rp)

0

5(r, rp) = [Ap+X~(r)].5(r, rp),
a

a7
(94)

X 5p(~', rp)

where the zeroth order solution Sp(r, rp) is

(97)

which is a convenient way of rewriting Eq. (49) with Ai
replaced by the sum of two terms, the first of which is the
evolution matrix at equilibrium ((=0, =ir0), and the
second a small perturbation. In (94), X is the off diagonal
matrix,

5p(7 rp)=exp[Jap(7 7p)] (98)

This is all we need to find the drift term in the Fokker-
Planck equation. Replacing ('M ')2 3 in (66a) by the cor-
responding element found in the inverse matrix
5 '(r, rp), we find

Aknr, Aknr k
(Wp ')~, +

2 M
[ir cos(vr) —vM( sin(vw)] I Re[(&p+ivl ) '] L Ap' }i3.

aknr k+
2 M

[nsi (nv)r+vMgc so( v)r]{lm[(&p+ivl ) '] X M p 'Iz 3 (99)

where we have used the relationship

f dr'5 p
'(r', r )exp[ i v(r —r') ]= —(/Mp+i v 1 )

(100)

would be possible to evaluate these terms to any order in
g(r). However, in view of our approximations, there is
no need to go beyond the lowest order.

The drift term, Eq. (99), takes a particularly simple
form in the old variables z and p

Details of these calculations can be found in Appendix
C. We evaluate the diffusion coefficients D and 4 to the
lowest order in the expansion (97), namely, we replace 5
by 5p in (66b) and (66c). This is both convenient and
plausible, since higher-order corrections in g(r) are small
in the Lamb-Dicke limit and can be neglected in our con-
text. This gives

F =Fo

where the constants Fo, b, and v, are given by

A'kAl (~ ))

I Re[(&p+ i v1 ) '] X.(A, „') I ~ 3,

(102)

(103a)

D=I a(erik) [+I (JNp')3 3],
2

Re[(&p+ivl) '], ~ v2 = —
t Im[(&p+ivl ) '].X (JR p

') ), ,

(103b)

2

—Im[(&p+ivl) ']~,(A, p ')~ i,
(103c)

2

Im[(&p+ ivl ) '], ,Mv

(101a)
The (constant) diffusion coefficients D and N pass unal-

tered into the Fokker-Planck equation written in the old
variables z and p. This equation now reads

AkAI
2

2

[Re[(Atp+ivl ) ']2,
Mv

( 4t p )p 3 I(JR p )2 q
. (101b)

p
a~ Ma

—M(v +v,') z— Fo a

M(v +v, ) ~p

bpf+ Df+ &Pf .
a a2 a2

Bp Qp Bp Bz
(104)

Details of this derivation are in Appendix C. We em-
phasize that, in the present formulation of the problem, it

The physical meaning of Eq. (102) is apparent. The ra-
diation force and the trapping force are intertwined by
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the nonlinear response of the system to their combined
action. In the linearization process, effective restoring
forces emerge: a friction term —bp and an additional
trapping term —Mv, z. The constant term Fo merely dis-

places the equilibrium position from z =0, as given by the
classical theory, to the new position z =Fo/Mv, , where

v2=v2+v2 .
1 C

(105)

Foq=z-
Mvi

(106)

Thus, at equilibrium, both (q ) and (p ) get a null value.
We make the ansatz that the distribution function be

described at all times by the above quantities. By intro-
ducing the variables

5q'(r ) = &(q —
&q &)'&,

5p'(r ) = ((p —(p ) )'),
5r(r )=((pq —(p )(q ) )),

(107a)

(107b)

(107c)

The friction constant b is positive (i.e., the term bp—is
frictional indeed) only if b,0&0. On the other side of the
resonance condition, i.e., Ao) 0, the constant b is nega-
tive, and the term —bp pulls the particle out of equilibri-
um, as expected on physical grounds.

