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We have measured variations of Saffman-Taylor flows by changing dimensionless surface tension
B alone and by changing B in conjunction with changes in dimensionless viscosity contrast 4. Our
low-aspect-ratio cell permits close study of the linear- and early nonlinear-flow regimes. Our criti-
cal binary-liquid sample allows study of very low values of 4. The predictions of linear stability
analysis work well for predicting which length scales are important, but discrepancies are observed
for growth rates. We observe an empirical scaling law for growth of the Fourier modes of the pat-
terns in the linear regime. The observed front propagation velocity for side-wall disturbances is
constantly 2+ 1 in dimensionless units, a value consistent with the predictions of Langer and of van
Saarloos. Patterns in both the linear and nonlinear regimes collapse impressively under the scaling
suggested by the Hele-Shaw equations. Violations of scaling due to wetting phenomena are not evi-
dent here, presumably because the wetting properties of the two phases of the critical binary liquid
are so similar; thus direct comparison with large-scale Hele-Shaw simulations should be meaningful.

I. INTRODUCTION

In this paper we report the results of systematically
varying the control parameters for Saffman-Taylor' flow
at low viscosity contrast. The cell we have used has a
small aspect ratio [(length)/(width)=1] to allow us to
study the linear regime and the earlier stages of nonlinear
pattern formation. Most previous work! ™ * on this insta-
bility has used a high aspect ratio to reach and study the
steady state, and indeed the detailed understanding of the
steady state and its dependence on cell properties
represents a noteworthy recent success of condensed-
matter physics, and a fascinating example of the inter-
dependence of theory and experiment."">*~7 Most previ-
ous experiments have also involved a high viscosity con-
trast between the two fluids in the flow.!”*® There is
general agreement that the same steady state should
eventually be reached for both high- and low-contrast
flows," but the dynamical equations of the flows are ex-
plicitly contrast dependent, affecting at least the time
scale over which the steady state is reached and possibly
affecting the pattern evolution in much less trivial ways.
In reports on earlier phases of our work”!® we have
shown that the low-contrast flows in fact evolve not just
more slowly than their high-contrast analogs, but also ex-
hibit different morphology changes as they evolve.

The two control parameters!! for the Saffman-Taylor
flow are the dimensionless viscosity contrast A4 and the
dimensionless surface tension B, both defined in Sec. II.
We have varied B independently and also varied 4 and B
in a locked way. We find good agreement in many of the
measures of the flow with the scaling suggested by the
Hele-Shaw equations. This is slightly surprising since
work at high contrast, both in rectangular’ and in circu-
lar'? Hele-Shaw cells, shows significant breakdowns in
the scaling; these breakdowns have been well explained in
terms of wetting effects’ which destroy the pure two-
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dimensional nature of the flow. While the discussion
below will show that we do not fully understand the
reason that wetting effects seem so negligible for the
present case, it is hoped that the fact that the Hele-Shaw
scaling is observed to apply to this case will encourage
more extensive computer simulations of the 4-dependent
time evolution of this simplest of all pattern formation
problems. In particular, fascinating simulations of the
evolution of various solidification patterns have resulted
from adding experimental or numerical anisotropies to
the basic Hele-Shaw situation;'* a serious quantitative
test for the numerical simulations would be to reproduce
in detail the results of the present simpler experiment.

Since in the linear regime the Saffman-Taylor instabili-
ty is known to be broadband;'* it is important to know
which of the various possible flow measures exhibit large
fluctuations and how rapidly these fluctuations are re-
duced as the steady state is approached. It is obvious
that an empirical determination of the size of such fluc-
tuations is very tedious, and in a case where fluctuations
dominated the flow, computer simulations, provided one
were sure that they incorporated all the “right” physics,
would have a significant advantage over laboratory exper-
iments. We have recently completed a study'® of fluctua-
tions in this system, wherein we measured a small “‘en-
semble’ of 14 realizations of the flow for essentially iden-
tical values of 4 and B. While the observed fluctuations
are significant, they are not so large as to obscure the sys-
tematics to be presented below. In this paper we will as-
sign uncertainties to each of our measurements on the as-
sumption that they are the same as those measured in our
ensemble.

