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We report results of large-scale nonperturbative (Floquet) calculations of rates for harmonic gen-
eration and total ionization of H(1s) by fields whose intensity ranges from about 10" to 3X10"
W/cm and whose wavelength ranges from 265 to 1064 nm. At long wavelengths and moderate to
high intensities, perturbation theory yields estimates of total ionization rates that are orders of mag-
nitude too large, and estimates of harmonic-generation rates that exhibit a qualitatively incorrect
behavior with respect to order. We have studied the influence of resonances on the ionization rates,
and we illustrate the resonance enhancement of the ionization yield for a realistic pulse. Finally, we

address several formal aspects of Floquet theory, including the convergence of the induced dipole
moment, gauge invariance, and the normalization of the wave function.

I. INTRODUCTION

In this paper we report results of a nonperturbative
calculation of rates for high-order harmonic generation
and total ionization for atomic hydrogen in a strong os-
cillating field. We consider the field to have an intensity
in about the range 10' —3X10' W/cm and a wave-
length in the range 26S —1064 nm. We compare our re-
sults with those obtained using lowest-order perturbation
theory, and we often find pronounced differences.

Previous results of large-scale nonperturbative calcula-
tions of ionization rates for hydrogen' are rather
sparse, and are limited to relatively short wavelengths.
Here we present a fairly detailed study of the quasienergy
eigenvalue spectrum for hydrogen, and we depict the be-
havior of the eigenvalues with respect to intensity. The
real and imaginary parts of these eigenvalues exhibit mul-
tiple crossings, both real and avoided, as the intensity
varies. The imaginary part of an eigenvalue is propor-
tional to the total ionization rate from the corresponding
dressed state. We find that at long wavelengths and
moderate to high intensities, perturbation theory yields
results for total ionization rates from the ground state
that are orders of magnitude too large. Thus, contrary to
what perturbation theory implies, at long wavelengths an
atom can experience the peak intensity of a fairly power-
ful laser pulse before undergoing ionization. The break-
down of perturbation theory may be predicted by consid-
ering three parameters. They are the ratio of the pon-
deromotive energy shift to the photon energy, the ratio of
the excursion speed (of a free electron oscillating in the
field) to the initial atomic orbital speed, and the ratio of
the excursion amplitude to the initial atomic orbital ra-
dius; if any of these parameters is of the order of, or
exceeds, unity, perturbation theory becomes inadequate.
The first parameter is a measure of the increase in the
minimum number of photons which the atom must ab-
sorb to ionize, and the third parameter is a measure of
the degree to which the field pulls the electron away from
the region near the nucleus, the region where it can ab-

sorb photons; both effects tend to reduce the ionization
rate. However, the role of intermediate resonances is also
important. We discuss the effect of intermediate reso-
nances on the ionization rates, and we show that ioniza-
tion is not always enhanced at resonance. We illustrate
the effect of resonances on the ionization yield for a real-
istic pulse which has an intensity profile that is Gaussian
in space and time.

There are no previous results, as far as we are aware, of
nonperturbative calculations of harmonic-generation
rates for hydrogen. However, results obtained from
lowest-order perturbation theory do exist. ' We find
that, in the context of harmonic generation, perturbation
theory yields results which exhibit a dependence on the
order of the harmonic which is qualitatively different
from that of the nonperturbative results. Interest in har-
monic generation in intense fields has been stimulated by
the recent experimental observations of high-order har-
monic generation in rare gases, both at short" and long'
wavelengths. Unfortunately, we cannot compare our re-
sults directly with experimental data, not only because
our results are for hydrogen, rather than the rare gases,
but also because we do not take into account phase
matching of the generated beam. Nevertheless, we tenta-
tively attempt a qualitative comparison.

Our calculations are based on a time-independent (Flo-
quet) theory, which has undergone substantial develop-
ment' ' since its introduction in Sec. II and Appen-
dixes A and 8 we continue to examine forrnal aspects of
the theory. We assume that the field is monochromatic
and spatially homogeneous. We use a complex Sturmian
basis set to solve the Floquet eigenvalue equations, that
is, Eqs. (1.6) below. This basis set has proved to be very
useful in calculating partial differential rites for N-
photon ionization, for both weak' ' ' and strong fields.
For weak fields, when perturbation theory is valid, Eqs.
(1.6) simplify enormously on the complex Sturmian basis
set, and this allows us to calculate' ' partial rates for
high-order ionization and harmonic generation by weak
fields at short and long wavelengths.
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The exact state vector
l 4, (t) ) representing an electron

initially bound in state i, satisfies the time-dependent
Schrodinger equation

i% H. ——V(t) lW(t)) =0,d
dt

where H, is the atomic Hamiltonian and V(t) is the in-
teraction of the electron with a field of frequency co. We
use the "velocity" gauge, with V(t)= —(e/pc) A(t) p,
where e and p are the electron charge and reduced mass,
p is the canonical momentum operator for the electron,
and A(t) is the (spatially independent) vector potential
for the field; we have removed the A (t) term by a simple
gauge transformation. To pass to a time-independent
theory we make the Floquet ansatz. ' ' Thus we put

l%, (t)) = exp( ic, t/—i')lf, (r)), (1.2)

where lP, (r) ) is periodic in r=cgt, with period 2', and
where c, is the electron quasienergy. Substituting the
right-hand side of Eq. (1.2) into (1.1) we obtain

iA +E, H, —v(—t) lQ;(r)) =0 .

If we make the Fourier expansion

lp;( )&= & (1.4)

and decompose V(t) as

V(t) V IQPf+ V !cot

The solutions of Eqs. (1.6) are constrained by physically
appropriate boundary conditions in coordinate space,
namely, if x denotes the electron coordinate, and if
r=lxl, each harmonic component (xi/, „) is regular at
r =0 and behaves as a superposition of outgoing waves
for r —~:

(xi/;„) —g f „(E;,x)r exp(ik, r)/r, r —~

(1.7)

where

k; =[(2p/A' )(c;+mfico)]' (1.8)

and where v =Z/(aok, ), with —Ze the charge of the
residual ion. The homogeneous system of equations,
(1.6), together with these boundary conditions, form an
eigenvalue problem for c;. In solving these equations we
exploit the fact that the harmonic components lg,„)are
coupled together in tridiagona/ form, a property which
also holds in the length gauge' but not in the acceleration
gauge.

The eigenvalue is, of course, complex:

we see that the harmonic components lg;„) satisfy the
time-independent coupled equations

(c;+ttkco H. )lq, „&= V+ lq. .—.&+ V lq„.+&&

(1.6)

f «(p;(r)lP, (r)) = g (P,„lg;, ) ( l. 10)

does not formally exist, except in the limit where the in-
tensity I vanishes. In fact, as discussed in Appendix A,
g„(g;„l1(;„)jumps discontinuously from 1 to 2 as I in-
creases from zero to an infinitesimal but positive value.
This is a consequence of passing to a time-independent
framework, within which the field is of constant intensity
and persists for all time so that even an infinitesimally
weak field ionizes the atom.

In the next section we derive an expression for the
harmonic-generation rate in terms of the expectation
value d(t) of the atomic dipole moment with respect to
the Floquet state vector lP, (r)). We expand d(t) in a
Fourier series, with components dz exp( —iNcot), where
dz is the complex dipole moment which generates pho-
tons of frequency A'co. We express d~, which depends on
the normalization of lP;(r) ), as a sum of subterms dv„,
which result from the expansion of lP, (r) ) in terms of its
harmonic components, cf. Eq. (1.4) above. Each d,v„ is
(nearly) divergent, but in Appendix B we show that the
divergences cancel in the sum d~. We also consider, in
Appendix 8, the effect of a gauge transformation of the
field, and indicate how the boundary condition (1.7)
should be modified. This boundary condition is correct
in the velocity gauge but not in the length gauge. This is
because in the latter gauge V(t) diverges for r —oo. [In
the velocity gauge V(t) diverges for p —~, but this diver-
gence is swamped by the kinetic energy, p /2p. ] More-
over, we show that while the dz, are not separately
gauge invariant, the sum d~ is.

In Sec. III we discuss our results. In Appendix A we
discuss the (analytic continuation of the) overlap X; of
two Floquet state vectors lP, (r)) and lP (7.) ). We show
that X, is zero if c;Wc. . However, X,-, , the quantity ap-
pearing on both sides of Eq. (1.10) above, is a discontinu-
ous function of I at I =0, for a field of infinite duration.
The overlap X, of lP, (r)) and Tlg, (

—r)), where T is
the time-reversal operator, and where the bar indicates
that the sense of the field polarization has been reversed,
is also zero if c;Ac . If i denotes the state obtained from
i by reversing the sign of the electronic angular momenta,
X-,, is continuous at I =0, and may be set equal to unity
for all I; this provides a convenient prescription for nor-
malizing lg;(r)). In Appendix C we present formulas
which are useful in discussing the case of an intermediate
resonance in multiphoton ionization. Near a resonance
the real parts of two Floquet eigenvalues approach one
another. Whether the eigenvalues exhibit a true or avoid-
ed crossing, as the resonance is passed, is determined by

c, =E, +6, —i I,. /2,
where 6, is the shift from the unperturbed energy E, , and
I, is the induced width. The presence of the imaginary
part of c; means that, while exp( i—c, t /fi) decays as t in-
creases, (xi&,„) explodes exponentially as r increases
since Im(k, , ) (0 if m ~No, where ND is the minimum
value of n for which E, +5, +nba) 0. Consequently,
the cycle-averaged overlap
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whether the two-valued complex Rabi frequency stays on
the same branch or switches branches, respectively.