Equation (104) has been derived in Ref. 20. It de-
scribes an Ornstein-Uhlenbeck process ' which general-
izes the Brownian motion to include the effects of a po-
tential force.

Although Eq. (104) can be solved analytically by stan-
dard methods (see, for instance, Ref. 22), we prefer to
deal with quantities that are directly related to the pa-
rameters measured in actual experiments.

From the known, exact solution of (104) we only bor-
row the fact that the stationary state has a gaussian dis-
tribution function in both space and momentum vari-
ables. We assume, accordingly, that the distribution
function f at equilibrium is fully defined by the
knowledge of the average values (z) and (p ), along
with the quantities that measure the relative spread,
(p —(p)( », &( —( &)'& d ((p —(p))'&.
simplify our notations, we define a new spatial coordinate
q, whose null point is displaced from the origin by the
amount Fo /M v&,

According to our assumption, these equations form a
closed set amenable to an analytical solution. They are
completely equivalent to the Fokker-Planck equation
from which they have been derived.

The two averages (q ) and (p ) evolve with time with
characteristic rates given by the solution of the secular
equation

—b —
A,

—Mv 2
1

1/M
=0

which yields

b+Q—b 4v,—
~1,2

(110)

These rates are both negative (i.e. , the system ap-
proaches equilibrium) if b ) 0, as expected on physical
grounds. Overdamping occurs if b ) 4v&, otherwise (q )
and (p ) approach their stationary value with a damped
oscillation of angular frequency [v&

—(b /4)]' . The
three other quantities in Eqs. (109) approach their sta-
tionary value

Mb
(112a)

(5p ),q= —, (112b)

(5r), =0, (112c)

which is a solution of (109) with the time derivatives set
equal to zero. The characteristic rates of approach to
equilibrium are the roots of the secular equation associat-
ed to (109). These are

p) —2A, i

p2 —2A, p

(113a)

(113b)

p3= —b . (113c)

Again, the sign of b determines whether the particle
reaches equilibrium or not. As before, a positive value of
b ensures that the equilibrium condition is eventually
reached. The general solution to Eqs. (108) and (109) is

reported in Appendix C. In Fig. 8 we show the graphs of
the average value of total energy

we arrive at the following set of equations:
(E & =-'Mv'(q') + ( ')

1 2M
(114)

(q)=
d
dt

&p)= —M ', (q) —b(p&,

d q 26r
dt M
d

6p = —2M v, 6r —2b 6p +2D,
dt

—5r = —Mvi6q —b6r+N,
dt M

see Appendix C.

(108a)

(108b)

(109a)

(109b)

(109c)

as a function of time in the last stage of cooling. Since
the term N in (112a) can be neglected, as shown in Ap-
pendix C, we see from (114) that equipartition of energy
is satisfied at equilibrium:

(5p'),
(E ), =

—,'Mv, (5q ), +

D D D
2Mb 2Mb Mb

(At equilibrium, both (q ) and (p ) are zero. )

The calculation of the limit value for the energy, Eq.
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in(E)
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1x10 s 2x10s 3x10s 4x10s
r~

5x10s

FIG. 8. Cooling of the particle in the quantum regime for the
same values of the Rabi frequency as in Fig. 7, 0=0.5I and
Ao= —5I (graph a ), Ao= —3.5I (graph b), Ao= —2.5I (graph
c ) 5p = 1.5I (graph d ), and Ao = —0.5I (graph e ). The par-
ticle energy tends to a constant value dependent on the frequen-

cy detuning. This value sets the ultimate limit of kinetic tem-
perature that can be reached in these experiments.

