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The Fock-Tani Hamiltonian is found for systems containing two protons and one electron.
It is shown that a post-prior symmetrical T-matrix element for a+ + (b+c ) ~ (a+c ) + b+

may be found from that of the simpler proton-proton-electron system if a and b are treated
as isospin projections of a single type of nucleon. The Coulomb-exchange contribution to the
inelastic (isospin flip) scattering of this system gives a first-order T-matrix that is completely
symmetrical with respect to post and prior interactions and orthogonalizations, a symmetry of
the exact T-matrix.

I. INTRODUCTION

Quantum-theoretic techniques have been shown ' to
be a powerful tool in calculations of atomic collision
cross sections. The original formulation of Taylor and
collaborators was restricted primarily to processes de-
scribable conveniently in terms of single-particle opera-
tors, due to the use of only annihilation and creation
operators for single electrons. The Fock-Tani repre-
sentation was introduced as a generalized field-theoretic
representation involving field operators and wave func-
tions of bound composites as well as their unbound con-
stituents. In the resulting representation composites
are treated exactly and obey elementary commutation
relations, and unbound states are exactly orthogonal to
bound states. Potentials between unbound states contain
orthogonalizaton subtractions so that there is not enough
energy to bind. Because of the subtractions, perturba-
tion series are likely to be more convergent than conven-
tional Born series. A calculation of charge exchange in
proton-hydrogen collisions produced a total cross sec-
tion in agreement with experiment for energies greater
than 10 keV and diA'erential cross sections in very good
agreement with experimenti (at 25, 60, and 125 keV)
for angles within 1 mrad of the forward direction.

Several formal results are also noteworthy. The first-
order Fock-Tani rearrangement cross sections for proton-
hydrogen collisions with and without the internuclear
term agree to 10% (whereas the first Born results differ by
100%) thus fulfilling at first order Wick's observationis
that the internuclear potential should give no contribu-
tion to the exact T-matrix. Also each term of the Fock-
Tani Hamiltonian corresponds to a specific and immedi-
ately identifiable physical process. Because of the cou-
pling of asymptotic states to only some terms in the
Hamiltonian, due to the specific configuration of field
operators, one can use the same unperturbed Hamilto-
nian for different initial and final asymptotic arrange-
ment channels. As a consequence, in Fock-Tani represen-

tation the same potential appears in each of the alternate
definitions of the exact T matrix

so that reactants, intermediate states, and products are
treated symmetrically.

However, previous derivations have contained
the familiar post-prior discrepancy of reactive collision
theory through the form of the potentials and or-
thogonalizations in the matrix elements contained with
V in (1). This is a result of the ordered-product form of
the orthogonalization transformations to the initial and
final bound states. Since the exact T matrix has no such
discrepancy it would be desirable to remove this dis-
crepancy from the first-order T matrix.

In the present paper it is shown that a first-order
T matrix that is completely post-prior symmetrical can
be derived by introducing an isotopic spin notation for
the variables, orthogonalizing to a single bound species,
and then choosing a nucleon-hydrogen initial state and
a corresponding final state with opposite isospin. The
charge exchange T matrix is then given by the Coulomb-
exchange term in the Fock-Tani potential. The present
derivation also extends previous work to allow up to two
dynamic protons and one electron (the I2i subspace of
the Hilbert space of pair-bound states), and also allows
an additional charge fixed at the origin, which eAectively
extends the result to I3i or I22. Since the derivation and
description of the Fock-Tani representation have been
presented in detail in the literature, ~ the present
derivation will focus primarily on the alternatives to, and
extensions of, previous approaches.

II. THE FOCK-TANI TRANSFORMATION

One starts with the Fock Hamiltonian (in coordinate
representation),
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dxg(X)[T„(x) + U,„(x)]g(x)+ d gt(z)[T, (z) + U,„(z)]g(z)

dXd. qt (X)qt (z) [U„.(Xz) + ~„.(Xz)]e(z)l(X)

+ 1
2

dXdx'@t (X)g'(X') [U„„(xx')+ ~„„(X-X')]4(x') 0(X) (2)

in which the T's are kinetic energy operators, the V«'s
are external potentials [which may arise if (2) is a center-
of-mass (c.m. ) Jacobi system or from placing the origin
on the coordinates of a fourth particleio ], the W's are
inertial potentials arising from placing the origin on the
coordinates of a fourth particle, and V~ „and Vp p
are two-body potentials. Integrations over z = (r„cr,)
include integration over the electron s spatial coordi-
nates and a sum over fermionic spin. Integrations over
X = (r„,o„,r) include integration over the nucleon's
spatial variables and sums over both fermionic and iso-
topic spin (if desired). If (2) represents an accelerated
c.m. system obtained by putting the origin on a fourth
particle ~ variables z and X contain the positions of
the remaining physical particles, but if (2) represents a
Jacobi c.m. system z and X contain the positions of
"fictitious" particles relative to the center of mass. The
masses in the T's are chosen accordingly. One can then
define a Fermi annihilation operator for the nucleon (with
isospin states A and B),