II. HARMONIC GENERATION:
FORMAL EXPRESSIONS

When a laser beam passes through a medium it induces
an oscillating dipole moment in each atom in the path of
the beam. A dipole moment Re(De ' '), oscillating at
frequency 0, generates electric and magnetic fields,
Re[E(x)e ' '] and Re[B(x)e ' '], respectively, which
are given in the radiation zone by' B(x)=(nXD)F(r)
and E(x)=B(x)X n, where

E, = cos(g/2)x+i sin(g/2)y,

E~= sin((/2)x i cos(g—/2)y,

(2.1a)

(2.1b)

where the unit vectors I and y define the polarization
plane, and where the retardation angle g may have a
value ranging from 0 (linear polarization) to ir/2 (circular
polarization). The complex-conjugate vectors e

&
and e 2

describe the opposite rotational sense of polarization
from c, and c.z. We may easily verify the following useful
properties of the polarization vectors:

~ j ~k ~jk

nXe, =( —I )'ie „*, jWk

(2.2a)

(2.2b)

F(r) = ($1/c )

exp(iver

/c ) /r

and where n is a unit vector which points along the direc-
tion of x, that is, along the direction of observation. Both
E(x) and B(x) lie in a plane, the polarization plane,
which is perpendicular to n. We introduce two indepen-
dent unit polarization vectors:

=e ' do+ g Re(2dze ' "') ],
1V&0 J

(2.7)

where in the second step we used Eq. (1.4) and we defined

d~= gd (2.8a)

(2.8b)

noting that since d(t) is real we have d z =dz. The rate
for generating photons of frequency O, =Neo and polar-
ization c is given by putting D=2d& in Eq. (2.5). Note
that dz depends on the normalization of ~itj;(r)). If the
state i has a definite parity, cr( =+1) say, the function
(x~g; ) has parity o( —1) since ~g; ) represents an
electron which has absorbed m (real or virtual) photons,
each of parity ( —1 ). Hence ( 1(;„~~

x ) ( x
~ it,„)has par-

ity

o. (
—1)" (

—1)"o =( —1)

and therefore dz„, and dz, vanish unless N is odd. In the
weak-field limit ~g; ) is of order I' ~ ' and so d~„ is of
order I~ "~ I ~" ~ that is, of order I ~ if 0 ~ n ~ N,
and of higher order if n is outside this range. Conse-
quently, within perturbation theory the summation index
in Eq. (2.8a) runs only over 0 to X. At intensities beyond
the weak-field limit, each dz„has a near divergence, but
these near divergences cancel in the sum, as we discuss in
Appendix B.

(2.6)

where e is the electron charge. If we make the Floquet
ansatz, we obtain

d(t) = ( g;(&) le xl g, (&) ) e

Ej XEj=0 (2.2c)
III. RESULTS

c. , Xc2= —in . (2.2d)

In addition, we have, of course, n c. =0. If we expand D
as

D =D, c]+D2c2+D3n, (2.3)

=(c/8~)(n/c)'(~D, ~'+ iD, I'), (2.4)

where in the second step we used Eqs. (2.2c) and (2.2d).
The rate for emitting photons of frequency A into dn is
(I/fill)dW/dn. Since D =e *.D, the rate of (spontane-
ous) emission of photons with a specific polarization r. is

dR (Q,k)
dn 8~wc'

(2.5)

The real atomic quantum-mechanical dipole moment
induced by the laser field is

and use Eq. (2.2b), we obtain, for j= 1,2, the components
B (x) of B(x) along e *, and the components E (x) of
E(x) along e, ; we have Bi, (x)=i( —1)'D,F(r), j Wk, and
E (x)=D F(r), for j,k =1,2. The power radiated into
the solid angle dn is

dW/dn=(c/8~)r n. [E(x)XB*(x)]

We solved Eqs. (1.6) by expanding the harmonic com-
ponents ~it,„) in terms of Sturmian basis functions S'I(r)
which oscillate as r exp(iirr) for r —~, where the wave
number K was chosen to lie in the upper right quadrant of
the complex ~ plane. The rate of convergence with
respect to the number of basis functions is sensitive to the
choice of ~; we have discussed this in detail elsewhere. '
By using the orthornormality relation

I dr S" I(r)(l/r)S'&(r)=6 (3.1)

we obtained a set of homogeneous linear equations for
the coeScients of the basis functions. These equations
were solved, for both the eigenvalue and the coe%cients,
by using the method of inverse iteration. '

In a previous paper' we discussed the ionization of
H(1s) by linearly polarized light of wavelength 355 nm
within the truncated threshold approximation (TTA). In
the TTA the harmonic expansion of a Floquet state vec-
tor is truncated at the term n =No —1, that is, just below
the continuum threshold. The exclusion of harmonic
components corresponding to absorption above threshold
means that the widths vani. sh and hence that the eigen-
values are real. We calculated, within the TTA, the 1s
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FIG. 1. Widths of c.„and c» (upper curves) and real parts of
c.„and c» —3hco (lower curves) vs intensity, for hydrogen irra-
diated by linearly polarized light of wavelength 355 nm. Solid
and dashed curves correspond to states which are the 1s and 2p
states, respectively, in the weak-field limit.

and 2p eigenvalues at various intensities, and we found
that they exhibited an avoided crossing corresponding to
an intermediate resonance of the three-photon 1s~2p
transition. The gap between the eigenvalue curves at res-
onance is just the coupling energy AAo between the 1s
and 2p states, where Qo is the Rabi frequency for the
1s~2p transition. We have now recalculated the 1s and
2p eigenvalue curves, this time including harmonic com-
ponents corresponding to absorption above threshold; we
included a sufficient number of harmonic components to
ensure convergence of the eigenvalues. In Fig. 1 we show
Re(E&, ) and Re(e~ )

—3Aco versus intensity I. We also
show the widths I „and I"2p In contrast to what we
found earlier, we now see a true crossing rather than an
avoided crossing of the real parts of the eigenvalues. The
reason for this is that, at the intensity where the crossing
occurs, I „ is very small while I 2p is larger than ADO.

The fact that a true crossing occurs when the difference
of the widths of the eigenvalues exceeds A'Ao (that is,
when the difference of the couplings of the bare atomic
states to the continuum exceeds the coupling between the
states) has been discussed previously by Gontier and
Trahin, and by Holt et al. ,

' and in Appendix C we
summarize part of their analysis. Surprisingly, I „shows
no enhancement at resonance; we might expect the
1s~2p excitation rate to peak at resonance, and I „ to
peak accordingly. In fact, however, the 1s~2p excita-
tion rate does not peak when the intensity is varied
around the value I„where the detuning, 6co, from reso-
nance vanishes. To understand this, note first that the
energy shifts, and therefore 6cu, vary linearly with I, at
least to lowest order in I; we have 5' =a(I I, ) where a-
is constant. Note further that if y z denotes the rate of
decay of the 2p state in the absence of coupling to the 1s
state, y2 also varies linearly with I since only one 355-
nm photon need be absorbed to ionize the atom in the 2p

8.5—

8.Q—
—7.0 O

I

—6.8

—0.5040- I —-0.5040

O

-0.5050— ",, -0.5050
O

2p ~~
-0.5060- —-0.5060

354 355
Wo veleng th (nm)

356

FIG. 2. Same as Fig. 1 but vs frequency, with the intensity
fixed at 1.151X10' W/cm . The crossing occurs at the wave-
length 355 nm.

state; y2
—pI, wit—h p a constant. Referring to Eq.

(C12d) for the excitation rate, y,„(5'), from state i —= ls
to j=—2p, and noting that y; =y „(&y:—y2, we see that
the denominator on the right-hand side of Eq. (C12d) is
roughly a (I —I„) +p I . This denominator has a
minimum at I=a I„/(a +p ) which differs significantly
from I„since, in the present case, p is not negligible (from
Fig. 1 we may infer that roughly p=a/2); hence y, „(5')
does not peak as I passes through the resonance intensity
I„where 5' =O. In Fig. 2 we show Re( E„) and
Re(ez )

—3fico, as well as the widths, versus frequency co,

with the intensity fixed at the value 1. 15 X 10' W/cm at
which the crossing in Fig. 1 occurs. We now see an
enhancement of I &, at resonance because y, and y vary
very slowly with co and the denominator on the right-
hand side of Eq. (C12d) exhibits a minimum as co is varied
around the resonance frequency.

In Ref. 15 we also used the TTA to study the ioniza-
tion of H(ls) by linearly polarized light of wavelength
204 nm. There is an intermediate two-photon 1s~3s
resonance, and within the TTA we found an avoided
crossing between c.„and E&,

—2%co corresponding to this
resonance. We have redone this calculation, now without
truncation at threshold, and we still find an avoided
crossing. In this instance the difference of the widths is
smaller than AGO, where here Ao denotes the Rabi fre-
quency of the 1s ~3s transition.

In Fig. 3 we show the real parts of 27 different eigen-
value curves versus intensity I for linearly polarized light
of wavelength 1064 nm. All of the eigenvalues shown

1V.
correspond to states which have parity (

—1) ' and
which, for I-O, are detuned from an N -photon reso-
nance with the 1s state by no more than Ace. As in Fig. 1,
we display Re(e ) N fico rather than e —. (Note that if E

is an eigenvalue, so is c. +maim for any integer m. We
specify c uniquely by requiring that E ~F.-, and hence

) ~ &0 )5 „as I~O, where ~d& ) represents the
unperturbed bound state j. Here we label c by an in-
teger index j which corresponds to the order in which
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FIG. 3. Real parts of various eigenvalues c, for hydrogen ir-
radiated by linearly polarized light of wavelength 1064 nm. We
show Re(c, ) —N, Ace, where the integer index j labels the follow-
ing atomic configurations (or superpositions of configurations),
where known, in the weak-intensity limit. (1—2): superpositions
of 4s and 4d, Nl =2 = 10; (3): 2s, N& = 8; (4): unknown; (5): su-
perposition of 8p, 8f, 8h, and 8j, N, =11; (6—'7): superpositions
of 7p, 7f, and 7h, N, , = 11; (8 —9): superpositions of 3s and 3d,
N„, = 10; (10—12): superpositions of 6p, 6f, and 6h,
N, „„=11;(13—14): superpositions of Sp and 5f, N„„=11;
(15): 1s, N„=O; (16—17): superpositions of 4p and 4f;
NI~ 1& =11; (18): 2p, Nl& =9; (19): unknown; (20): superposi-
tion of 7s, 7d, 7g, and 7i, N» = 12; (21): 3p, N„= 11; (22 —24):
superpositions of 6s, 6d, and 6g, N» 24=12; (25 —27): superpo-
sitions of 5s, 5d, and 5g, N»»=12. We did not include states
with orbital angular momentum quantum number greater than
7. The bold horizontal lines indicate multiphoton ionization
thresholds. Note that reduced mass effects are included, so that,
for example, Re(c&5) approaches a value slightly above —0.5
a.u. in the zero-in tensi t y limi t.