all these —presumably oversimplified —assumptions, this
model presents some interesting features that deserve
consideration. First of all, the model unifies the classical
and the quantum cases, since it is possible to obtain use-
ful information from it about both stages of the cooling
process. Sections IV and V contain details of the deriva-
tion, and present the cooling rates for the two stages.
Second, the calculations are simple enough to be carried
out analytically for the most part. This has the added ad-
vantage to yield simple, yet meaningful, formulas for the
relevant quantities in the process, in both the classical
and quasiclassical limit cases. As a third fact, this model
can be generalized to treat three-level systems with one
metastable state, for which the coherence times may be
much longer than the trap period, thus yielding novel
features not found in the present model. Another feasible
generalization is a treatment of the heating determined
by nonstatic components of the radiofrequency trapping
field. The method, adopted in this article, of adiabatic el-
imination of the periodic motion of the particle should
prove fruitful in the analysis of the above mentioned
cases.
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(115), or of the associated kinetic temperature
T

q
= (E ), /Kz, where Kz is the Boltzmann's constant,

is immediate from Eqs. (101)—(103). We find

T, =5.6X10 K for b,o= —(2. 5I ) and T, =2.3
X 10 K for b,o= —(0.5I ). The values of the parame-
ters have been reported in Appendix A. The same pre-
dictions for the limit temperature have also been reported
in Refs. 19 and 20. We remark that the values taken by q
and p in the last stage of the cooling process are well
within the range of validity for the Lamb-Dicke limit.

VI. CONCLUSIONS

We have derived and discussed the Fokker-Planck
equation for a particle in a Paul trap, undergoing a strong
interaction with a quasiresonant laser field that cools the
particle down to very low temperature, while the trap-
ping potential prevents the particle from escaping the in-
teraction region. The model that we have chosen to work
on is possibly the simplest one: the Paul trap has been as-
sumed to consist of its static component alone, leaving
out the radiofrequency component that is also present.
Thus the heating of the particle associated with the pres-
ence of the radiofrequency terms is not accounted for in
this model. Heating can be drawn only from the interac-
tion with the laser field, if particular off resonance condi-
tions are met. The ensuing static potential has then been
stripped of its anharmonic terms, resulting in a harmonic
force acting upon the particle. One-dimensional motion
and single-particle cooling was also assumed. The parti-
cle is supposed to interact with the field as a two-level,
quasiresonant system. Moreover, the motion is described
in the quasiclassical limit, in which the very quantum na-
ture of the photon exchanged by the field and the atom
is neglected, while retaining, when necessary, the
quantum features of the atomic motion. In spite of

We wish to thank Professor S. Stenholm for helpful
discussions and useful suggestions during the preparation
of this article.

APPENDIX A

Here we give the numerical values of the parameters
that have been used to perform the calculations reported
in this article. In an atomic transition of an isolated
atom, with the ground level as the lower level, the coher-
ence damping rate y2 equals one half of the upper level

damping rate I . On a time scale in which @2=1, the an-

gular frequency of the trapping potential has been set
equal to 0.15. In these units, the natural line width of the
atomic transition I equals 2, and the detuning 60 of the
field from the atomic transition may take values up to 50.
The Rabi frequency 0 is of the same order of magnitude,
ranging up to several tens.

Calculations have been made for the Ba ion, which has
a mass of 137 atomic units. The coherence time of the
Ba+ transition 6 S»2—6 P»2 is 2. 5 X 10 sec, so that
time lengths are scaled by the same amount. The field
wave vector k at resonance with the Ba+ transition is
1.26X 10 cm

The linear size of the trap is of the order of 10 ' cm,
but the confinement region may be as small as 10 cm.
To avoid using very small numbers, we have set the
length unit to 10 cm. Thus k =126 and g ranges from
100 (at the initial stage of the process) down to 10 ' (final
stage of cooling).