In Sec. II we present details of the experiment, and
define the control parameters and the important observ-
ables. In Sec. III, the results of our measurements are
presented, and Sec. IV contains a discussion of the
significance of our results.
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II. EXPERIMENT

Reference 10 contains a description of the details of
our apparatus and data reduction methods. Here we will
only sketch the important features of the experiment,
with particular emphasis on those features most crucial
to the present measurements. The Saffman-Taylor insta-
bility arises at the initially planar interface between two
fluids flowing in a Hele-Shaw cell (a cell formed by paral-
lel plates with a gap between them of thickness b, which
is smaller than any other length scale in the problem).
The instability is driven either by a pressure gradient ad-
vancing the less viscous fluid against the other or by
gravity as a result of a density difference between the
fluids. In the present case, we use a closed cell (thus the
average velocity of the interface is constrained to be zero)
and drive the instability gravitationally; we initiate the
flow by rotating the cell to raise the more dense fluid
above the less dense. In this case, the dispersion relation
from linear stability analysis'* takes the form

io(2i/K)—(p,—p,)gk +ak?=0, (1

where K =b?/12 is a mobility. The average shear viscos-
ity, the interfacial surface tension, the density of fluid n,
and the acceleration due to gravity are fi, 0, p,, and g, re-
spectively. This dispersion relation predicts broadband
instability for all wavelengths A above a critical value

)\C:27T[U/(p2_pl)g]l/2 . (2)

The fastest growing mode A, is expected to be that with
wavelength V'3A,. Tryggvason and Aref'! (TA) have
shown that the problem can be cast in terms of two con-
trol parameters 4 and B, where A4 is the dimensionless
viscosity contrast

PRl
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and B is the dimensionless surface tension (or inverse
capillary number)

B=0b*/[6U*Wu,+u,)], 4)

(3)

with W the width of the Hele-Shaw cell and U* the
characteristic velocity
2

U* = (p1—p,)gb . ()
12(p, +u,)

TA shows that B can be scaled out of the two-

dimensional Hele-Shaw equations by adopting the dimen-

sionless time

t'=U*t/1.84WB'"? | (6)
and the dimensionless length
x'=x/7.70WB'/* . 7

We have added the factors 1.84 and 7.70 in Egs. (6) and
(7) to make the fastest-growing wavelength A_,, =1 and
the growth rate of A, (from the linear stability analysis)
also equal 1. As was mentioned above, the viscosity con-
trast A cannot be scaled out of the equations.

In this experiment we exploit the well-known features

of critical binary liquids to vary the control parameters of
the Saffman-Taylor flow. This not only eliminates the
need to change liquids when varying the control parame-
ters, but it also provides great precision in the knowledge
of and changes in the control parameters. For a critical
binary liquid!'® in the two-phase region, the density
difference depends on reduced temperature
€e=(T.—T)/T., where T, is the critical temperature, as
Ap=p,€?, where B=1+ and interfacial tension, o =0 €",
where p=1.25. Since kinematic viscosity is, to a very
good approximation, the same for both phases, the
difference in shear viscosities between the two phases has
the same temperature dependence as does the mass-
density difference. Using the measured critical
coefficients for the isobutyric acid—water system'® used in
this experiment, one finds the fastest growing wavelength
and the control parameters as follows:

}‘mu)\:}"Oe()'45 > (8)
A=0.027¢'"? 9)
B=0.022¢""%(cosa) ' . (10)

During the course of this experiment we varied the con-
trol parameters in two ways. In method 1, B could be
varied while 4 was held constant by varying the angle a
between the plane of the cell, and the vertical to control
the effective gravitational acceleration g. In method 2, by
changing temperature, 4 and B could be changed togeth-
er according to relations (9) and (10) above.