P„(xz)P„(xz)dxdz = b„„=b b„

At = dxdzg„(xz) Qt (X)gt (z)

which satisfy the commutation relation

[A„,At, ] = b„„+C„„
with

(8)

C„„=— dX dX'Ii„„(X,X')@t(X)@(X')

(' ')&'( )&( ')

holds (with s running over AC and BC) as a consequence
of the orthonormality relations for the two conventional
bound species P~ gc(x~z) and P~ ~c(XBz). The cor-

responding generic composite creation operators A~ are
then

itg(XA), X = (Xg, A)
gg(xg), X = (Xtr, B) Ii„„(x,X') = P*„(x'z)P„(xz)dz,

that, with @(z), the annihilation operator for the elec-
tron, satisfies the anticommutation relations

[Q(X),Qt(X')]+ —b(X, X') = b(X, —X,, )b„, ,

and

I&„„1(z,z') = P'„(Xz') P„(xz) dX

V(z) &'(z')]+ = b(z —z')

[~(X),~'( )].= o, (4)

Of course the isospin indices may be ignored if they are
not needed by setting r = A.

The Fock Harniltonian (2) and the states (7) are trans-
formed using a unitary operator

U = exp —I"

[~(x),~(x')]. = [~(x),@( )]. where (anticipating the need for refinement) the lowest
order term is

= X(z) @(z)']+ = o
Fi i ——) (A„a„—a„A„). (12)

Introducing a generic bound-state index p = (o. , s),
where s takes on two values AC and BC, and generic
bound-state wave functions

~c(x~z), s = AC and r = A

P~ ~c(x~z), s = BC and r = B
0, 8=AC andr=B

, 0, @=BC andr=A

one can easily show that a generalized orthonormality
relation

The a& and at operators are elementary Bose operators
satisfying commutation relations

[a „ap,, ]p = b pb„-t

differing from (8) through the disappearance of the in-
tractable operator term C»1. The rotation

Is) II 'lp) —= Ip)

redescribes the composite state Ip) = A~1 IO) as an
elementary-particle state Ip). The compositeness of the
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b ound states is still present implicitly in the repre-
sentation since the transformed Fock-Tani Hamiltonian
U H~U is a functional of the bound-composite wave
functions P& since these enter into (ll) via (7). How-

ever, all annihilation and creation operators, including
those a& and a~ representing the composites, now sat-
isfy elementary-particle commutation rules so that the
standard field-theoretic techniques~o (Wick's theorem,
Green's functions, etc.) can be applied to composite-
particle states. The transformation (11) acts on an en-
larged state space I which is the graded direct product '

of the standard Fock space and an "ideal-composite"
space generated by the at operators. The vacuum state
of this enlarged space will be denoted by ~0). There is a
subsidiary condition that ensures that the enlarged space
is isomorphic with the original (physical) Fock space,
which is discussed in the Appendix.

III. THE TRANSFORMATION ON I„

F2i —) [At (b„, + b C"„„)a„—H.c.], (21)

dA„(t)
ct (t) + ) .(1+b) C (t) (t)

+b ) C"„„(t)C„",(t) a, (t) + O[e'] (22)
V)T'

"'"(') =-A„()—) bC~„(t) A„(t).
dt

(23)

Consider the operator

cr (t) = —f dxdx'J&„, (x, x')Q~(x, t)g(x', t) .

where H.c. stands for Hermitian conjugate. This gives
the pair of equations,

Fock-Tani Hamiltonian on the I2~ subspace is found by
solving diR'erential "equations of motion. " For any oper-
ator 0 one can define At lowest order

(24)

O(t)=U OU=e ' Oe'

which leads to the differential equation

(15) gt(X, t)@(X',t) = @t(X)g(X') . (25)

By particle-number conservation, the next, higher order
term will involve products of

dtO(t) = ' [O &]e' —= [O(t) +] (16)

On the subspace I2), including two protons and one
electron,

@'(X~)&'(*~)&( ~)@(X2)

at @ (z~) @(X)),
dA„(t) =a (t)+) C.".(t) a.(t)+O[e ]

V

(17)
or

Qt (Xy)@t(zy)a (26)

and

da„(t)
dt

(18)

where O[e ] refers to terms that annihilate two or more
(free or bound) electrons. Subject to the initial condi-
tion A„(0) = A„, a„(0) = a&, the solution on the Iqq

subspace, on which the C&„ term gives no contribution,
is easily seen to be

A„(t) = A„cos t + a„sin t (19)

a„(t) = a„cost —A„sint, (20)

which embodies the interpretation of U effecting a ~/2
rotation on I~~. But a multiple-commutator solution
of (17) and (18), on I2q, yields secular terms, terms in
addition to the trigonometric functions of t, that do not
allow the rotational interpretation. The cause is seen to
be that the generator, Fqq, contains only terms from the
Iqq subspace. To make (17) and (18) more symmetrical
one could add a term depending on C& to either cancel
the second term in (17) or add it to (18). Thus (1'2) will

be extended to include

Thus since a„(t) and A„(t) annihilate one electron and
one proton each,

C„"„(t)a„(t)= C„"„a„(t)+ O[p ] + O[e'],

C„",(t)A„(t) = C„",A„(t) + 0[ps] + O[e'],
(27)

where O[p ] stands for terms that annihilate three or
more protons.