Re(Ej ) N—,Ace appears in Fig. 3. However, when no con-
fusion might arise we refer to c. —X Ace simply as c, , and
we do not distinguish between E and Re(E ). Thus, for
example, c,8, the eigenvalue corresponding to the 2p state
when I —0, is displayed as c,~

—9Am and appears below

c&5, the eigenvalue corresponding to the 1s state
(N, s =0). We show all of those eigenvalues correspond-
ing to atomic states with principal quantum number ~ 6
when I-O, and a few more besides. In the zero-field lirn-
it the eigenvectors are, in general, superpositions of atom-
ic states with the same principal quantum number and
parity, but difT'erent orbital angular momentum quantum
numbers. ' We note that absorption of twelve 1064-nm
photons is required for weak-field ionization from the 1s
state, three photons from the n =2 states, two photons
from the n =3 states, and only one photon from all states
with principal quantum number n ~ 4.

We calculated these eigenvalues within the velocity
gauge, with the 3 term subtracted so that the continu-
um threshold does not shift. Thus we might expect the
shifts of the high Rydberg states to be small. This is
indeed the case for many of these states; see, for example,
'E 5 E 8 ] ] E ]7 Ep() and c2z, which stay rather flat as I
varies. However, some of the Rydberg states undergo
large shifts, often because of strong coupling to the 2s or
2p states. For example, as I increases, c.&, the eigenvalue
originating from the 2s level, shifts downwards by rough-
ly the ponderomotive energy I' and passes below a multi-
photon ionization threshold at about 0.7X10' W/cm .
(The number of 1064-nm photons required to ionize an
atom which is initially in the 2s state increases from 3 to
4 as this threshold is passed. ) Not far below the thresh-
old, c.z undergoes an avoided crossing with an eigenvalue
curve originating from a very high Rydberg level. We do
not know which Rydberg level this is; in fact, we cannot
precisely calculate the eigenvalues just below a multipho-
ton ionization threshold because an infinite number of
Rydberg states accumulate there and give rise to a
myriad of true and avoided crossings. However, when
two eigenvalue curves undergo an avoided crossing, the
characters of the corresponding Floquet states inter-
change (see Appendix C). Thus, at the first avoided
crossing encountered by E&, the other curve (which origi-
nates from a very high Rydberg level) acquires 2s charac-
ter, and at intensities above the crossing intensity this
second curve shifts downwards until (almost immediate-
ly) it encounters an avoided crossing with another curve
originating from a high Rydberg level, and so on. In Fig.
3, the eigenvalue c6, which originates from a level with
principal quantum number 7, has a noticeable bend at
I =2.3 X 10' W/cm which in fact signifies almost simul-
taneous avoided crossings with a curve (not shown in Fig.
3) originating from a higher Rydberg level, and with c~,
another curve originating from a level with principal
quantum number 7. The 2s character acquired by c6 is
almost immediately transferred to c7 as I increases, and
E7 shifts downwards without interruption as it undergoes
true crossings with cz &, , until the avoided crossing with
c,4. One can easily trace, through the avoided crossings,
the diabatic curve which at each intensity (far from a
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crossing) corresponds to the Floquet state which has
predominantly 2s character. This diabatic curve is (more
or less) the straight line E2, —8A~ P—where P, the pon-
deromotive shift, is proportional to I (P =2rre I/@ceo ).
Similarly, the diabatic curve which corresponds to the
Floquet state that is predominantly 2p in character starts
as c,8, but after passing through many avoided crossings
becomes c.26, it is approximately E2 —9A~ —P. We re-
mark that the diabatic "2s" and "2p" curves are nearly
parallel to c.», the "1s" curve, and do not cross it until
the intensity becomes fairly large.

The eigenvalues c4 and c. &9 are rather interesting be-
cause they each cross a multiphoton ionization threshold
from below to above as the intensity increases. Unfor-
tunately, our finite basis set does not allow us the accura-
cy to ascertain the zero-field limits of these curves. The
thresholds crossed by c4 and c» would be zero-photon
ionization thresholds if these curves were to originate
from a level with a principal quantum number greater
than 3 (from which ionization can occur by absorption of
only one photon). However, this would be physically
uninteresting. At a given intensity, the scattering matrix
has a resonance pole at each eigenvalue, and the dynam-
ics of the ionization process is governed by those poles
which lie close to the physical energy axis. If a pole
which originates as a bound-state pole were to pass the
zero-photon ionization threshold it would move farther
away from the physical energy axis, and therefore cease
to be physically significant. ' Our analysis of the stabili-
ty' of the eigenvalues 84 and c,9 strongly suggests, in

fact, that the corresponding poles lie close to the physical
energy axis (i.e., they can be reached from this axis by
paths which do not encircle a threshold), as soon as they
cross the threshold upwards: perhaps curves 3 and 4 are
sections of the same adiabatic curve, as perhaps 18 and
19 are, or perhaps the poles 4 and 19 are stray "shadow"
poles' at intensities below the threshold intensity, but
they become "dominant" poles at intensities above the
threshold. We refer the reader to an earlier paper' for
a fuller account of the movement of resonance poles in
strong oscillating fields.

At I =3. 5 X 10' W/cm, the widths of the states
shown in Fig. 3 are typically of order 10 or 10 a.u. ,
with the exceptions of E» (I »= 10 ' a.u. at this intensi-
ty), e5 (I"&=8X10 a.u. ), E&0 (I 2O=2. 5X10 a.u. ), E,o

(I,0=4X10 ' a.u. ), and e«(1,6=2.5X10 ~ a.u. ). At
all intensities below 7X10' W/cm, the states 5, 20, and
10 are predominantly 8j, 7i, and 6h atomic states, respec-
tively, i.e., highly excited states of maximum angular
momentum. The ionization rates of these states are par-
ticularly small and the real parts of their eigenvalues do
not exhibit any appreciable shift, since they are very
diffuse and couple weakly to the field. In addition, there
is a Floquet state, 5' say, not shown in Fig. 3, which is
predominantly 8h in character; Re(e~. ) is nearly identical
to Re(E~) at all intensities below 7X 10' W/cm, but I ~.

is much larger than I 5, e.g. , I ~
=3.8X 10 a.u. at

I=3. 5 X 10'2 W/cm . (Like the other Floquet states, e~,
c5., E,o, and E,2o are actually superpositions of several
atomic states, dominated, however, by a particular one,

in proportions that vary with the field strength; therefore,
their widths increase more rapidly with the intensity than
the linear power law expected for single Rydberg states in
weak fields. ) On the other hand, we see that E&6 exhibits a
very large shift and width, indicating strong coupling to
the field. This is presumably related to the fact that c,6
has a 4p character at small intensities [of all unperturbed
atomic states, it is the 4p that has the largest ionization
rate in the weak-field limit, since the states with principal
quantum number n &4 require at least two 1064-nm pho-
tons to be ionized, and the rates for ionization from H(nl)
decrease with increasing n or l for n ~ 4].

We now focus on c&5, the eigenvalue in Fig. 3 which
corresponds to the 1s state when I-0. We see that
Re(e») exhibits numerous true crossings, but apparently
no avoided crossings with other eigenvalue curves. Ap-
parently, at resonances between states 15 and j the
difference of the "uncoupled" widths y&5 and y is larger
than AGO. Since a large number of 1064-nm photons is
required to either ionize H(ls) or (on resonance) excite
H(ls) to state j, the width y&5 and (on resonance) the
Rabi frequency Ao are both very small, while since few
photons are required to ionize the atom from an excited
state j the width y is relatively large, at least if j is not
too highly excited. Actually, if j corresponds to a high
Rydberg level with principal quantum number n. , we have
that in the weak-field limit 00 and y decrease with in-l
creasing n (fixed l) as n and n, respectively (since
the probability for the electron to be near the nucleus de-
creases as n with increasing n); hence there may exist
large (but not too large) n for which y&5 is substantially
larger than y but substantially smaller than Q,o, in
which case avoided crossings will occur. We detected no
avoided crossings for c.», although it is not possible to
distinguish a true crossing from an avoided crossing with
a very small gap, and perhaps some of the crossings are
avoided, a point we return to below. Of course, for
n —~ both Ao and y vanish and so Re(E») exhibits only
true crossings immediately below a multiphoton ioniza-
tion threshold. All said and done, Re(E, , ) barely differs
from the diabatic curve, which to an excellent approxi-
mation is E„—1.0084P for intensities below 3X10'
W/cm . Hence an electron which starts in the 1s state
will remain on the diabatic eigenvalue curve; the coupling
to other Floquet states, at true crossings, is small, and the
electron will simply jump across the gap of an avoided
crossing if this gap is very small. ' Therefore ionization
from H(ls) at long wavelengths (e.g. , 1064 nm), by a
pulse whose intensity envelope I(t) varies slowly on the
time scale of a cycle, can be described by the width of a
single eigenvalue. The total ionization pro-
bability is 1 —exp( —J dt I, /fi), where the width I,
(with i =15) depends implicitly on t through I(t), and
where the integration limits are ~. In Fig. 4 we show
I »/A' versus I over the range 5 X 10' ~I ~ 3X 10'
W/cm . The resonance peaks of I » correspond to
crossings of Re(E, ~) with other eigenvalue curves. The
first group of resonances seen in Fig. 4 is associated with
the group of crossings of Re(e„) with Re(e, ) (with
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FIG. 4. Total ionization rate vs intensity for H(1s) irradiated by linearly polarized light of wavelength 1064 nm. Dashed curves
are partial rates for (12+S)-photon ionization obtained within lowest-order perturbation theory. The arrows indicate the intensities
at which the real part of the ls Floquet eigenvalue crosses the 13- and 14-photon ionization thresholds.