Having redefined the units of time, mass, and length,
the kinetic momentum must be scaled accordingly. We
find that, in these units, the kinetic momentum ranges
from 10 to 10 '. Thus the kinetic momentum of a parti-
cle with ~=1 is 6.5X10 gem sec ' and the corre-
sponding kinetic temperature is 0.1 K.
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APPENDIX B

The integrals that appear in Sec. IV,

n 1 hk f »& sin(vr)
TvM —r t2 &((,~, r)

n 1 h'k

TvM

n'rek
~

i~
—rz2&((, ~, r)

n'r Ak I (0')T

(81)

(82)

I, = —2vri(c ' +c~' )
4

vfa b—/'
'

I, = 2~—i(cI'+cqr" )
2

v/a b[—' '

where

(812)

(813)

(s)

(a —a* )(a —p*)(a —p)
(814)

that lie in the lower half-plane of the complex domain.
Then, by the Cauchy theorem, I, and I, can be expressed
in terms of their residues in a and /3. We find

X(a*+b cosx+c sinx), (83)

can be evaluated analytically by using the Cauchy
theorem.

The function &(g, w, r) is first factorized into two
terms

&(g, ~, r) =(a+ b cosx+c sinx )

(s)
Cp

(c)
C~

(c)
cp

(P—a* )(/3 —P* )(P—a )

1 —a
(a —a* )(a —p* )(a —p)

1 —
/3

(p —a*)(p—p*)(p—a)

(815)

(816)

(817)

with

a =25O+ EQ7

(85)

Formulas (812)—(817) allow for an easy evaluation of the
two integrals (Bl) and (82).

The function 2) r, as given by (84), depends on g and 7r

only through the total energy E of the particle's motion
in the harmonic potential,

c =2kvg,

~ = (2n'+ r') '"
X —V7

(86)

(87)

(88)

4 ~ t dt,-- [p(t)['
1 —t

(89)

(810)

By means of the transformation t =tan(x /2) the in-
tegrals become

Mvg
2M 2

(818)

g' =g cosO+ sinO,
vM

Because of the relationship (84), we need only to show
that X /rr is invariant if we change g and ~ keeping the
energy (818) constant.

Changing g and ~ with the constraint to keep the ener-

gy F. constant is possible only if the transformed coordi-
nates g' and ~' are related to g and m by the transforma-
tion

where
vr' =~ cosO —vM( sinO, (820)

P(t)=(a b)t +2ct =—(tt +b) . (811)

We denote by a and p the two (complex) roots of ~P(t ) ~

with an arbitrary angle 0.
Replacing g and 7r by g' and rr' and using (819) and

(820), we find

n 1 haik ri & cos(vr)X ( ', ~')= d7
T —rzz &(g', ~', r)

n I Ak &&&+& cos(vr)cos(0)+sin(vr)sin(0) d7.
T —T/2+ 0 S((,7r, r)

(B21)

(B22)

Since the integrand function is periodic in r, we can integrate over the interval [ —T/2, T/2] even the second term in
(821). We obtain

2)„(g',~') =cos(0)X) (g, ~) —vM sin(0)2)c((, rr)

and, replacing 2)&(g, n) by 2) (g, ~)g/~ [see Eq. (84)], we get

2) (g', vr')= cos(0) — sin(0) 23 (g, ~) (823)

or, by (820),
t

2) (t",~')= 2) (g, ~) . (824)
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APPENDIX C

In this appendix we complete Section V by reporting details of the calculations concerning the Fokker-Planck equa-
tion in the Lamb-Dicke limit.

In the final stages of cooling the expression (66a) of the radiative force F can be approximated by replacing the matrix
element (Vl )2 3 with the first-order term in its perturbation expansion, Eq. (97),

AkAr —
1F= dpi 8p (~l, r). 1+ drqg(r2)8p(r|, r2).X.8p (ri, rp)

oo 7 . . 23
(Cl)

Vl p '(r, , r) 'Mp(r„r~) =Vdp(r, r2) (C2)

then we make the following change of integration vari-
ables:

with 'Mp(r, rp) =exp[Alp(r —rp) ].
In order to evaluate the integrals in (C 1) we use the

property

The diffusion coefficients D and 4 are then calculated
to zero order in the perturbative parameter g(r), namely,
substituting Li with Vlp in (66b) and (66c). From (58) and
(100) the expressions of D and N are found to be