A consistent solution that embodies the interpretation
of U effecting a n/2 rotation on the Hilbert space I2) is
found by setting b = —2,

A„(t) = A„cost + ) (b„„+2
C& ) a sint+ 0[$4],

a„(t) = a„cost —) (b„„—-'CJ„'„)A„sint+O[P ],
(28)

(29)
where O[p~] stands for terms of fourth order in the bound
state wave functions (5) that will not contract to lower

order, using (6) or (8), in future operations. One must
still solve the coupled equations for the Fermi operators
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= ) [V(z, t)A~, ] (8„+„bC~ )a„(t„)= —) J dA'g„(X, z) |)~(X,&)( b„„+5 C~„) a„(t),
Pi& P)&

(30)

= ) dzg„(Xz)gt(z, t)a„(t) —-' ) dzg„(Xz)gt(z, t) C„"„a,(t)

+& ) dX'Iw& (X, X')[A&~(t)@(X',t) a (t) —at (t)g(X', t) A (t)] .
P»

(31)

The solution for g(z, t) on I2i is most easily generated by the multiple commutator technique. s Define, for any
operator,

where

[0, F]() —= 0
and

[O, F]„+,—=[[O, F]„,F].
Then the first three nontrivial comrnutators of @(z) are

[i))(z), F2i]i ——) [g(z), A„](b„„+bC„"„)a
P»

(30')

[@(z),F2i]2 ——) [@(z),At] (6&„+2b C~ ) A, , +0[p ]+0[e ]+0[(t) ],

and

[@(z) F»]. = —) .[@(z) A,'] [b..+ (3b+ 1) C,".] a. + 0["1+ 0[p'1+ 0[&'1 (34)

But since b = ——1
2

[(b(z), Fpi]s ——[(b(z), F2i]i + 0(e') + 0(p ) + 0(P'),
so that to this order

g(z t) = @(z)+) [@(z) At] (6 —2C"„)a„ t ——+ —— .
i

—(8„„—C„"„)A„1—1+ ———+.
P»

= @(z) —) dX P„( Xz)@ (tX)[(b„—2 C ~~)a„isn t—(6„„—C„")A (1 —cost)] .
P»

(36)

Note that Q(z, 0) = @(z)
The generator used previouslys io for the Fock-Tani transformation on Iii (in which b=0) would lead to secular

terms, terms that are complicated power series in t rather than being trigonometric, which would not have allowed
the interpretation of U as a 7r/2 rotation on the space of bound states The sam. e term added to F to give the simple

solution for A~(t) and a~(t) and also gives a simple form for it (z, t)
The final step consists of substituting A„(t), a„(t), and @(z,t), to third order in wave functions, into the diff'erential

equation (31) for )[b(X, t) Note that by t. he same argument that led to (27),

@(X' t)a. (t) = &(X')a.(t)+ 0["]+0[p']

g(X', t)A, (t) = @(X')A,(t) + 0[e ] + 0[p'],
so that
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(X, t) = ) f ds ti„(X*)ttt(a) a„cost —Assist+ t ) t,„„A,aint —
t ) t s„(a„cost —A„sint)

V V

—) f d XI ta( XX) i (at tt(X') (a„aint cost —A„sin t)

—At g(X') [a„(cosg —cos t) —A„(sin t —sin t cos t)])
—

z ) a~&g(X') C"„a„sint cost —2at g(X')(a si nf cost. —A„sin t)

—&At @(X')(a„cos t —A sin t cost)

+ &
at g(X')(a„sin I, cost + A„cos t) + 2 ) CP a~ sin t cos t

—2A„it)(X') (A sin/ cost + a„sin t) +O[g ] + O[p ] . (38)

Integration gives the final result on I2~

g(X, t) = g(X) + ) dzg&(Xz) gt(z) [a& sin t —A&(1 —cos t)]

—) dz P„(Xz) @t(z)C„[2a„sint —A„(1 —cost)] —) dX'I~„(X,X')A„„(t)@(X')
P&V

—i ) dzdX'dz'dYQ'„(Yz) A(Xz, X'z') tt„(Yz') at @(X')a sin t, (39)

where

A„(t) =
2

at a„sin f+ at A (2 sint c sot —zt + ~t)

—A„a„(sin i —
~ sin t cost —2t + 2i)

+At A (1 —cost —
2i sin t) . (4o)

Note that the cancellation in the secular terms, linear
in t, is again a result of the new term in the generator
(21). In the Appendix it is shown that this new term in
the generator also allows the subsidiary condition to be
satisfied to third order in wave functions even in media
of nonzero density.