As was mentioned above, wetting effects are known to
modify the Hele-Shaw equations, and the destruction of
Hele-Shaw scaling by such effects has been observed in
both rectangular? and radial'? Hele-Shaw cells for air-oil
interfaces. Thus the scaling results to be presented below
are anything but a forgone conclusion. Our cell gap b =1
mm is smaller than, but not much smaller than, the
4.5-8-mm wavelengths observed in the patterns to be dis-
cussed below. Other than for wetting corrections to the
two-dimensional equations,2 it is difficult to estimate the
length-scale ratio at which three-dimensional effects
should become important, but a previous study® suggests
that a 4.5:1 ratio produces results which are similar to
flows at much larger ratio and that observable three-
dimensional effects set in very gently near a ratio of 3:1.
We conclude this section with a list of the experimental
peculiarities of the present work which (i) are different
from some or all of the previous work on this instability
and/or (ii) could conceivably require modification of the
Hele-Shaw equations. First, the wetting properties of the
liquids: in most previous experiments the invading fluid
either preferentially wets the walls or it leaves behind an
intact wetting layer of the displaced fluid, the latter being
the case for air-oil interfaces. In the present case the two
phases of the binary liquid are very similar in their wet-
ting properties, and, at equilibrium a few hundred mil-
likelvins below the critical temperature, the water-rich
phase is slightly preferred by the glass (contact angle
~70°). Second, flexing of the glass plates of the cell is
much less a problem in the present case than in most oth-
er experiments, both because the cell is surrounded by the
water of the temperature control bath, which is at essen-
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tially the same pressure as the inside of the cell, and be-
cause the pressure differences built up between the nearly
identical phases inside the cell are so small. Finally, the
cell is closed and gravity driven, with no externally ap-
plied pressure gradient and no liquid of either phase
entering or exiting. The possible influence of these exper-
imental differences will be discussed in Sec. IV below.

III. RESULTS

We will arbitrarily divide our presentation of results
and their subsequent discussion into those with implica-
tions mainly in the linear regime and those which still ap-
ply after the system has passed over into the nonlinear re-
gime. As was discussed in some detail in Ref. 10, we find
that many flow properties change markedly between
these regimes if we define the regime boundary to come at
the time when the amplitudes of the central fingers (i.e.,
excluding the last finger on each side of the cell) become
equal to the mean wavelength of the pattern.

A. Linear regime

Figure 1 shows mean wavelength (defined as cell width
W =4.5 cm divided by the number of fingers) as a func-
tion of reduced temperature. The uncertainties shown in
the figure are standard deviations resulting from repeat-
ing each measurement about 15 times under as close to
identical conditions as the apparatus allows. Each mea-
surement provides a well-defined integer for the number
of fingers appearing in that realization, and the error bars
represent a measure of the reproducibility of this aspect
of the flow. It is interesting to note that the standard de-
viations are quite uniform whether or not the mean num-
ber of fingers is close to an integer value. One might ex-
pect the pattern to lock in slightly better when the cell
width and capillary length become commensurate, but if
this is correct, the matching requirement is too severe for
us to accidentally meet it. (There is one point in the
figure where all 15 flows gave the same number of fingers,

)\(cm)
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€

FIG. 1. Mean finger wavelength A vs €, the reduced tempera-
ture. Also shown on the upper edge is dimensionless surface
tension B calculated from e using Eq. (10). Over this same
range of data, the dimensionless viscosity contrast A4, calculated
using Eq. (9), varies from 4.06 X 10 * to 7.37X 10" °.

but with the typical observed standard deviations, the
fluctuations expected for samples of size 15 should give
about this many such points.) The ensemble whose
analysis has provided the estimates of uncertainties used
in this paper appears as the point at €=6.12X1073 in
Fig. 1.

The solid curve in Fig. 1 results from a best fit to the
data using the power law of Eq. (8) with the expected
combination of known critical exponents. If we allow the
exponent to vary, the best power-law fit to the data pro-
duces the dashed curve in the figure and yields an ex-
ponent 0.341+0.08. We do not regard as significant the
approximately one standard deviation difference between
the best-fit exponent and the expected value because the
observed range of reduced temperature is only about a
decade. The coefficient A, from Eq. (8) is 5.4 if one uses
the exponent 0.45 and 3.1 if one uses exponent 0.34. The
available values of the critical coefficients which combine
to produce A, predict a value of 5.1£12%. Again the
agreement is sufficient to suggest that the linear stability
analysis is rather accurate. Most authors®!* of previous
works have reported only qualitative results for their
A ~1 work in the linear regime, but Park et al’? report
for 4 ~1 an agreement between observed A and the
linear theory expectation which is quite similar to the
present A ~0 result.

