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Single- and double-electron capture probabilities in close sub-MeV collisions of He2+ on Ar and N2
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Single- and double-electron capture probabilities of 400—1000-keV He' projectiles in large-angle

scattering on Ar and N, targets were studied. A classical model for these probabilities, based on the
Bohr-Lindhard capture model, was developed for collisions at very small impact parameters with

multielectron targets. The model takes into account post-collision relaxation processes when

evaluating the double-electron capture probability.

I. INTRODUCTION

Single- and double-electron capture by a fast bare pro-
jectile has been studied experimentally' as well as
theoretically. " Most of the work was done by measur-
ing the total cross sections for these processes. More re-
cently, work in which the impact-parameter dependence
of capture probabilities became of great interest' ' as it
enables us to gain a better understanding of the electron-
transfer mechanism and a test ground for theories of
charge exchange.

In the case of intermediate velocities close collisions
(namely, those with closest approach distances smaller
than the K-shell radius of the target atom and with veloc-
ities faster than the outer-shell electrons' orbital velocity
and slower than the core electrons) charge exchange
probabilities become almost independent of the impact
parameter. ' ' On the other hand, similar collisions at
relatively higher velocities show structure in the
differential capture cross sections. ' ' This structure is
due to the Thomas capture mechanism' which is negligi-
ble at the velocities of interest in this study.

The theoretical problem of how to evaluate the single-
electron capture probability from a multielectron target
is rather complicated because of the number of electrons
involved. Double-electron capture is even more compli-
cated as electron correlations may be important, and be-
cause double-electron capture into autoionizing states
will be detected as single-electron capture. A classical
model for electron capture was suggested by Bohr and
Lindhard, ' ' and modified by Knudsen et al. to in-
clude a more realistic velocity distribution for the target
electrons. Brandt introduced an impact-parameter
dependence into the Bohr-Lindhard model. In the col-
lisions studied, the projectile velocity is faster than the
target's outer-shell electrons' velocity and slower than the
core electrons' velocity. For the core electrons the col-
lision is approximately adiabatic and is well described by
the molecular-orbital model suggested by Fano and
Lichten. The contributions from inner shells and outer
shells can be treated separately for the systems studied, as
shown by Meron et al. Furthermore, electron capture
from inner shells is negligible for the colliding systems of
interest in this work.

In this paper we report the results of measurements of
single- and double-capture probabilities by a particles,
for very small impact parameters at intermediate veloci-
ties. A model for electron capture, which is based on the
Bohr-Lindhard model, is developed and is in good agree-
ment with the experimental results. Atomic units are
used throughout this paper (unless units are specified).

II. EXPERIMENT

He+ beams in the energy range of 0.4—1 MeV were
generated by the Technion 1-MV Van de Graaff accelera-
tor. The energy was defined to (2 keV using a 15'
analyzing magnet. Two sets of defining slits were used to
collimate the beam to less than 0.5 mm diameter at the
entrance to the scattering chamber„with an angular
width of at most 0.02. A beam of He was obtained
from the singly charged beam using a gas stripper
upstream of the analyzing magnet. A detailed descrip-
tion of the experimental system (presented in Fig. 1) and
the experimental procedures was published in previous
work. & 3'2s

The differentially pumped gas target was located in the
center of a 70-cm scattering chamber. A combination of
two stages of differential pumping with small entrance
and exit slits allowed us to maintain a pressure of
(0.5 —1) X 10 Torr in the target cell while the pressure
in the scattering chamber was kept below 3 X 10 Torr.
The gases used were Ar and N2. The target cell diameter
was 10 mm.