One may show by substitution into the differential
equations (17), (18), (30), and (31) that (28), (29), (36),
and (39) are a self-consistent set of solutions to fourth
order in wave functions on I2~. Finally, the transformed
operators are found by setting t = 7r/2.

Hp
— dX gt(X) T(X)g(X),

d @'( )T( )4(*), (42)

V„„=- dxdX' X X' V XX' X X

HFT —Hp + He + +pp + Hpe + Ha + IIap

+H(pe ~ a) + H(a ~ pe)

+H(ppe Pa) + H(Pa PPe) +, (41)

where the subscripts refer to the occupation number of
the three species. As previously, the terms H&, H„and
V&p are the same as the corresponding terms (single-
proton, single-electron, and p-p interaction possibly in
the presence of a charge fixed at the origin) in the stan-
dard Fock Hamiltonian

IV. THE FOCK-TANI HAMILTONIAN where the possible presence of a charge fixed at the origin
is included by defining

It is now a straightforward matter to evaluate the Fock-
Tani Hamiltonian by substituting (36) and (39) into (2)
and applying Wick's theorem to rearrange all terms into

normal order. Since this algebraic reduction parallels

that previously carried out, only the final results, up

through binary collision terms, will be given here. As

previously, HFT has the general structure

T(X) = T„(X)+ V,„(X),

T( ) = T.(.) + V-(.),
V(X, X') = Vp „(X,X') + W„p(X, X'),

V(X, z) = V„,(X, z) + ItVp, (X, z) .

(43)
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The physical interpretation of these terms in HFT is,
however, quite different from their interpretation in H~,
in that the @ and @t operators now refer only to unbound

(i.e. , ionized) protons and electrons. All bound state con-
tributions are contained in other terms in HFT involving
the atomic annihilation and creation operators a& and
at'. Atomic binding has an indirect effect on the proton-

electron interaction term in Hz„which differs from the
bare proton-electron interaction from V(X, X ) in HF
As previously, H&, is found to be a nonlocal interaction
operator

a„which partially cancels the attractive p-e Coulomb
interaction. This cancellation is more evident in the spe-
cial case in which the P, are chosen to be free-atom
energy eigenstates satisfying

(xzIHIx'z') = v(xz)b(x —x')s(z —z')
—) s P (X z)P'(X' z') . (50)

H(xz)P, (Xz) = [T(X) + T(z) + U(xz)]4, (xz)
= c P, (xz) . (49)

Then (45) simplifies to

dXd dX'd ' t X

x (Xz I
H IX'z') g(z') g(X')

with matrix element

(»IHIX'z') = V(Xz)b(X —X')b(z —z')

H(xz) —K(xz, X'z')

[H (X—'z') A(x'z', Xz)]'

+ &(Xz, Yy)H(Yy)b, (Yy, X'z')

(44)

This cancellation weakens the p-e attraction so much that
(44) no longer supports bound states, as has been shown
previously. This is important since the bound-state ef-
fects are already contained in other terms involving the
a„and a„. The situation here is very similar to that ob-
taining in Weinberg's "quasiparticle method" for scat-
tering from a potential with bound states. He found that
the weakened interaction kernel led to greatly improved
convergence of the Born series for scattering. One ex-
pects a similar benefit here, although our system is much
more complicated (many body instead of single particle).

Of the other terms in (41), the single atom Hamiltonian
H~ has the previously found form 4

xdYdy .

Here 4 is the bound-state kernel

a(Xz, X'z') = ) y. (Xz)y:(X'z') (46)
with

H, = ) at (nIHIP)ap (51)

(~ IHIP) = 4' (Xz)H(Xz) yp(Xz) dxdz, (52)

H(Xz) = T(X) + T(z) + U(Xz) . (47)

(which has been shown previouslys to be diagonal in
spin indices), the kernel of the projection operator onto
the bound-atom subspace, and H(Xz) is the single-atom

Schrodinger 8amiltonian

reducing to

H. =) e ala +)
a,P

xap Pp(xz)dxdz (53)

P' (Xz) at [V,„(X)+ U,„(z)]

Introduce the standard decomposition of the P's ap-
pearing in (5)

in the case (49). Similarly, the ionization and recombi-
nation terms are

y. , (x, ) =n '~'.*" ~
( —R. .) (48)