In Ref. 10 we reported that we could observe the linear
pattern setting up, activated by an initial disturbance at
the sidewalls which propagates across the relatively flat
interior of the interface. One presumes that the same
linear pattern would eventually be set up if there were no
side walls (and we have, indeed, qualitatively verified this
by observing the same flows in an annular Hele-Shaw
cell), but it would almost certainly take a much longer
time to get started. All other reported rectangular Hele-
Shaw flows see side-wall disturbances,”” *® and indeed
the side-wall influence dominates the eventual steady
state, but here we have slowed the instability sufficiently
(and correspondingly reduced the side-wall disturbance
by using liquids of such closely matched properties) that
we can study the progress of the side-wall disturbance
into the interior of the cell. Figure 2 shows the position
of the propagating front as a function of time as the side-
wall disturbance moves toward the center of the cell. In
the upper part of the figure, the data for several values of
control parameter B (with A fixed at 6.9X10 3 are
shown in dimensional form. In the lower part, the data
have been scaled to dimensionless form by using Egs. (6)
and (7). The earliest-time data show a dimensionless
propagation velocity V*=0.8, while the later-time data
suggest ¥*=3.7. If we make the admittedly crude ap-
proximation that the linear pattern, which is slowly form-
ing, is a steady state toward which the propagating dis-
turbance is driving the system, then the formalisms of
Langer'” and van Saarloos'® can be applied. Both formu-
lations of our problem!® predict ¥*=v"3 in our dimen-
sionless units.

Additional insight into pattern development in the
linear regime can be gained by considering the Fourier
transforms of the patterns. Following the results we re-
ported in Ref. 10, here and below for our discussion of
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FIG. 2. Top: Propagation distance of the initial side-wall
disturbance d vs time. Bottom: The same plot in dimensionless
units.

the nonlinear regime we will turn the patterns into
single-valued functions by considering x, position across
the cell, and y, position in the flow direction, as functions
of total arc length s. Figure 3 shows a temporal sequence
of “power spectra” from the Fourier transform of y
versus arc length. The parabolic curve in the figure is the

2.0 ————— T
- H40.0012
1.6} A~ 4
12k I H0.0008
o8t ¢ ’
FoS -0.0004
—~ 0.4: k oé,\j\o\o . i
Hod Ny 0.
> oiz.i‘% 3?—‘*:3—%44#%:94%0—,—0—1—0—4 o] N___x
T 24—
3 L o <
b o 4
2.0} / /
- o ¢ 40.0012
1.6 // / |
L v ..
1.2r i/-" Ho.0008
L " /
v ]
0.8} "I /,«x - \
. Jo.0004
0.4k & /'( x. /\ .
X / RN \ . B
4’/’ . §’g°\ "
o} T T T “#&*"‘H"“‘"O

0] 4 8 K 12 16 20

FIG. 3. Top: The dotted line shows the growth rate iw as a
function of wave number k as given by the linear stability
dispersion relation. All other symbols show the progression, for
the first 5 sec, of the power spectrum | 4,1° vs k. Bottom: The
same plot for 5-9 sec. Wave numbers are in fractions of inverse
total arc length. | 4, | is in units of the cell width.