j=20—25, 27, and 1) in the intensity range 6 —10X10'
W/cm . These resonances involve intermediate 11- or
12-photon transitions from the 1s state to highly excited
states. Not all of the crossings lead to an enhancement of
the width I &5, a feature we already saw in Fig. 1; for ex-
ample, the crossing of Re(e») with Re(Ez&) or Re(Ez7)
leads to no enhancement. An analysis of the presence or
absence of resonance enhancement of the width is more
difficult here (than was the case for Fig. 1) because the
two-level model used in Appendix C is hardly adequate
when one of the levels is a high Rydberg level —there are
many other high Rydberg levels which are close by.
Moreover, it might be that the resonance peaks occur
mainly at avoided crossings, which must, however, have
very small gaps since we detected none in Fig. 3. The
middle group of resonances seen in Fig. 4 involves inter-
mediate 12- or 13-photon transitions from the 1s state to
excited states, corresponding to crossings occurring in
the intensity range 1.5 —2X10' W/cm (not covered in
Fig. 3) where Re(c, i5) crosses the group of curves
Re( e5,4) and Re(e,6,7) when this group is displaced
downwards by 2%co, that is, when N is increased by 2 for
j =5—14 and 16—17. The third group of resonances,
occurring in the intensity range 2. 7 —3X10' W/cm, is a
replication, though an imperfect one, of the first group;
thus if the Re(E, ) of the first group are displaced down-
wards by 2trico (that is, if X is increased by 2 for
j =20—25, 27, and 1) this group is again crossed by
Re(Ei5), the crossings now corresponding to intermediate
13- or 14-photon resonant transitions to the excited states
of the first group. Although Re(e, ~) crosses many eigen-
value curves immediately below a multiphoton ionization
threshold, the rate of excitation [y,„(5co) in Appendix C]
to these very high Rydberg states is very small, and so
I » exhibits little or no enhancement immediately below
a threshold. Note that within a group of resonances, the
peaks are narrower at lower intensities. This can be un-
derstood if the peaks occur only at avoided crossings; for
the width of a peak at an avoided crossing is proportional

to the Rabi frequency O, o, at least within the two-level
model —see Appendix C, Eqs. (Cl lb) and (Cl lc)—and
resonances at lower intensity correspond to upper levels
with higher principal quantum number and accordingly
smaller Q,o. Furthermore, comparing two diff'erent

groups of resonances, the peaks in the group correspond-
ing to the higher intensity are narrower, which we can
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FIG. 5. Total rate for ionization of H(1s) by linearly polar-
ized light, with the intensity fixed at 5X10' W/cm', for wave-
lengths increasing from 50 to 1100 nm by steps of 25 nm. The
dots represent the nonperturbative estimates; the circles
represent the partial rate for ionization into the S =0 channel
obtained within lowest-order perturbation theory.
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again understand if the peaks occur at avoided crossings,
because the resonances in the higher-intensity group in-
volve more photons and Qo is accordingly smaller.

We also show in Fig. 4 the partial ionization rates, cal-
culated within lowest (nonvanishing) order perturbation
theory, for (No+S)-photon ionization, with NO=12 and
5 =0 and 1. The partial rates should sum to the total
rate I /A but clearly the partial rates, when calculated15

25in perturbation theory, are grossly overestimated. This
overestimation of the perturbative rates is due to the
neglect of both the increase in the ionization potential
and the (oscillating) polarization of the atom (the effect of
the latter is that the electron spends less time near the
atomic nucleus where it can absorb photons). In Fig. 5
we show the behavior of the total ionization rate, I „/A,
versus wavelength, for a fixed intensity of 5 X 10'
W/cm . (The minimum number of photons required to
ionize the atom, No, is roughly proportional to the wave-
length, and varies from 1 at 50 and 75 nm to 13 at 1100
nm, in the weak-field limit. No remains equal to its
weak-field value at 5X10' W/cm for most wavelengths
we consider in Fig. 5; however, one more photon has to
be absorbed for ionizing the atom at 725, 900, 975, and
1075 nm. ) We see that, on the average, I"„diminishes
rapidly as the wavelength increases, though there are
fluctuations due to resonances. Perturbation theory
yields a rate that is accurate at short wavelengths—
except very close to resonances —that becomes inaccu-
rate at longer wavelengths, and that is systematically too
large at long wavelengths. (The ratio of the excursion
amplitude to the atomic binding radius is
2. 6X10 ' I' k, where I is the intensity in W/cm and
X is the wavelength in nm; for I= 5 X 10' W/cm this pa-
rameter is 5.8X10 at X=100 nm and 5.8 at X=1000

nm. The ratio P/Ace is about 0.4 at the same intensity
and for A. = 1000 nm. ) In other words, the peak intensity
below which perturbation theory is applicable decreases
as the wavelength increases; above this peak intensity,
and at long wavelengths, the nonperturbative total photo-
ionization rates increase more slowly with the intensity
than do the lowest-order perturbative rates.

Therefore perturbation theory predicts saturation in-
tensities for long wavelengths which are much smaller
than the nonperturbative estimates. As an example, we
consider the probability for ionization of H(ls} by a
1064-nm, linearly polarized, Gaussian pulse
I( t) =Io exp( —t /t„) with peak intensity Io = 2 X 1013

W/cm . Evaluating
t

1 —exp —J dt 'I"„/fi

assuming that the electron follows the diabatic curve, we
find that if t =100 psec the fraction of atoms that has
ionized at t =0, the peak intensity of the pulse, is roughly
0.2%, though replacing I „by the perturbative rate
yields the result 99.99% (taking into account only the
S =0 channel). We may ask what the maximum pulse
duration should be if at least 10% of atoms are to experi-
ence the peak intensity of the pulse without being ion-
ized; we find that t should be about 100 nsec, though
perturbation theory (again taking into account only the
S =0 channel) yields t~ =25 psec.

In Fig. 6 we show the total ionization yield for H( ls)
irradiated by a realistic pulse whose intensity distribution
is (p and z are cylindrical coordinates)

(o} 265 nm

tjt

2

D
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CD
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2
Intensity (tO Wcm )

(b} 552nm

0
0.5 1.0 & 5 ZQ

13 —2
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5 &0
12 —2Intensity (10 Wcm )

FIG. 6. Total ionization yield vs intensity for H(1s) irradiat-
ed by a pulse whose wavelength is 1064 nm, whose duration is
200 psec, whose focal spot size has a radius of 20 pm, and whose
peak intensity is 2. 5 X 10"W/cm .

FIG. 7. Index of nonlinearity vs intensity for total ionization
of H{ls) by linearly polarized light at wavelengths (a) 265 nm
and Cb) 532 nm. The arrows indicate the intensities at the first
multiphoton ionization thresholds.
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FIG. 8. Rates for harmonic generation of various orders by
linearly polarized light of wavelength 1064 nm incident on
H(ls). These rates are for emission into the direction of in-
cident propagation, and are summed over polarizations of emit-
ted light. We have normalized the rates to have the same value
for the third harmonic. Dashed and solid curves are results ob-
tained in lowest-order perturbation theory and our nonpertur-
bative approximation, respectively, at the following intensities:

1X10' W/cm j —X —,5X10' W/cn1; —0 —,
1X10"W/cm', —~—,2X10' W/cm .

where t =200 psec, where IO=2. 5X10' W/cm, where
R =20 pm is the spot size at the focus, and where, with
the wavelength A, = 1064 nm,

[r(z) ] =R [1+(kz /irR ) ] .

The figure represents the yield in ions as a function of the
intensity at which they are produced, calculated from the
nonperturbative rates of Fig. 4. We show the envelope of
a histogram based on dividing the intensity interval
O~I ~IO into very small, equal segments. Variations in
the pulse duration do not modify the results of Fig. 6, as
long as t is not too large (saturation effects become ap-
parent for t & 1 ns) or too small (the system cannot be
represented by a single Floquet state if the bandwidth of
the laser is too large). Note that the yield vanishes at the
peak intensity', this is because the spatial volume corre-
sponding to the intensity segment in which the peak in-
tensity occurs is proportional to the length dI of that seg-
ment, and therefore vanishes as dI vanishes. The reso-

nance peaks are very prominent in the yield, and would
remain prominent were we not to average over the spatial
dimensions of the pulse. The contribution of these peaks,
between I=1.55 X 10' and 2X 10' W/cm, is about
30% of the total yield produced by the pulse; the (double)
peak occurring at 2.0—2. 5X10' W/cm arises from the
shoulder seen in Fig. 4, and this provides most of the con-
tribution to the remaining 70% of the yield. Since we
have calculated the total yield, rather than the partial N-
photon ionization yields, we cannot confirm the substruc-
ture seen in the peaks of the emergent electron energy
distribution by Freeman et al. However, our results do
support the claim that levels shifting in and out of reso-
nance strongly enhance the ionization yield. Recently,
Cooke et al. have made the interesting observation that
in certain narrow regions of the laser focus, where the
atoms experience a peak intensity which is equal to an in-
tensity at which there is a resonance, ionization occurs
with very high probability. This is borne out by our re-
sults.