D = I a(haik ) [1+I (W p ')3 3]
2

Re[(3$p+ ivl ) ']2 i
91 + +2 ~

712 72 7
1

~

By using the relation (58), Eq. (Cl) becomes

(C3)

(C4) AkQ, r
2

2

2
j. Im—[(JNp+ iv. l ) ]2 3(AI p )i 3

~ —
1 —1

(Cl 1)

oker
2

—(Alp ')2,

+ f d l,if dpi g(r —ri, )

X[exp(Alps), ) X

exp(Atpii2 ) ]2 3 (C5)

AkO
2 Mv Im[(AIp+ivl ) ']2 i

'2

Mv

—(W p ')2 3I(At, p ')~ 3 . (C12)

Next we rewrite the Doppler shift g(r —ri&), by means
of trigonometric formulas, in the form

k
g( r il, ) = I

[i—r cos( vr) —vM ( sin( vr) ]cos( vi), )

+ [rr sin( vr ) + vM (cos( vr ) ]sin( vs, ) ] .

To evaluate these coefficients in terms of the physical
quantities we only need to know the matrices JM 0

' and

(Jktp+ivl ) '. For convenience we introduce the coher-
ence damping rate y2= I /2, and write JMO and its inverse

W, 'as

(C6)

Inserting this expression in (C5) and using Eq. (100),
we find

F=Fp b[ir cos(vr—) vM(sin(vr—)]

—
y2

—1

7 (y I+II )+ID

(C13)

where

—Mv, icos(vr)+ sin(vr)
Mv

(C7)
y2r y2&

y2A y2+ 50

y2I +0 I 60
x —rh, (C14)

F erik QI

b=- mknr k ~ —1
—1

2 M
[Re[(W +i pvl ) ] X A, p

v, = —
I lm[(Atp+ivl ) '] XJNp'I. i 3,

(C8)

(C9)

(C 10)

Then, (Mp+ivl) ' can be obtained from A, p
' by

adding i v to the diagonal elements of A, o. Defining

Q(v)=(p —iv)[(p —iv)(I —Iv)+II ]+(I —jv)A

(C15)
we get, after some lengthy algebraic calculations, the ex-
pressions

A'kl y 0
2Q(0)

(C16)
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AI Apk 0
2M

fiI Apvk A

2M

y2Q irtkII (I yz
—v )Re[g(v)] —v(

g(0) 2

iitkOI 1 Qyz(QvRe[g(v)]+QyzIm[g(v)])+
2 v g(o)lg( )I'

v( I +yz)Re[ g(v) ]+(I y2
—v )Im[ g(v)]

2 Mv
I
g(v)l'

(2yzl —v )Re[g(v)] —v(1 +2yz)lm[g(v)]
g(o) I g(v) I'

v(I +2yz)Re[g(v)]+(2yzI —v )Im[g(v)]

g(o)lg( )I'

I +y2)Im[g(v)]

(C17)

(C18)

(C19)

Ak QI
2 r2

Mv' g(0)

—Ay2 Ay~Re[g(v)] —vII Im[g(v)]
g(0)

(C20)

In the "old" variables z and p the Fokker-Planck equa-
tion takes a compact form. Defining a renormalized os-
cillation frequency v, —:(v +v, )' and a new spatial
coordinate q

—=z Fo/(M v—
&

) the equation for f(z,p ) be-
comes

d
5p = —2Mv, 6r —2b5p +2D,

dt

d 6p5r = Mv i 5q— b5r + 4—,
dt M

(C26)

(C27)

—+ —Mvq fp
(3t M Bq

'
(3p

= a a2 a2bpf+, Df+ 4f .
Bp Qp Bp Bq

(C21)

where we have defined 5q (t)=&(q —&q&) &,

5p (t)—:& (p —
&p & ) &, and 5r(t ) =—& (pq —

&p & & q & ) &.