The analysis and detection system was mounted as a
rigid unit on a rotatable arm in the scattering chamber.
This system included an adjustable slit, charge analyzing
electrostatic deflector, and a 25-mm position-sensitive sil-
icon detector. The scattering angle of the analyzed parti-
cles was defined to 0.05 by the entrance slit. The aper-
ture of the electrostatic deflector was sufficient to spread
the analyzed charge states across the whole width of the
detector. Given the nominal position resolution of 0.2
mm this setup was capable of separating all the charge
states of the projectile. In practice, however, the position
resolution depends critically on the measurable energy of
the particle, i.e., original energy minus energy loss in the
detector's dead layer. For 0.4-MeV He ions the position
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Faraday cup to measure the beam composition. In all
cases the beam purity was found to be better than 99%.

In Fig. 2 we present the impact-parameter dependence
f h b bilities for single- and double-electron cap-

ture by He + impinging on Ar target at 800 ke . e
transformation from the laboratory scattering angle to
impact parameter was done using an e pex onentiall
screened Coulomb potential. It can be seen clearly that
there is almost no dependence on the impact parameter
once the K-shell radius is crossed. Similar results were
obtained for all the systems studied in intermediate veloc-
ity co isions, — . a.u.11' ', 2 —3 2 a u. (100—250 keV/amu), i.e., the
projecti e ve oci y i'1 1 it is larger than the orbital velocity of

n theloosely bound electrons of the target and smaller than t e
orbital velocity of the tightly bound electrons.
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0FIG. 1. The experimental system for measuring charge state
distributions of scattered ions.
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reso ution was ar1 t' s around 6 mm, just sufficient to resolve the
h H charge states over the 25 mm lengt o t e

i of thedetector. That determined the lower energy limit o e
experiment.

Throughout the measurement special care has been

avoid distortion of the results by slit scattering. For
char ed beams an additional electrostatic deflector
upstream of the gas target was used in conjunctio

III. THEORY

A full quantum-mechanical treatment of the single-
electron capture from a multielectron target in a fast

11 ion is still too complicated to be handled ex-
act y. t is even mor1 . It '

more so for the double-electron capture
for the same kind of collisions. Classical models such as
theBo r- in ar ' mdh d20, 21 model for ionization and capture,

s26, 27and classical trajectory Monte Carlo calculations
(CTMC) have some success. We will try to follow a simi-
lar approach and develop a simple model for the sing e-
and double-electron capture probability, at zero impact
parameter, from a multielectron target.

A. The Bohr-Lindhard model

Bohr and Lindhard ' ' described electron capture by a
fast projectile as a two-step process. First the electron is
released from the target with a negligible velocity relative
to the target, and close to the target nucleus. An electron
can be released from the target when the projectile passes
closely enough so that the force exerted by it on the elec-
tron overcomes the binding force of the electron in the

t. This condition defines the release radius R„by
is theq/R =u /a, i.e., R„=(qa/u ), where q is e

projectile's charge and a and v are the electron's orbital
radius and velocity, respectively. Within the distance R,
around the projectile's trajectory all electrons can be cap-

d The release process takes time of the order of the
ill be ca-orbital period, ~-a/v. A released electron wi e cap-

tured if its energy in the projectile rest frame is negative.
The limiting condition for this defines a capture radius
R„through

2
p
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where v is the projectile velocity. For fast collisions the
Bohr-Lindhard model gives the capture cross section,
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FIG. 2. Angular distribution of outgoing He char e statesg
keV.after a collision with an Ar atom, at 900 ke
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where v is an effective quantum number (in atomic units
a =v' v= 1 for the ls state), and EJi is the electron bind-7

1/2ing energy, related to u by u =(2E&
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B. The Brandt model

Following the Bohr-Lindhard approach Brandt intro-
duced an impact-parameter dependence into this model.
The impact-parameter dependence is introduced by tak-
ing into account the different times spent by projectiles
having different impact parameters in the vicinity of the
released electron. The single-electron capture probability
is given by

sphere with radius RF defined by U, (Rr, )=U . Now, us-

ing the Bohr model of the atom we can define an
equivalent velocity of an electron at a distance r from the
target nucleus

U, Z, (r(r)

r r2

using the definition of RF and Eq. (6) we get

2(R2 —b&)~~2
P(b)= (3) RF

Up

(7)

and the total capture cross section from a single-electron
target is then

64 Ea ~
77

vVp
(4)

C. The "frozen target" model

Our aim is to calculate the electron capture probability
for close collisions from a multielectron target. As the
Bohr-Lindhard model is in good agreement with mea-
sured cross sections for single-electron capture in the en-
ergy regime of our interest, we will base our calculations
on similar basic assumptions.