growth rate as a function of the wave number from the
linear stability analysis. The data are not exactly compa-
rable to the linear stability dispersion relation because the
wave numbers for the dispersion relation are in units of
inverse cell width 1/W, while the successive power spec-
tra have changing wave-number units, each being in units
of its own inverse integrated arc length. Nevertheless, in
the linear regime the arc length is not much longer than
the width of the cell ( =2W) and the growth of the power
spectra seem to follow the prediction of the dispersion re-
lation rather well. Figure 4 shows more detail on the
temporal development for several wave numbers from the
same flow realization analyzed in Fig. 3. Here we en-
counter a puzzling result. If we look just at the Fourier
amplitudes, the “right” wave numbers dominate the flow
with higher and lower wave numbers much less impor-
tant (see the linear scale in the top half of Fig. 4.) How-
ever, if we examine the log of the Fourier amplitudes
(lower half of Fig. 4), essentially all wave numbers show
the same growth rate in the linear regime (for this flow,
the pattern passed out of the linear regime at about t =6
in dimensionless units); this growth rate is 0.45 in dimen-
sionless units, where the linear stability analysis predicts
1.

Park et al.® report a similar result for their A ~1
work; however, they observe constant growth rate for all
wave numbers only for capillary numbers N, <5

X103, where
1 b ? 1
N, == |- | —. 11
“r 12 |W | B an

In terms of B, our 4 ~0 data almost completely overlap
their range of B (1.5X10 *<B<1.0X10 * for the
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FIG. 4. The dimensionless Fourier amplitude A, vs dimen-
sionless time for the wave numbers indicated.
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present work as opposed to 1.2X107*<B <9X 10~ * for
Park et al.®). In terms of N p» our data sample much
larger capillary numbers than those of Park
et al. (0.04<N_,<0.27 versus 1.5X107*<N_ <8.5
X 1073, respectively). In either case we observe the
constant-growth-rate effect in a range not seen near
A =1. Park et al. attributed this effect to the nearness of
side walls, arguing that at low capillary number, their
number of fingers was small and their growth rates were
too small relative to the advance of the interface. In the
present case their arguments do not seem relevant be-
cause (i) our capillary numbers and numbers of fingers are
much larger, and (ii) the average velocity of our interface
is zero, so sidewall pinning should not involve having the
advancing interface leave the sides behind at a rate large
in comparison with the pattern growth rate. The two
effects in Fig. 4 present an interesting puzzle. The close
correspondence between the Fourier amplitudes and the
expected shape of the dispersion relation suggests that
the linear stability theory has worked rather well at some
early time, but the constant growth rates for all wave
numbers indicate that it no longer works well at times
when the pattern amplitudes A, are still much less than
the dominant wavelengths 1/k ( Ak ~107%). We do not
understand this effect. We find an empirical scaling rule
for the power spectra in the linear regime. The relation

P(k)=|A,|*=Ct’f(akt " 9), (12)

where C and a are nonuniversal constants and f, a scaling
function, can collapse the power spectra if we use the pa-
rameter values p=2.5 and ¢ =0.5. This is illustrated in
Fig. 5, where the unscaled power spectra are shown in
the upper part and the scaled results (| 4, |*=]4,|% ?
versus k'=kt " 9) appear in the lower part. We know of
no theoretical justification for this result, but hope that
its empirical observation will prove fruitful.

B. Parameter variations and scaling
in the linear and nonlinear regimes

In this section we consider several measures of the flow
and examine the collapse of the data when realizations
representing a variety of control parameter values are
presented in dimensionless form. As was mentioned
above, we assume that the fluctuations in Ref. 10 are typ-
ical of those which would be encountered if each control
point presented here were measured many times, and the
averages and standard deviations constructed. Accord-
ingly, we place several representative ‘‘error bars” on
each figure to show the reader the size fluctuations which
might be expected and to allow the reader to assess the
quality of the collapse of the dimensionless data. These
“error bars” are frequently drawn slanted out of the vert-
ical to avoid obscuring other data points; they refer in all
cases to uncertainty in the ordinate alone.