H(pe ~ a) = ) dXdz gt(x) @t(z)(xzIHIa)a
where n = (k, v) with k the translational wave vector, v
all other quantum numbers, 0 the volume element of the
system (periodic boundary conditions may be chosen for
convenience), and u the atomic wave functions in the
c.m. system. Then one can easily show that 6 has a
range —(m/M)a, with respect to the nuclear separation
H.~ —R~ and range a, with respect to the electron-
nucleus separations r —B.~ and r —R~, where rn is the
electron mass, M the proton mass, and a~ the Bohr ra-
dius. It follows that the matrix element (45) consists of a
local "bare Coulomb interaction" term (the first V term)
and a nonlocal interaction of the opposite sign and range

H(a ~ pe) = [H(pe ~ a)]t,
with

(XzIHIn) = H(Xz)g (Xz)

b, (xz, Yy)H(Yy)P (Yy)dYdy, (55)

which vanishes in the case (49) of stationary (hence non-
decaying) energy eigenstates with no external potentials,
or reduces to

(XzIHla) = [V«(x) + V«(z)] p~(xz) — 4(xz, Yy) [V«(Y) + V„(y)] p (Yy)dYdy
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if the atom is in the presence of nonzero external potentials. The term

H p
—'P f dXdX' a de ( X)( aX[HP[X') de(X') ap

a,p

has a matrix element that is a sum of local direct Coulomb interactions

(aX]H[{)X)c &
= p(X —X') fd'(Yy)['V(XY) + 'V(Xy)] dp[Yy)dYdy,

nonlocal orthogonalization corrections to the direct interaction,

(aX[H[pX'),ae,z
——f d" {Yz)[ eT(Y)+ -'T(z) d- ~T(z') d- 'T(X-)+ eT(X )'

+~V(Yz) + —,'V(Yz')+ &V(YX)+ —,'V(YX')+ —,'V(Xz)
+-V(X'z')]b(Xz, X'z')Pp(Yz')dzdz'dY,

Coulomb-exchange coupling matrix elements including an orthogonalization correction (the terms involving 4),

(aX[H]PX )c & „=—J pt-(X'z)[V(XX') + z[V(Xz) + V(X'z)])dp(Xz)dz

+- ' Yz V YX + V Xz S Yz, X'z'
p Xz' azaz'ZY

+ 2
' X'z 6 Xz, Yz' V YX' + V X'z'

p Yz' dzdz'dY,

and intra-atomic-energy-exchange coupling matrix elements including an orthogonalization correction,

(aX[H[PX');„„,, = —
e f{d' (X'z)H(Xz)dp(Xz) + [H(X'z)d (X'z)]'dp(Xz)}dz

+-,' '. Yz 0 Yz a Yz, x'z'
p

Xz' ezez'eY

+ ~
X'z 3 Xz) Yz H Yz'

p Yz' dzdz'd Y .

(58)

(5&)

(60)

In the case (49), P free-atom energy eigenstates with no external potentials, the matrix element (61) can be shown
to vanish by an argument analogous to that demonstrating the vanishing of (55) in the same case. Such cancellations
show that the fourth-order {in wave functions) orthogonalization corrections can be very important. If external
potentials are present, (61) reduces to

(aX[H]{)X');„„,„= —f pt' (X'z)[z [V,„(X-)+ V,„(X')]+ V„(z)}dp(Xz)dz

+ 2
' Yz V,„Y + V,„LY,X'z'

p Xz' dzdz'd Y

+&
' X'z 6 Xz, Yz' V,„Y + V,„z' p Y ' dzdz'dY . (61')

Consider next the term representing atomic ionization due to a proton-atom collision, and the inverse recombination
term,

H(ppe ya) = ) J dXdzdX dX d]~(X)de~'(z)d")~(X') (X z' X[HX[a")t/( X)a

~(p. - pp ) = [~(pp -p.)]t,
with matrix element

(XzX']]H][o{X")= b(X' —X")[V(XX')+ V(X'z)]Q (Xz)
—p(X' —X")f de(Xz, Yy)[V(X'Y) + V(X'y)]d (Yy)dYdy

6 Xz, X"y H X'y + 2H Xz 6 Xz, X"y X'y dy

+ 6 Xz, X"y ~2V X'z + V X'X" + ~&V XX' + V X"y X'y dy .

(62)
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This is similar to, but not identical with, the previ-
ous expression; in particular, the secular terms (pro-
portional to n) occuring previously are now absent, as
expected physically.

This completes the evaluation of the single-species
Fock-Tani Hamiltonian through fourth-order in bound-
state wave function on the subspace including up to two
protons and one electron, I2~, and possibly a fourth par-
ticle fixed at the origin that effectively allows calcula-
tions on I22 or I3i. For further details regarding physical
interpretations and diagrammatic representations of the
various terms in (41), the original work4 should be con-
sulted. The operator structure of all the terms are the
same here as previously, but some of the matrix elements
are changed, particularly with regard to cancellation of
all secular terms and the inclusion of' some fourth-order
orthogonalization terms previously omitted. If the iso-
topic spin formalism included in this Hamiltonian is not
needed one can ignore it by setting 7. = A in the defini-
tions of Sec. III.