For fast close collisions with an impact parameter of
the order of 0.01 a.u. and a small scattering angle ( (3'),
the projectile trajectory can be approximated by a
straight line passing through the target nucleus, i.e. , b =0
for the calculation.

In the intermediate energy regime, the projectile veloc-
ity is greater than the orbital velocity of the loosely
bound electrons. For these slow electrons the number
density,

p(r)= g ~it(„( (r)
n, l, m

is approximately constant during the collision. We
represent the target electrons, available for capture, by
the "frozen" target number density p'(r) The fast elec-.
trons are tightly bound and are not released by the
projectile-electron interaction so they cannot be captured
in the Bohr-Lindhard model. Capture of these fast elec-
trons is well described by the molecular-orbital (MO)
model and its contribution is negligible for the collision
conditions studied in this work. We neglect the contribu-
tion to charge transfer of these tightly bound electrons.
An electron is considered to be tightly bound in our rnod-
el if its orbital velocity is greater than the projectile ve-
locity. In our model of the target atom these electrons
are represented by the number density confined in a

The total cross section is a factor of 4 larger than the
Bohr-Lindhard cross section. For multielectron targets
Brandt uses the independent-electron approximation.
The single-electron capture probability for zero impact
parameter reduces to

SE~q
P(b =0)=

vvp

The effective charge Z,~ at a distance RF from the target
nucleus can be found by integrating the number density

Z, (r(r) =ZT —4ir I p(r')r' dr' .
0

Now, RF can be evaluated by solving numerically the
equation that follows from Eq. (7) and Eq. (8)

RF
RF = ZT —4' p(r')r'dr' (9)

U 0

After subtracting the contribution of the tightly bound
electrons from the electron number density p( r ), the
remaining slow electrons described by the number densi-
ty p'(r) can be captured if their distance from the projec-
tile is smaller than a capture radius R, defined by the
classical condition suggested by Bohr and Lindhard. '

Thus electrons are captured if their total energy in the
rest frame of the projectile is negative

U2

0~Etotal 2

Z
r' (10)

where r' is the distance of closest approach of an electron
to the projectile, and ~or is an average binding energy
on the target. The maximum distance from the projectile
in which electrons can be captured, i.e. , the capture ra-
dius, is then

2Z
R, =

For fast collisions U /2))
~ WT ~

and the capture radius is
independent of the target binding energy

2Z
R

C

Up

(&2j

The capture radius defines a cylinder, with its axis z along
the projectile velocity, in which electrons are captured.
A schematic description of the collision is shown in Fig.
3. The probability for electron capture is then the in-

tegral along this cylinder of the number density p'(r), i.e.,

the probability of a loosely bound electron to be within a
distance R, from the projectile path.

If more than one electron is captured during the col-
lision, it is probable that some electrons will be ejected as
Auger electrons as the projectile relaxes to its ground
state. In the present experiment the charge state analysis
of the projectiles was done —30 nsec after the collision so
that most states will decay to the ground state or to meta-
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and exit contributions. The probability of capture of an
electron from a shell with radius r, at entrance or exit is
proportional to the probability of finding an electron
within this shell close enough to the projectile trajectory,
i.e., within the capture cylinder, as presented in Fig. 4.
This probability is evaluated by integrating the electron
density over half of the spherical shell if r, is smaller than
the capture radius, and over a spherical cap (shown in
Fig. 4) if r, is larger than the capture radius. Integrating,

FIG. 3. A schematic view of the "frozen target" collision
model. See text for further details.