In Fig. 7 we present the index of nonlinearity, K, for
the total ionization rate of H( ls) by linearly polarized
light of wavelengths 265 or 532 nm. Here K is defined as
the derivative of ln(I „}with respect to ln(I}. As I ap-
proaches zero, K approaches the perturbation-theory re-
sult No. However, K decreases as I increases, until a res-
onance is reached, when K shows sharp structure. The
preliminary decrease of K may seem surprising, particu-
larly when the intensity passes a multiphoton ionization
threshold, at which point No increases by unity. Thus,
for 265-nm light, No jumps from 3 to 4 at about
5.7 X 10' W/cm, and for 532-nm light, No jumps from 6
to 7 at about 1.4X10' W/cm, and yet K smoothly de-
creases through both of these thresholds. The fact that
we find K to vary smoothly through a threshold may be
correct for practical purposes but is not correct in princi-
ple; rather, the smooth variation is a consequence of us-
ing a (finite) discrete basis set which cannot, of course,
reproduce the accumulation of resonances at (the right
of) the threshold. In fact, the prominent resonance de-
picted in each of the curves in Fig. 7 to the right of the
thresholds is presumably not the first, less prominent res-
onances lying closer to threshold being simply not detect-
ed with our finite basis.

We now turn our attention to harmonic generation. In
Fig. 8 we show rates, both perturbative and nonperturba-
tive, versus the order of the harmonic at several
different intensities for linearly polarized 1064-nm light
incident on H(ls). ' We see that perturbation theory
yields a behavior with respect to order that is reasonable
at low orders, but breaks down at high orders, more seri-
ously for higher intensities I. The nonperturbative esti-
mates of the rates for harmonic generation at first de-
crease sharply as the order increases, roughly level out
into a plateau, and finally decrease beyond a certain or-
der, N, „say. It is apparent that N, „ increases with in-
creasing I, and below we see that N „also increases
with increasing wavelength A, . It might be that, in analo-
gy to radiative scattering ' and multiphoton ionization,
(X,„IVo )Ace is proportion—al to the ponderomotive shift
P, but more extensive calculations are needed to establish



3070 R. M. POTVLIEGE AND ROBIN SHAKESHAFT

f0
t I I I I

,'-. O ~~0
/

t6—

I
t

I I I I

i

I I

o

nm

-2
)0

O

C3

0
0

o
o o 0 ooo

o oo ooo
~ ~ 4 ~+ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

O

&0

)0
1/le-

1/ZZ-

1/64 —'

10 1 I I 1 I 1 1

3 5 7 9 11 (3 15 )7 f9
Order

FIG. 9. Same as Fig. 8 but for an incident wavelength of 532
nm, and at the following intensities: —0 —,1X10"W/cm',
—~—,2 X 10' W/cm; —A —,4 X 10' W/cm'.

whether this is true. Of course, at high intensities satura-
tion plays an important role. Note that the perturbative
estimates of the rates do not exhibit a plateau; they peak
roughly at No, the minimum number of photons required
to ionize the atom. (This is true at all wavelengths. ) In-
cidentally, the fact that, on the basis of our nonperturba-
tive results, the strength of the ninth harmonic is larger
than that of the seventh, shows that one cannot conclude
that the breakdown of perturbation theory is signaled by
an increase in the strength of the harmonics from one or-
der to the next.

The appearance of an approximate plateau in the
strength of the harmonics, at intermediate orders, was

5 10 &5
& {1QQnm]

FIG. 10. Ratio of nonperturbative to perturbative rates for
generation of the third- (0) and fifth- (0) order harmonics by
linearly polarized light of intensity 1 X 10' W/cm incident on
H(1s), for wavelengths increasing from 300 to 1500 nm by steps
of 50 nm. Note that the scale of the vertical axis is logarithmic.

observed in a recent experiment. ' However, it is difficult
to make a direct comparison, not only because the rare
gases rather than hydrogen were studied in this experi-
ment, but also because we do not take into account the
modification usually referred to as "phase matching. "
(Since harmonic generation leaves the atoms in the same
initial state, it is impossible to know which atoms in the
medium participated, and therefore the signal must be
summed coherently over all atoms. This results in an
enhancement factor when the phases of the incident and
generated beams are appropriately matched. ) It is very
difficult to evaluate the phase-matching eA'ect correctly,
particularly because the strength of each harmonic has a
complicated dependence on I. If we were to assume that
the phase-matching factor has the behavior' with respect

TABLE I. Ratios of nonperturbative to perturbative rates for Nth-order harmonic generation by linearly polarized light of intensi-

ty I (in W/cm ) incident on H(ls). Columns labeled "Perturb. " correspond to absolute differential perturbative rates, in a.u. , for
emission in the forward direction at 10"W/cm . A number in brackets is the power of 10 by which the preceding number should be
multiplied. Phase matching is not included.

NiI
3
5
7
9

11
13
15
17
19

1X10"

1.8
6.1[—1]
6.4[ —1]
6.7[ —1]
6.9[—1]
7.1[—1]
7.4[ —1]
7.6[ —1]
7.7[ —1 j

532 nm
2X 10'

3.6
2.4[ —1]
6.5[ —1 ]
7.7[ —1 ]
8.5[ —1]
9.2[ —1]
9.8[ —1]
1.0
1.0

4X 10'

2.9
2.0[ —1]
9.9[—2]
4.9[—1]
1.1

1.8
2.5
3.1

3.6

Perturb.

1.6[ —16]
1.2[ —15]
3.0[ —17]
3.6[ —20]
9.7[ —24]
1.0[ —27]
5.6[ —32]
1.8[ —36]
3.8[ —41 j

1X10"

1.0
1.1

1.2
F 1
1.4
2.6
5.4
1.4[1]
3.9[1]

5X 10'

1.1

1.3
3.6
7.2[ —1 ]
4.1[—3]
2.5[ —2]
2.0[ —1]
1.1
5.4

1064 nm
1X10"

1.1

1.9
1.0[1]
2.2[ —1]
6.5[ —3]
3.2[ —3]
1.3[—2]
2.1[—1]
1.7

2 X 10'-'

1.3
3.2
4.7
1.2[ —1]
1.9[—4]
3.1[—5]
5.7[ —5]
1.5[ —4]
3.9[—3]

Perturb.

3.7[ —18]
9.2[ —21]
7.1[—22]
8.5[ —20]
8.5[ —18]
1.1[—17]
6.7[ —19]
7.4[ —21 ]
2.8[ —23]
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to order given in the weak-field approximation, our re-
sults would be modified significantly; for example, the
perturbative rates would exhibit more of a plateau than a
peak at intermediate orders. We will not pursue this fur-
ther, but turn our attention to Fig. 9 where we show rates
for harmonic generation by incident light of wavelength
532 nm, at various intensities (note that we have normal-
ized the rates in Figs. 8 and 9 so that they have the same
value for the third harmonic). At this wavelength the
difference between the qualitative behaviors of the pertur-
bative and nonperturbative results is not very striking,
and there is no evidence of a plateau at intermediate or-
ders. We did not find evidence of a plateau in the non-
perturbative rates, at 1 X 10' W/cm, for wavelengths
smaller than 700 nm; a hint of a plateau is apparent at
this wavelength, and this structure develops and extends
to larger and larger order orders (e.g. , up to the 21st or-
der at 1200 nm) as the wavelength increases.

To appreciate the quantitative differences between the
various rates we must normalize the nonperturbative re-
sults so that (in the present case where i is the ls state
and the incident light is linearly polarized) we have

g (1(,„ lg,„)=I,
P1

where

(a~b)= f d'x a(x)b(x) .

(See Appendix A. The normalization of the perturbative
rates is fixed by ~1(jo) = ~4, ), the unperturbed initial-state
vector. ) Using this normalization, we present in Table I
the ratios of the nonperturbative to the perturbative rates
for Nth-order harmonic generation; absolute perturbative
rates are also provided in Table I, so that the reader may
obtain absolute nonperturbative rates from these ratios if
needed. As above, these rates are for emission into the
direction of incident propagation, and are summed over
polarizations of emitted light. (In Ref. 10 we reported
absolute perturbative rates which were, however, in-
tegrated over all angles of emission and summed over po-
larization and are therefore a factor of 8~/3 larger than
the rates for emission into the forward direction. ) We see
from Table I that at 1064 nm the nonperturbative rates,
for a given order, do not have a simple power-law depen-
dence on I. The nonperturbative and perturbative rates
do not differ greatly at low orders (third or perhaps fifth
order in Table I); for a given order, the agreement tends
to improve (except when there are resonances) as the
wavelength increases and/or as the intensity decreases.
Roughly speaking, as the order increases the trend is for
the perturbative rates to become at first too large, and
subsequently too small. To illustrate these remarks more
clearly, in Fig. 10 we show the (properly normalized) ra-
tio of the nonperturbative to perturbative rates for third-
and fifth-order harmonic generation versus wavelength X,
at an intensity 1X10' W/cm . The reason that, for a
given order N, perturbation theory tends to improve as
the wavelength increases (in contrast to the case of
ionization —recall Fig. 5) is simply that Nhco becomes
smaller than the difference between the ground and first
excited energy levels of the atom as A, increases, and in
this regime N ( «No) photons do not greatly perturb the

ground state (whereas N ~ No photons ionize the atom).
Similarly, the relative difference between perturbative
and nonperturbative rates for Nth-order harmonic gen-
eration decreases as the ionic charge Z increases along
the isoelectronic series of a species, at a fixed wavelength
(these rates decrease rapidly with increasing Z).
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(A lb)
n

Recalling the boundary condition (1.7), we observe that if

Re(g) & —Im(k, +k, ,„), (A2)

for all integer m and m ', the scalar products
(P~„~e ~P;„), which involve integrals over x, exist. To
define X, (g) over a wider range of g we analytically con-
tinue X, (g) from the region where inequality (A2) holds.
As an example of analytic continuation, consider the in-
tegral

dl" e ikr —
g

~
~

1

0 ik-
If Re(g)) —Im(k) the integrand decays exponentially
for r —~, and the integral con verges. For
Re(g) & —Im(k) the integral does not formally exist, but
the right-hand side of Eq. (A3) provides the analytic con-
tinuation into this region. The pole at g=ik arises be-
cause at this point the phase of the integrand is constant
in r, and the integrand does not vanish for r —~. Here-
after, when we speak of X,(g) we mean the analytic con-
tinuation if (A2) does not hold. We assume that both I,
and I are small, in absolute magnitude, so that (A2) al-
lows for small values of g. We are, of course, particularly
interested in X, (0). If X, (g) varies slowly in the neigh-
borhood of /=0 it is meaningful to speak of

X;(0)exp[E" —
E, )t /A']

as the overlap of the state vectors which develop from
states i and j.