Figure 6 shows the length of the mixing zone © versus
time. Time is presented in seconds in the upper part of
the figure and in dimensionless units below. As is indi-
cated in the figure, these data were measured with a con-
stant contrast 4 =6.9X 107 %, and have a wide variety of
values of the control parameter B (achieved by method 1,
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varying the tilt angle of the cell). The collapse is impres-
sive. In Fig. 7 the collapse is less impressive; the data in
this figure, obtained by method 2, differ in the tempera-
ture value at which the cell was held, and thus involve
variations of both 4 and B. The less impressive collapse
does not necessarily indicate any failure of the scaling;
rather the unscaled data in Fig. 7 do not differ much in
the first place, despite the fact that the wavelength (num-
ber of fingers) changes by a factor of 1.7 over the range of
these data. Maxworthy® also observes a collapse of ©’
versus ¢’ when he varies B for his 4 ~1 system. Since
the dimensionless Hele-Shaw equations themselves retain
an A dependence, it is instructive to ask how great an 4
dependence appears in the data. It is clear that the data
of Fig. 7 retain little 4 dependence, as A varies by a fac-
tor of 1.4. In Fig. 8 we compare the data of Fig. 6 with
large-A data borrowed from Ref. 9; over this large
difference in A4 a substantial difference in the data sur-
vives the scaling. Following TA, we define a dimension-
less interfacial stretching

L(t)

L'(t)=
(1) L,

1, (13)
where L is the length of the initial interface (identical to
cell width W in all cases presented here), and L (z) is the
length of the interface at time . Figure 9 shows the qual-
ity of the collapse of L'(¢) for data with constant 4 and
various values of B when the time is made dimensionless.
When temperature is used to vary both 4 and B, the
variation in the unscaled data is again less dramatic, but
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the collapsed data overlap just as well. Maxworthy’s L’
versus ¢’ data® for 4 ~1 do not collapse under this scal-
ing. The average magnitude of the curvature of the two-
dimensional pattern was found in Ref. 10 to have a max-
imum value just at the time that the patterns passed out
of the linear regime. This quantity is shown for both
methods of control parameter variation in Figs. 10 and
11, again in both dimensional and dimensionless form.
As was the case for the other quantities, the collapse is
impressive. We can see that under a wide variety of con-
ditions the system tends to reach this curvature max-
imum and enters the nonlinear regime at roughly six
units of dimensionless time. We have also performed a
modal analysis of the present data, avoiding the problem
that the patterns are not, in general, single-valued func-
tions of distance across the cell by resorting to separate
analyses of the functions x (s) and y (s) discussed briefly
above and in great detail in Ref. 10. The amplitude of
any individual Fourier mode in this analysis is quite un-
certain because the instability is broadband; in Ref. 10 we
found that even the most important individual modes
were subject to 50% fluctuations. However, we always
do observe the same general behavior reported in Ref. 10;
viz, the power spectra for both x (s) and y(s) are both
dominated by low wave numbers (especially k =1) at ear-
ly times, and then a second maximum in the power spec-
trum grows at later times and at larger wave numbers.
The low-wave-number maximum is closely associated
with the side-wall interaction, while the second maximum
corresponds closely to what one might expect from the
linear stability theory. We have summed the strengths of
the squared Fourier amplitudes for each of these four
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FIG. 10. Average curvature K vs time for flows at different B.
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maxima as a function of time, and these are shown in

Figs. 12—15. (In these figures,
2:|Aj_]|2+‘Aj|2+|Aj+ll2, (14)
ij

where A, is the Fourier amplitude for the mode k=j

and the function i =x or i=y.) In Fig. 12, the low-
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sion relation vs time. On top are the unscaled data and below
the data are shown scaled.

wave-number sum for x(s) shows a maximum which is
normally reached at six units of dimensionless time. We
do not understand the failure of the magnitude of the
sum to collapse for the case B=4.1X 104, but otherwise
the sums, in dimensionless units, reduce to roughly the
same form within the limits of the expected fluctuations.
Figure 13 shows the sum for the region of the second
maximum in the x(s) power spectrum. Here the data
collapse nicely for dimensionless times below 7, but be-
come quite noisy as the nonlinear regime is entered. The
situation is similar for both maxima in the typical y(s)
power spectrum, Figs. 14 and 15. The sums collapse
rather well at early times but diverge well outside expect-
ed fluctuations at later times.