2(Z —n +1)
R, (n)= (13)

In order to calculate the single- and double-electron
capture probabilities for He ++Ar and He ++Nz col-
lisions, in which the probabilities are comparable to 1, we
used a Poisson-like process. This was done to ascertain
that the unitarity condition will be fulfilled. The target
atom is divided into thin spherical shells of thickness dr,
so that the probability of finding an electron within a
shell is small and the probability of finding two electrons
is negligible. Thus the electron capture probabilities are
given by integrating the probability of finding a loosely
bound electron within the capture radius, in sequential
spherical shells along the projectile trajectory.

D. Calculations

The electron density of the target p(r) is calculated us-
ing the Clementi and Roetti tabulated analytic expan-
sion of Roothaan-Hartree-Fock atomic wave functions

stable states. The Auger decay mechanism is dominant
for doubly excited He-like projectiles so that in most of
the events where double capture was detected, one of the
electrons was captured to the ground state. In order to
represent this reduction in the final number of electrons
captured by the projectile we assume that the capture
process happens sequentially and the effective charge of
the projectile is reduced after each electron capture. This
reduction in the effective charge of the projectile will de-
crease the capture radius of the next electron relative to
the previous electron capture radius. The capture radius
for sequential capture of the nth electron is then (assum-
ing complete screening by the captured electrons)

h
P(r, ) if r; )R, (n)

P (n;r )=
,'P(r, ) if r, &—R,(n) .

Finally, the probability for n-electron capture is given
by integrating the capture probabilities from all spherical
shells, P„(n, r, ), along the projectile trajectory, i.e., in-
tegrating from —~ to + ~ except the tightly bound
electrons confined in a sphere with a radius RF. The neg-
ative r represent the entrance contribution while positive
r is the exit contribution, i.e. , electron capture before and
after the projectile reaches the distance of closest ap-

P

Zp

R (n)

P, (n; r, ) = lp(r, )dfldr

2mhr, p(r; )dr if r, )R, (n)

2vrr, p(r, )dr if r; &R, (n)

where h =r, —[r, —R, (n)]'
Now, using the definition of the radial electron density

[Eq. (15)], the nth-electron capture probability from a
shell with radius r,- can be written as a function of radial
electron density times a geometric factor:

n, l, m

(14)
(b) r & R, (n)

The target atom is then divided into thin spherical
shells so that the probability of an electron being in a
given shell is the radial electron density,

P(r; )=47rr, p(r, )dr .
Vp

Zp

R (n)

The thickness dr is taken small enough to give P(r, ) « 1

for all shells, so unitarity is fulfilled.
As we are integrating the capture probability along the

projectile trajectory each spherical shell has an entrance

FIC». 4. A schematic view of the probability for capture of an
electron from a thin shell with a radius r;. (a) r; & R, (n). (b)
r; «R, (n). See text for further details.
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proach. The entrance and exit contributions are not the
same since capture of an electron at a certain time
reduces the chances of capture of an electron later in the
collision. Using this Poisson-like process in the evalua-

tion of the capture probabilities as described above ascer-
tains that the unitarity condition will be fulfilled. Thus
the probability for capture of n electrons is given by the
sum,

—RF

P„~(n)= g P„z(n —1)~„d„P,(n;r; )+P„z(n) ~„d„[1 P, (—n;r; )]
r. = oo

I

+ g P„(n —1)~„d„P,(n;r, )+P„(n)~, d„[1 P, (n—;r, )]
r,. =+RF

(18)

and the probability for no capture is given by
—R F

P„(0)= g P„p(0)~„d„[1 P, (1;r—, )]
r. = —oo

+ y P„„(0)l„d„[I—P, (1;r, )] . (19)
r, =+RF

IV. RESULTS AND DISCUSSION

The measured single- and double-electron capture
probabilities decrease with increasing velocity for the col-
liding systems under study. This can be seen in Fig. 5 for
both Ar and Nz targets. An attempt to fit these probabil-
ities with a single-electron capture probability using the
binomial distribution, commonly used in the
independent-electron approximation, ' ' is in disagree-
ment with the experimental results. For example, for
He ++Ar at 400 keV assuming that only the eight M-
shell electrons can be captured, we need P, (b =0)=0.14
to get the experimental probability for no capture P„(0)
= [1 P, (b =0)) =—0.29+0.02. With this value for
P, ( b =0) the single-electron capture probability
P„(1)=7P, ( 1 P, ) =0.39 u—nderestimates the experi-
mental probability of 0.62+0.02. On the other hand, the
double-electron capture probability P„(2) =28P, ( 1