Using Eqs. (1.3) and (Ala), assuming that the intensity
I is constant, we have

APPENDIX A: ORTHOGONALITY,
NORMALIZATION, AND TIME REVERSAL

A. Overlap of Floquet state vectors

Let ~4, ) represent any unperturbed bound state j, and
let E denote the (unperturbed) energy of the electron in

that state. Let ~P (~)) denote the Floquet eigenvector
which approaches (4 ) for vanishing intensity, I-O, and
let c be the corresponding eigenvalue. We introduce the
gauge-invariant scalar product

X,, (g)= f «(Q, (&)le -'"l0, (~) ~ (Ala)
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e;Xe(g)= I de dt, (e) e t" H. +V(t) —(t) dt, (e)) .
277 0 di

(A4)

We now integrate by parts over ~=cot, noting that the surface term vanishes because of the periodicity of the ~ in-
tegrand. Provided that inequality (A2) holds, H, and V(t) are both Hermitian in the scalar product on the right-hand
side of Eq. (A4), and we obtain

eX)(g)= f de dt (e) H. + V(t) tt( —e t '
t(t)(e))2' 0 dt

=E,*XJ,(g)+O(g), (A5)

(E; —E,*)X,, (0)=0, e;We, . (A6)

Hence if E, WE we have that X, (0) vanishes, that is,
Ig;(r) ) and I/i(r) ) are orthogonal. [Since
exp(im r) llid (r) ) represents the same state as

I it (r) ), for
m an integer, we have, more generally, that
exp(imr)I/i(r) ) and exp(il~)I((lt, (~) ) are nearly orthogo-
nal; the proof of this statement follows using the same
reasoning as above. ] We turn now to the question of the
value of X,, (0) in the weak-field limit.

B. Discontinuity of X;;(0)

We assume in this section that the intensity I is
infinitesimally small. Thus the shift 6; and width I, are
also infinitesimal; consequently, inequality (A2) is
satisfied for vanishingly small g.

The scattering-state eigenvectors,
I &k ), of H„ togeth-

er with the bound-state eigenvectors, I& ), form a com-
plete set. (The superscript minus on IC&k ) signifies out-
asymptote boundary conditions. ) Using closure, with the
normalization

(+„ IC „.) =5'(k —k'), (A7)

and putting /=0 in Eq. (Alb), we can express X,, (0) as
the sum of the bound-state contribution, Sb, and the
scattering-state contribution, S, :

s, = y y l&e. lq, „&I',
n a

s, =y fd'kI&e„lq, „&I'.

(A8a)

(A8b)

where in the second step we have assumed g to be small,
and we have used Eq. (1.3) with i replaced by j. Now,
X;;(g) is sensitive to the value of g in the neighborhood of
(=0 because there is a nearby singularity. This singular-
ity is analogous to the singularity at ( =ik (with k =0) in
Eq. (A3), and it results from the cross terms involving

exp[i(k, —k,* )r]

in (it;„exp( —gr )Iitj,„);the phase of such cross terms is
nearly constant in r if (=0. This problem does not arise
for Xi, (g), E;AE, barring the exceptional resonance when
for each m there is an m ' such that k; —k ' nearly van-
ishes. Assuming that the analytic continuation of the
remainder O(g) vanishes at (=0 if e, We, it follows that

(A9b)

Defining E,„=E,+b, , +nato and Ek =(fi k /2p) we
have

S, = dk I&@i, lf,.& I'

(E,„E„)'+(r,—/2)'
(A10)

Using the following well-known representation of the
Dirac 5 function:

7r5(x) =i)/(x'+i)'), (A 1 1)

where i) is positive but infinitesimal, Eq. (A10) becomes

s, = y f d'k
I (&P„

I f,„)I 5(Eq E,„)—
n

0

(A12)

where

r,.=2~(pk;. /&') f dkl & + (A13)

and where k;„points along k, with k,„=
I k,„ I, where k;„

was defined by Eq. (1.8) above. Now, ( 4k I f,„) with
k=k, , is, in the weak-field limit, the matrix element for
n-photon ionization, with the electron ejected into theA
direction k. Since (pk, „/fi )dk is the density of scatter-
ing states in a narrow energy interval centered at E,„,we
have that I,„/A is the n-photon ionization rate integrated
over all angles of electron emission. It follows from Eq.
(A12) that S, = l. In other words, if the field is
infinitesimally weak the bound- and scattering-state con-
tributions are each equal to 1, and we have X;;(0)=2.
Yet if the field were identically zero, If,„) would vanish
identically for n&0 and we would have S, =0, so that
X,, (0)=1. The reason for this peculiarity is that if the
field is infinitesimally weak the electron remains bound

Now I(C& lg,„)I
is of order I" and therefore only the

n =0 terms contribute to the sum on the right-hand side
of Eq. (Aga). However, to zeroth order in I, we have
1&@.l&„&l'=I&@.l+, &I =5;, and hence Sb=l. To
determine S, we first introduce the resolvent
G, (E)=1/(E H, ) and r—ewrite Eq. (1.6) as

(A9a)
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for all finite times, but after an infinite time the atom ion-
izes and the electron is in the continuum. In a time-
independent theory the field persists for all time, and the
contributions Sb and S, are the contributions from finite
and infinite times, respectively.

This result is, of course, sensitive to the order of the
limits I~0 and j~0. Were we to first let I~0 and then
let (~0 we would obtain S, =0. The convergence factor
exp( —gr), with $-0, cuts off the region of asymptotical-
ly large r, which effectively cuts off the contribution from
asymptotically large t since the distance traveled by a free
electron is proportional to t.

C. Time reversal

Let the time-reversal operator T act on Eq. (1.1). Not-
ing that T includes the operation of complex conjugation
(it is antiunitary ) we obtain

Hence if c; is an eigenvalue, so is c,*. However,
Tl g, ( —r+ mom. ) ) satisfies an asymptotic boundary con-
dition which differs from (1.7) in that the outgoing waves
become ingoing waves.

It is very useful to define the gauge-invariant overlap

X,;(g)= f dt[(g (
—r+m ocr) lT )e ~" g, (r)) .

(A19)

(Note that mo is not invariant under a gauge transforma-
tion. ) If we put 1( (r)) =g„e '"'lp „),we obtain

(A20)

where by the scalar product (alb) we mean ((al T")lb ),
which is equal to [(bl(Tl a) )]*. If we ignore internal
degrees of freedom, we have

(alb)= f d x a(x)b(x),
la —H. —V'(t) Tle(t)) =0~ d

dt
(A14) which differs from the usual scalar product (a lb ) in that

a (x) is not complex conjugated. Noting that
The atomic Hamiltonian is real, whereas in the velocity
gauge V(t) is not real because T anticommutes with p.
Since the field is treated as external, it is unaffected by T,
which acts only on the atomic coordinates. However, if
the field were included as part of the system the rotation-
al sense of the polarization of the Geld would be reversed
under time reversal. We therefore introduce

V(t)= V e '"'+ V+e'"' (A15)

which is the interaction of the electron with a field whose
rotational sense of polarization is reversed (and whose
phase may be shifted). Thus V(t) differs fromm V(t) in
that V+ and V are interchanged. Now, there exists a
constant t0 =m0~/cu, where m0 is 0 or 1, such that

V(t) = V*( t + t, ) . — (A16)

If V(t) is real (as in the length gauge) we have mo =0; if
V( t) is pure imaginary (as in the velocity gauge) we have
mo= 1. Changing t to —t +to in Eq. (A14), and using
Eq. (A16), we obtain

iA H —V(t) Tl —P( t+t ))—=0.
di 0 (A17)

we have

Tlq';( —t +to)) =e " ' e ' Tlg, ( —r+movr) & .