IV. DISCUSSION

While several of the results presented above have self-
evident implications for our understanding of this pattern
evolution problem, several others require further discus-
sion. As before, we divide our discussion according to
the two general questions addressed in this paper: (i)
How well do we understand the linear regime, and (ii)
how well can the pattern evolution be scaled in dimen-
sionless form? In Sec. III it was clear that A_,,, the
fastest growing wavelength, is quite well predicted by the
standard linear stability analysis. Similarly, the entire
dispersion relation from the linear stability analysis is at
least qualitatively reproduced by the power spectra of
y(s). On the other hand, the measured growth rates of
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the various wave numbers all appear about the same in
Fig. 4, at least until the patterns are well into the non-
linear regime; this makes no sense in terms of the stan-
dard theory. The empirical scaling of the power spectra
is intriguing and, as far as we know, unexpected. Jasnow
has reported a similar scaling for a computer simulation
of the growth of unstable magnetic domain walls.?° Our
exponents are very different from Jasnow’s but his prob-
lem is somewhat different and, in addition, our order pa-
rameter is conserved while his is not. It is interesting to
note that, by watching the initial disturbance propagate
from the noisy (side-wall) part of the interface to the
quiet (central) part, we can observe a characteristic prop-
agation rate which scales roughly with the Hele-Shaw ve-
locity scale. This is in agreement with the results of
Langer!” and van Saarloos'® who predicted that the
transverse front velocity should come directly from the
linear dispersion relation. Both formulations give a pre-
diction of V3. We observe a slightly lower velocity at
first (0.8), with a growth to 3.7 shortly before the fronts
from opposite sides of the cell join each other at the
center. It is difficult to assess the importance of the
discrepancy (nonconstancy of our velocity) since van
Saarloos’s and Langer’s formulations are meant to apply
to a front which is setting up a steady state; our compar-
ison is valid only insofar as the linear pattern which is be-
ing set up can be regarded as a substitute for a steady
state toward which the system is at least temporarily
evolving. Applying the theory to our case is less
trustworthy at both the earliest times (when there is a
wall rather than an established pattern immediately
behind the front) and at the latest times (when the two
fronts are near and presumably attract each other). Thus
the most reasonable way to state our result is to say that
we see V*=2+1. Turning our attention now to the
second issue of scaling effects in the pattern evolution, it
is clear that there is a very impressive collapse of most of
the data in Figs. 6-15 when they are presented in dimen-
sionless form. This is especially impressive for the results
(Figs. 12—15) for the evolution of the power spectra of
the functions y(s) and x(s). These functions contain
within them all the rich detail of the original highly
ramified patterns y(x), and thus correspond to a wide
variety of numbers of fingers (ranging from 5 to 10), and
of development of ballooning finger tips (see Ref. 10 for a
discussion of the morphology of patterns). Yet despite
the great variety of pattern detail, the power spectra have
their dominant features apparently universal, with the
only nonuniversal feature being the need to shift the
power sums shown in Figs. 13 and 15 to be over the ob-
served second maxima, which vary in maximum-strength
wave number in just the way one would expect from the
linear stability analysis. The success of the Hele-Shaw
scaling not only includes a reasonably large range of the
inverse capillary number B, but also includes data which
attain similar values of B in different ways (with and
without changes in surface tension, and thus in wetting
properties). This success, not seen in the available large-
A experiments,”> including our own,'” is an indication
that the Hele-Shaw equations are a reasonably good ap-
proximation to the physics which determines the behav-

ior of this system. This result suggests that it is
worthwhile to undertake extensive computer simulations
for this case to see how well calculations can reproduce
such an unusually simple pattern growth problem. Even
as we suggest that this case may be an unusually simple
one, well suited to simulation with a two-dimensional ap-
proximation, we must discuss a significant misgiving; we
do not understand why this case is different from the
high-contrast cases. In trying to understand why this
case seems different, we can raise several issues.