P, ) =0.23 overest—imates the experimental probability
of 0.13+0.01. This disagreement is most likely a conse-
quence of double-electron capture into states that were
autoionized before detection, which is an important re-
laxation mechanism in He-like systems. This post-
collision mechanism will reduce the double-electron
probability and will increase the single-electron probabili-
ty, and is not included in this simple calculation. Thus it
is important to include this post-collision autoionization
mechanism, at least approximately, in order to compare
the calculations to the experimental results.

The outgoing charge state distributions presented in
Figs. 6 and 7 were compared to the probabilities predict-
ed by the model of Brandt. For the Ar target we as-
sumed that only M-shell electrons are available for cap-
ture. There is a disagreement with the experimental data
of about a factor of 2 for high-energy collisions. This de-
viation increases with decreasing projectile energy. For
the N2 target we assumed that only five outer electrons
are available for capture, i.e., the electrons of the other N
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FIG. 5. Single- and double-electron capture probabilities as a
function of projectile energy, for He + +Ar (

———), and
He ++N2 ( —). The lines are drawn to guide the eye.

atom in the molecule are too far to be captured. The
agreement with the experimental data is very good for
high-energy collisions and about a factor of 2 off' at the
low-energy collisions. In general, the no-capture channel
is underestimated and the double capture channel is
overestimated. In the Brandt model capture into au-
toionizing states is not considered; this may be the major
reason for overestimating the double capture. On the
other hand, the no-capture channel is a better test of the
model as autoionizing states have no contribution to this
channel. Thus the disagreement is due to the single-
electron capture probability P, (b) or the statistics used to
represent capture from a multielectron target.

The experimental outgoing charge state distributions
for the smallest impact parameter measured in each col-
lision system was compared to the "frozen target" model
calculation at zero impact parameter. Using this model
becomes easier for high velocities, where U »2~6'r~; if
this condition is fulfilled we can use Eq. (12) to calculate
R, . Our experiments were done with projectile velocities
for which only U & 2~ O'T

~
is fulfilled. In this case it is not

clear what is the average value of binding energy,
~
6 T ~,
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R, 2
(2O)

V. CONCLUSIONS

Outgoing charge state distributions of He + after a sin-
gle close collision with Ar and Nz, at 400—1000 keV,
were presented. These charge state distributions are al-

It is clearly seen that the capture radius fitted to the data
follows the expected linear relation. The deviation from
the straight line for He +Ar at 900 keV can be caused by
an increase in the average binding energy as the 3s Ar or-
bital (U3, —4. 5 a.u. ) starts to contribute. The average
binding energy of the loosely bound electrons is given by
the intersection of the linear fit presented in Fig. 8 and is
approximately zero for the N2 target and about 0.25 a.u.
for the Ar target. Thus, in these collisions the capture ra-
dius can be approximated by the simple expression given
in Eq. (12), i.e., R, =2Z /U .

most independent of the impact parameter for small im-
pact parameters. The probability for double-electron
capture for these collisions is relatively large, of the order
of few percent, and increases with decreasing velocity. A
"frozen target" model was developed based on the classi-
cal Bohr-Lindhard electron capture model. In this model
special attention was given to fulfill unitarity and to ac-
count for post-collision autoionization that causes a de-
crease in the detected double-electron capture and a con-
current increase in the single-electron capture. This
model is easy to use and is in good agreement with the
measured single- and double-electron capture probabili-
ties at small impact parameters.
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