(A18)

In other words, if l+, (t)) satisfies Eq. (1.1), so does
Tl+, (

—t +to)) if we replace V(t) by V(t) Note that .the
Floquet eigenvalue spectrum cannot depend on the sense
of the field polarization. Furthermore, if l4;(t)) satisfies
Eq. (1.1), when we replace V(t) by V(t), then
Tl 4( —t + to ) ) satisfies Eq. (1.1) in its original form, and
if we make the Floquet ansatz

l+;(t) ) =e ' lit;(r) &,

i A +E,* H, —V(—t) Tlg, ( ~+mott—) ) =0, (A21)
d

we can show, following the same analysis as in subsection
A above, that

(c, —c, , )X,, =0 . (A22)

There is a rather extensive literature on the question of
the normalization of resonance wave functions in the
context of radiationless atomic and nuclear scattering.
For recent discussions, which contain many references to
earlier work, see Watson and Kukulin et al. In our
context, we have an electron which initially is truly
bound. The exact state vector l%', (t) ) has the normaliza-
tion defined by

(A23)

When we make the Floquet ansatz, we obtain

(+;(t)l4, (t) ) =X,, (0)e (A24)

Whereas the exact value of (4;(t)l%;(t) ) is constant in
time, the Floquet ansatz yields a value which decays ex-

Hence if E Ws, the vectors lg;(w)) and

Tlg~( —a+mow)) are orthogonal. Now, if i is the state
reached by reversing the sign of the electronic angular
momenta in state i, we have Tl&, ) =lN, ) (ig-noring a

possible factor) and therefore in the weak-field limit
X-, (0)=1 (up to a phase factor). Furthermore, X-,,. (g)
varies slowly with g in the neighborhood of /=0, in con-
trast to X;;(g). This suggests that an a priori knowledge
of the value of X-, (0), at intensities beyond the weak-field

limit, might provide a convenient prescription for the
normalization of lP;(r)). This is a matter to which we
now turn.

D. Normalization of lp;(r})
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ponentially. The reason for this discrepancy is that when
we make the Floquet ansatz, we treat the electron as hav-
ing a definite (albeit complex) energy; in reality, the elec-
tron has a distribution of energies, with a width I, , and
the electron should be represented by a localized wave
packet which is initially the bound-state vector 4, ).
The factor exp( —I, t/A') on the right-hand side of Eq.
(A24) describes the electron loss from the bound state i,
at the rate I;/A; the gain into the continuum, which
should be 1 —exp( —I, t/A'), is incorrectly treated by the
Floquet ansatz because the Floquet state vector describes
an electron which is at infinity, rather than localized. We
can use the fact that the Floquet state vector describes
(more or less) correctly the loss from state i to normalize

1t', (r)); see Eq. (3.5) of Ref. 15. However, this normali-
zation is useful only if the field does not significantly dis-
tort the spatial probability distribution of the electron
during the time that the field is turned on.

To explore whether X- (0) can be used to normalize

~it, (r) ), we first continue to assume that I is constant in
time. Equations (1.1) and (A17) imply

[(4-.(
—t +to) T ]~+,(t) ) =const, (A25)

A. Convergence of dipole moment d&

With reference to the boundary condition (1.7), and to
Eq. (2.8b), the x integrand of d~„explodes exponentially

where const is constant in time. Now, we have acted as if
the field persists for all time. In fact, of course, the field
is turned on at some finite time, —

—,
' To say; we may take

To to be large and positive and (for the present purpose)
treat I as constant for t ) —

—,
' To. Equation (A16), and

hence Eq. (A25), are valid only for —
—,
' To & t ( —,

' To. At
time t = ,

' To —~, ~%—',(t) ) represents an electron which
has escaped and is very far from its parent nucleus, while
T 4-, (

—t +to) ) describes an electron which is localized
around the nucleus, with a spatial probability distribution

~
(x~&9, ) ~

. Hence the constant on the right-hand side of
Eq. (A25) is of order exp( —I, To/2A'). If we make the
Floquet ansatz

ql, ( t ) ) = exp [—i E, ( t + —,
' To ) /i''] ~ it, ( r ) ),

where the factor exp( —i E To /2iri) takes into account that
the decay of state j begins at time —To/2, , the right-hand
side of Eq. (A25) becomes the constant quantity

exp[ —i c;(to+ T .)/0A']X-, (0) .

Equating this, up to a phase factor, with
exp( —I;To /2A'), and noting that I, to (& 1, it seems
reasonable to normalize g;(r) ) so that X-, (0)=1.
Presumably this normalization remains appropriate even
when the intensity varies in time, provided that the elec-
tron remains on the same eigenvalue curve, and is
analagous to the normalization used ' in time-
independent radiationless scattering. However, a more
rigorous justification of this normalization would be wel-
come.

APPENDIX B: DIPOLE MOMENT
AND GAUGE INVARIANCE

and we must insert a factor exp( —gr) into this integrand,
thereby defining integrals dz„(g) and dz(g). We may
analytically continue these integrals (see Appendix A) to
the point /=0; it makes sense to identify dz(0) with dz
provided that dz(g) varies slowly with g in the neighbor-
hood of (=0. However, each d~„(g) has a singularity
near to (=0 because the phases of the cross terms in

are nearly constant in r, and the contribution of these
terms to the r integrand of dz„(g) increases linearly with
increasing r. Nevertheless, when we sum over n, the near
divergent parts of the dz„(g) cancel, and dz(g) has no
nearby singularity at (=0 so that it varies slowly in the
neighborhood of /=0. To see this, we recall that'

f „(E,, x)=e J„(p )f (E;,x), (Bl)

where f (c.;,x) is the amplitude for the electron to ab-
sorb m real photons. There are infinitely many ways in
which m real photons can be absorbed; f „(E;,x) is the
amplitude for the electron to absorb n photons, m of
which are real in the sense that the electron emerges
asymptotically with a mean momentum equal to Ak,
Thus f (E;,x) is a coherent sum over the f „(E;,x), with
coefficients

k, a( t) =p sin(an't —X ),
tz(t)= —(e/pc) J dt'A(t') .

(B2a)

(B2b)

Using the Graf addition formula, it follows from Eq. (2.9)
that

mn —V ~i X mn ~i~x

(B3)

Since NWO, the singularities cancel.

B. Gauge transformation

We have used the velocity gauge to describe the laser
field. In this gauge we have V(t)= —(e/pc) A(t) p; we
have defined the scalar potential N(t) by

eC&(t)= —(e /2pc )& (t), (B4)

so that V(t) contains no A (t) term. Both A(t) and N(t)
are assumed to be spatially homogeneous.

We may transform to a new gauge in which the vector

exp[i (m —n )X ]J„(p ),
as follows from Eq. (Bl) using the Graf addition formula
for Bessel functions. Here, J„(z) is the regular Bessel
function, and p and g are both real quantities which
depend on k, = k, x and on the vector potential A(t) of
the field:
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and scalar potentials are'

A(t) A'(x, t)= A(t)+PA( x, t),
@(t) 4'(x, t)=4(t) —(1/c)BA(x, t)IBt,

(B5a)

(Bsb)

It follows that the harmonic components ~(g,'„& are relat-
ed to the

~ g;„& by

(B 1 1)

0( t) e i (e/Pic)A(x, t) (B6)

we have

where A(x, t) does not depend on p. The Hamiltonian
H(t) =H, + V(t) transforms to H'(t) =H, + V'(t) where,
introducing the unitary transformation operator

This last result shows how the boundary condition (1.7)
should be modified in the new gauge.

As an example, consider the length gauge, in which
V'(t) = —ex.E(t) where E(t) is the (gauge-invariant) elec-
tric field vector. To pass to this gauge we choose

A(x, t)= —A(t) x+c f dt'C(t'), (B12)

0(x, t) H(t) —iiri 0 (x, t)=H'(t) —i)rt
dt dt

(B7) giving A'(x, t) =0 and
A(t)=Re( A0e ") we have

C)'(t) = —E.x. Writing

A solution ~%'(t) & of Eq. (1.1) transforms to (e/A'c)c f dt'4(t') = Pt/fi+—h(r), (B13)

l+,'(t) & =o(x, t)~+(t) & . (B8)

(B9)

where P is a constant, independent of i, equal to
Re(E.,

' —s;). The operator exp(iPtlirt)0 (x, t) is periodic in

t, with period 2~/~, and we can Fourier expand it:

0(x, t)=e ' ' Qo„(x)e (B10)

Provided that V (t) is periodic in t, with period 2' /to, we

may make the Floquet ansatz ~(I(,'(t) & =exp( —i E,'t/
fi)~(P,'(r) & in the new gauge, but the real part of the
quasienergy need not be invariant under the gauge trans-
formation since the zero of the energy scale is not physi-
cally significant (only energy differences are physically
significant). On the other hand, the imaginary part of the
quasienergy is proportional to the total ionization rate
from state i, and this must be gauge invariant. It follows
that

where P =e 30/(4p, c ) is the ponderomotive energy
shift, and where h (r) is a periodic function of r with
period 2ir. [In the velocity gauge, with the A term re-
moved from V(t), the continuum threshold does not
shift, whereas in the length gauge the threshold shifts by
P.] Consequently, we have

0„(x)= 1 2 in r —i ( e /Pic) A( t).x+ih ( r )

277 0
(B14)

Here 0„(x) is a generalized Bessel function. If the po-
larization is circular we have h (r) =0 and the generalized
Bessel function simplifies to the standard one:

(B15)

where a =(e/)rtc)~ A0~/&2, and where (9 is the angle
+tan '(y /x ), with the sign determined by whether the
light is right or left circularly polarized. Combining Eqs.
(1.7), (B1), (B1 1), and (B15) we find, after using the Graf
addition formula and the asymptotic form of the Bessel
function for large argument,

(x~g,'„&—(2/irar)' g e' " ' 'cos[ar —
p sin(y —0)+(n —m)ir/2 —rt!4]f (c,;,x)r exp(ik r)/r, r —oo

(B16)

for circular polarization, where we have ignored
mathematical questions of uniform convergence, etc.
This boundary condition, which does not apply in the
weak-field limit where a -0 (since we have assumed that
ar —ao ), differs significantly from (1.7). By using the
properties of the generalized Bessel functions, Eq. (B16)
can be generalized to arbitrary polarization.

C. Gauge invariance

which gives rise to the spontaneous emission of a photon
of frequency O, =Neo and polarization c. If we represent
the vacuum field in the length gauge, we have
V, =f3ea ' x, where /3 is a constant (which depends on
0). We can use Eqs. (2.8) and (1.4) to write

& *.d)v(g)=
' f "«&q, (r) e ~"V,p(t)li('j;(r) & .