(i) The wetting properties are different. The two phases
of the critical binary liquid wet the wall almost equally
well, and this may make the difference. On the other
hand, if one makes the naive assumption that the wetting
correction of Park and Homsy® (suited to the very
different case where the displaced liquid wets the wall,
leaving behind a thin film whose thickness depends on the
local interfacial velocity) provides a reasonable first-order
estimate of our wetting-curvature correction, then the
known power laws for interfacial tension and density con-
trast near the critical point actually make the wetting
correction diverge as the critical point is approached.
That is, interfacial tension vanishes as €''>° so that the
first correction term in the expansion of Park and Homsy
would vary as €~ 0-61 " Of course, in our case the displaced
fluid should leave behind a thin film whose curvature de-
pends at least partly on local velocity because of contact-
angle hysteresis, but the functional dependence for in-
complete wetting should not, in general, be the same.
Furthermore, our interface is divided roughly equally be-
tween regions where the better-wetting liquid is being dis-
placed and regions wherein this liquid is intruding. We
have not succeeded in constructing a convincing argu-
ment to handle this case, but the empirical results
presented above do suggest that the wetting effects are
much less important here. (ii) The present case involves a
closed cell. This was discussed in Sec. II, but in the
present discussion, it is well to remember that closing the
cell imposes a mass-conservation law on each phase of
the liquid, a situation which may differ from that of
pressure-driven flow between reservoirs in ways not un-
like the differences between critical systems with con-
served and nonconserved order parameters. It is also
worth reemphasizing that the small size of the cell is not
a very important feature of the present system. In Ref.
10 we reported that no qualitative changes occurred in
the stages of the flow presented above when the length of
the closed cell was increased by a factor of 5. (iii) The
roles of gravity and the pressure gradient are very
different in the present case than in most previously stud-
ied systems. These two sources of driving force for the
instability are known to be completely equivalent once
the steady state is set up and also appear equivalent in the
linear stability analysis, but for different reasons. It has
been pointed out to us?' that the two sources have
different effects on the Gibbs-Thompson relation for the
pressure jump at the interface during the intermediate
stages of the flow, and thus may involve a nontrivial
difference for a case like ours. In most of the literature
this is assumed not to be the case, and it would be most
intriguing to find, through simulation, that there was
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indeed a significantly different role for gravity than for a
pressure gradient in this case. Unfortunately, we cannot
at present comment on this possibility in much more de-
tail. We can, however, point out that, at high A,
Maxworthy® has reported results in a closed gravity-
driven cell that are very similar to those which we and
others have reported for an open pressure-driven cell.
We have also qualitatively verified Maxworthy’s results
in our own closed high- A4 cell (air-oil).

V. SUMMARY AND CONCLUSIONS

We have measured variations in Saffman-Taylor flows
by changing dimensionless surface tension B alone and by
changing B in conjunction with changes in dimensionless
viscosity contrast A. Our low-aspect-ratio (i.e., wide) cell
permits close study of the linear and early nonlinear re-
gimes. We find that the predictions of linear stability
analysis work well for all predictions for which length
scales are important, but that there is an observed
discrepancy in growth rates. This is reminiscent of some
of the results found by Chou and Cummins®> and by
Dougherty et al.?® for the linear regime in the related
cases of directional solidification and dendritic growth in
supersaturated solutions. We observe an empirical scal-
ing law for the growth of the Fourier modes in the linear
regime. The observed front propagation velocity (as the

initial disturbance works its way out from the side walls
along the initially flat interface, setting up the expected
linear-regime pattern) is consistently 2*1 in dimension-
less units, a value which overlaps the predictions of
Langer!” and van Saarloos.'® Data in the nonlinear re-
gime collapse impressively under scaling suggested by the
Hele-Shaw equations (Figs. 6—11). Wave-number sums
from a modal analysis constitute a partial exception:
these collapse at early times but tend to diverge later
(Figs. 12-15). We observe empirically that wetting
causes much less dramatic departures from the Hele-
Shaw scaling than in other systems for which this insta-
bility has been studied, presumably because the two
phases of our critical binary liquid are so similar in their
wetting properties. The success of Hele-Shaw scaling
suggests that large-scale computer simulations of the
Hele-Shaw equations for this simple case could provide a
meaningful confrontation between experiment and
theory.
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