Solving the secular equation associated to (C23)—(C27)
we find that the characteristic rates of change of the aver-
age values & q & and & p & are given by

The general solution of Eq. (C21) is completely defined
by the transition probability P(q, p, t Iqo, po, o), i.e., by the
solution with 6-like initial condition

b+ Qb —4v, —
(C28)

f(q p 0)=5(q —qo»(p —po) . (C22)

Next we remark that one of the properties of an
Ornstein-Uhlenbeck process is that the distribution func-
tion f must be Gaussian at every time t if it is at t = to.
Hence P(q, p, tlqo, p 0) will be a Gaussian distribution
and it will be completely defined by its first and second
moments. We can then solve Eq. (C21) by solving the
equations for the average values of q and p and for the
relative spreads.

These equations can be derived directly from (C21).
To get the equation for & q &, we multiply (C21) by q and
integrate it by parts over the whole phase space. Using
the fact that f(q,p, t ) and its derivatives vanish at
Iq I

= ~ and Ip I

= ~ (f describes a bound particle), we
obtain

The spreads 5q (t), 5p (t), and 5r(t ) evolve on the
same time scale with the rates

p] =2k, )

P2 —2A, 2

@3=A., +A.2= —b .

(C29)

(C30)

(C31)

M(X2 —A. , )

The general solution of Eqs. (C23)—(C27) can then be
found by using standard methods. Assuming (C22) as the
initial condition, we obtain the following expression for
the average values

&q&= (C23)

In a similar way, we get

d
dt

&p &
= —Mv', &q & b&p &, — (C24)

2
pp ~~ ~~ M&&qp

&p&= (A,,e ' —A, ,e
' )+ (e ' —e '),

2 1 2 1

d~ 2 26r
dt' M

(C25)
and for the relative spreads

(C33)
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$q 2 — +M(P
M2 2

V)

where

B —= [5q 5p —(5r) ]'~ (C38)
+ 2 2—+M& e

M'(X, —X, )'

D —A.2M++

D —A)M 0 2~z'+ e 2

In the cooling regime, i.e., when 60(0 so that b &0,
P(q, p, t ~qo, po, 0) goes towards a stationary value, given
by the moments (C32)—(C36) with t = ~, which are in-
dependent of q0 and p0. Therefore the stationary signer
distribution f, (q,p), does not depend on the initial con-
ditions and reads

V2
2 + 2 +M~ —bt M &b &v&

2 D(D+Mbe )

1/2

I

A2

+ Mg) 2 (C35)

b(Mv, q)
2(D+Mb@) 2D

(C39)

5r = [ —(2D+Mb@)e '+(D —X~M@ )e
M(k~ —k, )

21zt+(D —
A, ,M4)e ' ] . (C36)

2~B exp — [5p'(q —(q ) )'+5q'(p —(p ) )'

—25 (p —(p ) )(q —(q ) )]

(C37)

The transition probability P(q, p, t ~qo, po, 0) is then given
by

P(q p t~qo po, o)

The equilibrium distribution f, is characterized by
the values of the residual spreads, around the average
values ( q ),„=0 and ( q ),q

=0, which define the lowest
energy of the ion

(5p'),
q

The term 4/2 is of the order of (A'0 ), i.e., of the same
order of the contributions coming from terms neglected
in the derivation of the Fokker-Planck equation (65). For
consistency this term must be neglected even in the
present context. Then the final energy of the ion is given
by D/(Mb ) and can be expressed as:

(E), = — (4ay I [[y I +y II +I b v(I+2y )] +v—(2y I +f1 +y +b. v) I—
0

+ry, [(y,'r+y, n'+ ra.,')'+ rn'[b. ,'(r —y, ) —(y,'+ v')(r+y, )] I

+v'(y', r+ y,n'+ ra,')(y, r'+ y', +rn'+ y, b, ', +y,v') )

X
1

2I y~(yzI +y, Q +I ho)+v [I Il +y~(Q +2yz+2bo)]
(C41)

The same expression for the energy at the stationary point has been obtained in Refs. 19 and 20.
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