V. THE SYMMETRICAL FIRST-ORDER
T MATRIX FOR REACTIVE COLLISIONS

ON 1,
Consider a system containing three types of con-

stituents denoted by A, B, and C, and suppose that
these can form both (BC) and (AC) bound states, but
not (AB) or (ABC). The isospin notation of the pre-
vious sections, in which fermionic constituents of type
A and B are regarded as the same kind of particle in

different internal states (as protons and neutrons are re-

garded as difFerent states of the nucleon), has the (very
great) advant, age that the Fock-Tani Hamiltonian for the
two-species case, relevant to reactions

A+ (BC) ~ (AC) + 8, (64)

is already present in the one-species Hamiltonian (41).
This treatment is more symmetrical than the two-species
Hamiltonian previously derived from an ordered product
transformations (unsymmetrical with respect to the var-
ious species).

Also, on the one-A, one 8, one-C subs-pace, the as-

sumption that all three constituents are fermions is actu-
ally only a convenience, allowing immediate adaptation
of the results of the previous sections. Exchange effects
cannot occur on this subspace, so the reaction cross sec-
tion is independent of the choice of statistics of the three
constituents. Although the sign of the amplitudes de-

pends an the choice, the signs cancel from the cross sec-
tian. The results are then immediately applicable to a
reaction like D+ + H ~ D+ H+ in which D+ is a boson
and H+ a fermion, and in general to (64) for any choice
of A, 8, and C (assuming, however that A, 8, and C are
distinct species).

The Fock-Tani Hamiltonian for (64) has recently been
derived by Ficocelli Varracchio and Ojha ef al. g using
the multispecies Fock-Tani transformation of Girardeau
and Gilbert in ordered product form U~gU~c. The
first-order matrix elements exhibit a post-prior discrep-
ancy related to the arbitrariness of this ordering, the op-
Posite order UAcU~c being also allowed (since A, 8,
and C are distinguishable) but giving different matrix el-
ements. On the contrary, the matrix element that will be
obtained herein is symmetrical with respect to the (BC)
and (AC) composites and therefore treats the post and
prior interactions on an equal footing.

The first-order approximation ("Fock-Tani first Born" )
to the T matrix for (64) can be obtained from the proton-
hydrogen scattering matrix element(ax, IHIPX'), (57)
through (61), by the substitutions

x'=(x„,A), x=(X~,B),
P V* =(a* BC) a

in accordance with the previously described generalized
isotopic spin notation of Sec. II. Note that XA is the
coordinate of the incoming A particle and X~ that of
the outgoing B particle. The transition amplitude for
given initial and final momenta k~ and k~ of the A
particle and B particle can then be obtained by Fourier
transformation with respect to X~ and X~. The direct
Coulomb contribution (axIHIPX')c«~ of (58) vanishes
in the present case because b(x —X') contains the factor
b~~ ——0, B and A being distinct species. Similarly, the
orthogonalization contribution (aX IH I pX')~„thos (59)
vanishes identically in X~, X~, X~, and X& whenever
X = (X~, 8) and X'(XA, A), as a consequence of (5).
Furthermore, taking the P Ac and g gc to be en-

ergy eigenstates of the (AC) and (BC) systems will

cause the expression (axIHIpx');„i, ~,„(61) to van-

ish, as previously noted. Therefore, only the expression
(aXIHIPX')c«i, „(60) is needed to determine the de-
sired reaction amplitude.

With the aforementioned substitutions and in an ob-
vious notation, (60) becomes

(PyXIHIV X')cori ex = (&y, A-C;Xa, BIHIaa, BC;XA A)

4 ~~,Ac(XA ~
Ai zc)(V(XAXB) + 2 [V(XBzc) + V(XAzc)])p~~ iac(x~, B;zc)dzc

+-1
2

+—1
2

W~g, Ac (Yzc)[V(Y;Xz, 8) + V(xazc)] 6(Yzc IXA, A; zc)

xP, roc(xg, 8;zc)dz, dz,'dY

,Ac(XA» zc) &(X~ » zc IYzc)[V(» XA A)

+V(XAz'c)]P, gyc(Yz'c)dz dz' dY (66)
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In the orthogonalization integrals (the ones involving b, ), Y stands for (Y, r) and jdY for P f dY, with r running
over A and B. By (5) only r = A contributes to the first orthogonalization integral and r = B to the second. Then
reverting to standard notation and denoting the amplitude (66) simply by (nf XB~V~n;XA), one finds

(~i~~ lt'I~ x~) = —f s:, Ac(ZA*G)(~v4xB) + 1(v(xszc) + v(&x&c)])s.;,sc(xa*c)d&c

+ 2 Qa~ AC(XAzC)[V(XAXB) + V(XBzC)] SAC(XAzC i XAz)4' aBC(XBzC)dXAdzCdzC

+ g a@Ac XAzc ABc XB&c)XB+c V XAXg + V XA&g +Bc XB+c dXB~+cdc ~

(67)

This is only a first approximation (Fock-Tani first Born) to the exact T matrix element for (64), but it goes well beyond
a conventional first Born approximation. Higher-order corrections involve other terms in the Fock-Tani Hamiltenian
[i.e. , terms other than (57)], which contribute through virtual intermediate states in higher-order terms in the Fock-
Tani Born series. These other terms in H~ can also be determined from the corresponding terms in (41) by the same
generalized isotopic spin technique, but will not be exhibited here.