277 0

(B17)

The d)v„(j) are not separately gauge invariant but, as
we now show, the sum d)v(g) is gauge invariant for g
small. We first introduce the interaction V, (t)= V, e'

Let us now include V, (t) in the Hamiltonian H (t); thus
H(t)=H, + V(t)+ V, (t). Using Eq. (1.3) [we determine

~g, (r) & without including V, (t)] we may write
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1 27)-

r. " dv, (g)= dr g, (r) e '" H(t) —E, —i% tt, (r)
217 0 dt

(B18)

We now make a gauge transformation. We attach subscripts l and sp to the transformation operators appropriate to
the laser and vacuum fields, respectively; thus 0(x, t)=Oi(x, t)0,. (x, t). Since we retain V, (t) only through first order
(spontaneous emission is a weak process) we may insert 0,.„(x,t) to the left (or to the right) of V,. (t) in Eq. (B17); this
introduces an error of second order. We may therefore insert 0,.„(x,r) to the left (but not to the right) of
[H ( t) —

E,
—i fi(d /dt)] in Eq. (B18). We do this, and we also insert 1 =0, (x, t)0, (x, t) to the right of

[H(t) —
E,

—i'(d/dt)] Ex.pressing the bra and ket Floquet state vectors in terms of their transforms, according to Eq.
(B9) but with 0 =Oi, and recalling that Oi '(x, t)=Oi(x, t), we obtain, after noting that 0 (ix, t) and 0,„( xt) commute
with each other and with exp( —gr), and using Eq. (B7),

E
' d~(g)= f dv vp,'(~I e i" H(~l+c,' '—iA O„ix, i) p,'irI)2 ir 0 dt

(B19)

We now integrate by parts over r=ait, use the Hermiticity of H'(t), and use (the primed form of) Eq. (1.3) to yield

E* d (g)= f dr(g, '(r)lV,' (t)e '"0,. (x, t)lg,'(r)&+0(g) .
2~P o

(B20)

We may neglect 0, (x, t) in the integrand on the right-
hand side of Eq. (B20), thereby introducing an error of
second order; comparing with Eq. (B17) we see that
r.

* d,v. (0) is gauge invariant, assuming that the analytic
continuation of the remainder 0 (g) vanishes at /=0.

Note that the expressions derived in the Appendix of
Ref. 16 for the X-photon ionization amplitude are not
gauge invariant; these expressions were derived in the ve-
locity gauge. While the velocity gauge is computationally
the most convenient, an exact calculation should of
course be gauge invariant.

5ai =m ai —( E +6 —E; —5; ) /A' (C3a)

by

fiai, =6 +ai(), —y;)/2A . (C3b)

Solving Eqs. (C2) with I fixed, we obtain the two Floquet
eigenvectors

where fiflo is the coupling energy, with it a coupling
phase, and where 6', is the complex detuning, which is
given in terms of the real detuning

APPENDIX C: BEHAVIOR OF FLOQUET
EIGENVALUES AND EIGENVECTORS
AT AN INTERMEDIATE RESONANCE

In this appendix we consider the case of an intermedi-
ate resonance between the states i and j; we suppose that
the eigenvalues c, iXj, differ by very nearly an integral
multiple m of fico. We summarize, with several helpful
modifications, some useful results obtained earlier by
Gontier and Trahin, and by Holt et ah. ,

' under the as-
sumption that the field is sufficiently weak that, at reso-
nance, the atom can be viewed as consisting of just two
bound levels, i and j. Within this two-level model, the
electron state vector can be expressed as

lq (r)& = lq, (.)&.

tt, (r) & =iV, (e —' ld& &+e+~ e'~e ' 'ld& &)

where X+ are normalization constants, where

sinh(g) =5ai, /IYD,

(C4a)

(C4b)

(C5)

+(t) &
= & a (t)e (Cl)

(C2a)

ia =(0„/2)e '~a, e (C2b)

where we have allowed for the shift and decay (into the
continuum) of level a through the inclusion of 6 and y .
(Here 6„and y are the shifts and widths that would be
obtained if the coupling between states i and j were
turned off. ) If we make the rotating-wave approximation,
the coefficients a (t) are coupled through the equations
(where the dot means time derivative)

FIG. 11. Two possible {parabolic) trajectories of
z =(hen, , ) +Of& as 6co varies from u ~ to —u ~, where u is the
sign of y, —y;. The intensity is held fixed. A trajectory crosses
the real axis at xo, where xo depends on the intensity and is pos-
itive or negative according to whether 2fiAo is greater than or
less than y, —), l.
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and where the Floquet eigenvalues are

e+= —E, +5;+E,+5, ——(y, +y, ) m—Aco+fiQ,
1 1

with 0, the complex generalized Rabi frequency:

0, = [(5', ) +0 ]'

(C6}

(C7)

(i) If l y, —y; I
«2&IIo

Re(e+) = —,'(E;+5, +E, +5,+fiA),

Q=[(5') +$10]'i2,

Im(e )= —,'[ —(y; +y, )+(5'/I1)(y, —y, )] .

(ii) If Iy, —y; I
»2iiif~0.

(Cl la)

(Cl lb)

(C 1 lc)

Now Q„as a function of z =(5', ) +AD, has two square
root branches, and we must be careful to specify which
branch 0, is on. We define the principal branch as the
one which is real and positive when z lies just above the
positive real axis in the complex z plane. We draw a
branch cut along this axis, and the secondary branch is
reached by crossing this branch cut. On the principal
branch we have 0 & arg(A, ) &m while on the secondary
branch we have vr & a—rg(A, ) & 0. We choose Il, so that
it is on the principal branch if Im(z) 0. In Fig. 11 we
show two possible trajectories of z as 5co varies from —~
to ~ with the intensity fixed. When 6m passes through
zero, a trajectory crosses the real axis, at
x0=00—(y, —y; ) /4' . If x0 is positive, the trajectory
crosses the branch cut and A, changes branches. If
x0=0 the trajectory passes through the branch point
singularity at the origin, and 0, is subsequently
undefined. (This, of course, indicates that the dynamics
of the passage through resonance is rather complicated
when lyi

—y, l
-2iriQ0. ) If xa is negative, 0, remains on

the same branch. As long as the branch of 0,, can be
specified unambiguously, we may solve Eq. (C5) as

/=in[(5', +0, )/00] (C5')

(C8a)

(C8b)

Exactly at resonance, where 6co=O, we have the fol-
lowing.

(i) If ly, —y; l
«2iri&0

q (r))= -(ev'2

(C9)

(ii) If I y, —y; I
»2iriI1, :

lq„(r})=e "" le, ),
le „( ))t= e" "le, ), -

(CIOa)

(C lob)

where u denotes the sign of y —y;.
Near resonance the Floquet eigenvalues are the follow-

ing.

It follows that as l5col ~ ~ we have 0, ~s5co and
g~s oo where s is the sign of either 5' or y —y;, ac-
cording to whether x0 is positive or negative, respective-
ly. With this definition of s we have in either the far-off-
resonance limit l5col —~, or the vanishing intensity limit
I-O, that

Re(e+) = —,'(E, +5;+E,+5, Ace—+ufi5co),

Im(e„) = —
—,'[y, +uy, „(5')],

Im(E „)=—
—,'[y, —uy, „(5~)],

ly,
—y, I/2

y,„(5')=2(Q0/2)
[(5') +(y, —y, ) /4iri ]

(C12a)

(C12b)

(C12c)

(C12d)

In case (i) the real parts of the eigenvalues e+ exhibit
an avoided crossing at resonance, with a gap of magni-
tude AO0. On the other hand, the imaginary parts of c.+
exhibit a true crossing at resonance. The complex Rabi
frequency Q, switches branches as the resonance is
passed. The Floquet eigenvectors are equal mixtures of
the atomic bound-state vectors at resonance. In contrast,
in case (ii) the real parts of the eigenvalues exhibit a true
crossing at resonance, the imaginary parts of c.+ exhibit
an avoided crossing with a gap of magnitude

l y, —y, l /2 —y,„(0), and 0, remains on the same branch
as the resonance is passed. Note that in order to fulfill
the criterion of case (ii) we must have y,„(5'�)« l y, —y; l

and either yj »y, or y, »y, . We may identify y,„(5')
with the excitation rate of state j from state i. This fol-
lows from Fermi's golden rule, noting that the quantity in
square brackets on the right-hand side of Eq. (C12d) pro-
vides a representation of the Dirac 6 function; cf. Eq.
(All) with x =5' and r)=lyi —y, l/2. (Energy conser-
vation need be satisfied only to within the width

ly —y, l. ) The interpretation of Eqs. (C12b) and (C12c)
is now straightforward. Thus, if u [the sign of (yj —y;)]
is positive, —2Im(E„) is the rate of decay y, of state i
into the continuum plus the rate of excitation from i to j;
once the electron reaches the state j, the atom ionizes at
the rate y . On the other hand, —21m(e „) is the rate of
decay y of state j into the continuum, minus the rate of
deexcitation y,„(5') of state j to i The roles . of i and j
are reversed if u is negative. Note that at resonance the
Floquet eigenvectors are single atomic bound-state vec-
tors.

We may write lP;(r)) and lP (r}) in place of lg+(r)),
where the signs + are correlated with i and j according to
Eqs. (C8). In general, g' is complex and lP, (r)) and
liti (r)) are not orthogonal with respect to the overlap
X;(0) defined by Eqs. (A 1). However,

l P, (r) ) and

l
P-.(r) ) are orthogonal with respect to the overlap X-., (0)

defined by Eqs. (A19) and (A20). This may easily be
verified after noting that when we reverse the sense of the
field polarization and the sign of the electronic angular
momenta, we must complex conjugate the coupling ma-
trix element (AD/2)e'~, so that P~ —P.
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