It is of interest to compare (67) with the expressions of Ficocelli Varracchio and Ojha ef aL based on the
ordered-product form of the Fock-Tani transformation. Assuming the P Ac and (t p Bc to be energy eigenstates of
the isolated (AB) and (BC) systems as before, the expression of Ojha ei al. is, in the present notation,

(&fXB~V ~&f XA)GG — (t'ay AC(XAzC) [V(XAXB) + V(XAzs)]da, ,BC(XBzC)dzC

0» Ac(XAzc)&Bc(&Bzc, XBzc)[V(XAXB) + V(XAzc)]Pa„Bc(XBzc)dXB dzcdzc

(68)

where the subscript GG is a reminder that this expres-
sion derives from the Girardeau-Gilbert ordered-product
form5 of the Fock-Tani transformation. The deriva-
tion of Ficocelli Varracchio proceeded from the same
starting point but was far the mare general case af a
three-body potential (for example, a Born-Oppenheimer
potential between the three nuclei involved in an atom-
diatom reaction) that can be specialized to the present
problem by expressing it as a sum of pair potentials,

V(XAXBzc) = U(XAXB)+V(XAzc)+V(XBzc) .

(69)

Then if (ta Ac and pp Bc are again chosen to be energy
eigenstates, his expression [his Eq.(68)] reduces, in the

I

present notation, to precisely the same formula (68). As
has been noted previously, ~ this expression exhibits
the familiar "post-prior" discrepancy of reactive colli-
sion theory, in that initial- and Anal-state interactions
and arthogonalizations are not treated on an equal foot-
ing. V(XAXB) and V(XAzc) are the interactions of the
incoming A particle with the particles of the incoming
(BC) bound state, and subtraction terms involving b.Bc
orthogonalize (VAB + VAc)p, Bc to the manifold of all

(BC) bound states. In other words, this matrix element
represents the prior form of the first Born matrix ele-
ment, corrected by prior erthogonalization. This stems
from the unsymmetrical form Vjp~ Vg~ of the transforma-
tion. In a case such as this where A, B, and C species are
all distinct, the alternative form V~~ Vjy~ is also allowed,
but leads to an equally unsymmetrical matrix element

(c f XB [V (&aXA) post — 4'a, AC(XAzc)[V(XAXB) + V(XBzc)]Pa, ,BC(XBzC)(Izc

~a),Ac (XAzc) [V(XAXB) + V(XBzc)]+Ac(XAzc ~ XAzc)~af, Bc(XBzc)dXAdzcdzc

involving only post interactions V(XAXB) and V(XBzc)
and a pos] orthogonalization involving the kernel L~~.
Exact T-matrix elements involve no such discrepancy, as
is well known. It is, therefore, noteworthy that the im-
proved first-order matrix element (67) is completely sym-
metrical with respect to post and prier interactions and
orthogonalizations. In fact, it can be written as an aver-

I

age of post and prior matrix elements,

(ctf B )V(n;XA) = —
~ [ (nf XB(V Jn;XA) post

+(af XB i
V ia ' XA )pp'op] (71)

where (nf XB)V[n XA)p„,o, is (nf XB(V(ct.XA)GG of
(68). The minus sign in (71) has no physical significance,
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being merely a result of the phase choice, which disap-
pears when the matrix element is squared in forming the
cross section.

VI. CONCLUSION

The original motivation for this paper was the exten-
sion of the Fock-Tani transformation to systems contain-
ing two protons and one electron, with the possibility of
a fourth charge fixed at the origin. This is the initial, and
most diKcult, of the three transformations necessary to
calculate the Fock-Tani T matrix for reactions of the type
A+ (BCD) ~ (AB) + (CD), where (BCD) could be an
atom such as helium or hydrogen-minus.

The representation developed here has three benefits
not originally contemplated; the elimination of secular
terms appearing in previous4 treatments, the satisfac-
tion of the subsidiary condition to third order (in wave
functions) for states of nonzero density (see the Ap-
pendix), and a first-order T matrix for reactive colli-
sions that has the post-prior symmetry of the exact T
matrix. The ordered product form of the Fock-Tani
transformation added a post-prior asymmetry to the first
Born approximation, which is post-prior symmetrical for
a collision of a structureless particle on a hydrogenic
target. This consequence is typical of other first-order
theories that seek to improve upon the results of the
Born approximation, such as the distorted-wave Born
approximation (DWBA) of Shakeshaft and Wadehra2s
and the Eikonal approximation. For the special case
M|.- ((M~, M~ this DWBA regains post-prior symme-
try for capture into the ground state but not for capture
into excited states. Burgdorfer and Taulbjerg have devel-
oped a DWBA (Ref. 25) that retains post-prior symme-
try on the energy shell. The present Fock-Tani T matrix,
however, remains post-prior symmetrical without either
of these restrictions. Whether a similar formalism will
produce a post-prior symmetry for four-body collisions,
for which the (Coulomb) Born approximation is not sym-
metrical, remains to be seen.

It should be noted that there is a deeper significance to
the fact that the present reaction amplitude (67) was ob-
tained from the exchange contribution, (60), to the (elas-
tic and inelastic) scattering amplitude, (cd% ~H~PX'), of
(57). In fact, the physical significance of the exchange as-
pect of (60) is that the outgoing proton is "not the same
nucleon" as the incoming one, the free and bound protons
having changed places during the collision. This amounts
essentially to a reactive process, so it is hardly surprising
that expression (60) can be promoted to a truly reactive
matrix element by promoting an "effective" difference be-
tween the incoming and outgoing free particles to a true
difference through use of an isotopic spin formalism.
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APPENDIX

The enlarged Fock space on which the transformation
(ll) acts is the graded direct product5 s of the physical
Fock space by an"ideal composite" space generated by
the at operators. Physically allowed states ~g) in this

enlarged space are sums of products of the g's, so that
the new modes on which the a„and a, t operators act
are unoccupied. Equivalently, physical states satisfy the
subsidiary condition

a ~g)=0 Vn,

which is, in turn, equivalent to

(A 1)

with

No(@) = 0 (A2)

N, =) at a (A3)

the ideal-composite occupation-number operator. If (g)
is a single-composite state ~cx) = At ~0) then it satisfies
(A3) trivially since a commutes or anticommutes with
the @t fields, s in (?). The Fock-Tani image of such a
state isa ~g) = U ~@) and satisfies the transformed
subsidiary condition

(A4)

which will be satisfied if

a U(@) = 0 . (A5)

States with one composite and no free constituents satisfy
(A4) trivially. More generally, states with one or more
composites and/or free constituents can be showns to
satisfy (A4) provided that the composite wave functions
are mutually nonoverlapping and also do not overlap the
wave functions of any unbound constituents. This is the
case for asymptotic initial and final states for few-body
collisions built from asymptotically nonoverlapping (in-
finitely separated) wave packets. This standard interpre-
tation of asymptotic states, and hence the triviality of the
subsidiary condit, ion, break down in the case of a macro-
scopic system of nonzero density, since any at tempt to
make all particle separations infinite (asymptotic limit)
reduces the density to zero.

In such a nonzero-density system one can define non-
ionic states as arbitrary linear combinations of ideal-
composite product states

one of us (M.D.G.) is most grateful (and who would
like to thank Professor O.E. Polanski, Director at the
Max-Plank-Institut fur Strahlenchemie, for hospitality
extended during the visits there); by the U.S. Office of
Naval Research (for work carried out at the University
of Oregon); and was done while the other (J.C.S'.) was
a guest scientist conducting research through the Na-
tional Research Council —NASA Research Associateship
Program.
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In, n, n„)=at at "at lO).

The vacuum is invariant under U,

(A7)

because F of Sec. III annihilates the vacuum. It follows
that (A5) can be rewritten using (A6),

a G,G, . G„iO)=0
where by (29)

G„:—&ale/ ' =a~ (——
)

To lowest order in the G's, it can be seen that the Fock-
space images ~nq. .n„) of states (A6) are just physical
composite states A, A (0). These product states
contain only bound composites (no free constituents),

hence the name "nonionic. " Additional, more compli-
cated terms in )nq n„) become important when the
composite wave functions overlap appreciably, in which
case (nq . n„) satisifes (A4), and hence ~nq . n„) sat-
isfies (A2), only if the generator contains the new terms
(21) and, even in this case, only to third order in wave
functions. This can be seen in (AQ) which is independent
of the creation operators a~ . Because of the absence of
a„ in (AQ) a commutes through the G's in (A8) to an-
nihilate the vacuum. In fact, the condition that G be
independent of a„ is a condition that can be used to
solve for U, (11).

Thus, the new terms in the generator that led to the
cancellation of the secular terms in the solutions of each
at (t), A&&(l), g(X, t), and Q(z, f) also lead to satisfaction
of the subsidiary condition to third order in wave func-
tions. The new result should allow Fock- Tani represen-
tation, with all of its benefits, to be applied to problems
involving composites in media of nonzero density.
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