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The hydrodynamic analogy for quantum mechanics is developed in a quantum phase-space repre-
sentation. The key technical step in this development is the formulation of a phase-space flux (or
current) density expression. Lagrangian fluid trajectories in phase space are explicitly found as solu-

tions to a set of first-order ordinary differential equations which are formulated without making
semiclassical approximation to the quantum dynamics. These fluid trajectories may be used to con-
struct sharp structures in quantum phase space in the same way that one uses classical trajectories
in classical mechanics. While these sharp structures do not themselves represent states, their prop-
erties "control" the dynamics of states in a manner familiar from the theory of first-order flows.

The formalism reduces to Liouville dynamics in the classical limit, %~0. In addition to several an-

alytic applications to the pure- and mixed-state dynamics, the approach is numerically implemented

for tunneling dynamics in a double-well problem. A new picture for quantum tunneling emerges
where the tunneling transport occurs when density spirals outward from one well along real-valued

fluid trajectories and then into the other well. The tunneling is found to occur through localized

portals, or "flux gates" in the phase space. We advocate the phase-space hydrodynamic model as a
general tool to understand classical quantum correspondence.

I. INTRODUCTION

The study of classical-quantum correspondence has
intensified in recent time' due in part to the profound
advances that have occurred in our understanding of
classical nonlinear dynamics. In particular, significant
interest has developed for the study of quantum manifes-
tations of classical phase-space structure. ' The results
of numerous studies have made it quite clear that quan-
tum dynamics is often strongly influenced by the presence
of structures in the classical phase space ' such as
Kolmogorov-Arnold-Moser (KAM) surfaces, cantori,
separatrices, islands of nonlinear resonance, and homo-
clinic tangle. The correspondence can be especially strik-
ing when the quantum dynamics is cast into a "quantum
phase-space representation" where one may observe
the quantum density apparently being molded by an un-
derlying classical-like phase-space structure (Refs. 6,
8 —10, 13, 18, 20, 21, 24 —26, and 29). The uncertainty
principle does not allow a unique definition of quantum
phase space and thus an infinite number of these formula-
tions may be constructed. Examples of such representa-
tions include the Wigner equivalent representation, the
coherent-state (or Husimi) representation, the Glauber-
Sudarshan diagonal-P representation, and various off-

diagonal generalized-P representations. Despite this am-

biguity, quantum phase-space theories provide an attrac-
tive approach to the study of quantum chaos and the
correspondence principle since phase space provides the
proper setting for studying nonlinear dynamics.

To illustrate the typical behavior one observes in quan-
tum phase-space representations, we consider the motion
of a wave packet in a one-degree-of-freedom quartic
double-well potential. The potential curve and the asso-

ciated classical phase-space structure are depicted in Fig.
1. The initial wave packet is chosen as a Gaussian. Its
mean energy is somewhat less than the barrier height and
it is centered at an outer turning point of a classical orbit
of that energy. The wave packet is then numerically pro-
pagated to high accuracy and, at regular time intervals,
the packet is transformed into the coherent-state quan-
tum phase-space representation yielding a time-
dependent quasi-probability-density. This transformation
is easily accomplished by taking the overlap of a coherent
state centered at the point (p, q) in "phase space" (see
Sec. II for the details) with the evolving wave packet and
squaring, i.e.,

The contours of p at a series of times are shown in Fig. 2.
Even though Planck's constant is not particularly small
in the scale of this system (there are eight states below the
barrier), the in(luence of the classical phase-space struc-
ture on the quantum evolution is clearly apparent from
the plot, especially at early times. For example, one can
see density following the separatrix in the first six panels.

Even though the classical-quantum correspondence is
often evident, systematic procedures are lacking to
directly construct the quantum phase-space structures,
even given the exact wave functions. Thus one might see
a separatrix or a KAM curve manifested in p, as in Fig.
2, but not be able to explicitly construct it. One reason
for this is a common belief that sharp phase-space struc-
tures cannot exist or are not meaningful in quantum
mechanics due to so called A smoothing. Hence one in-
stead often encounters references to items like "fuzzy
KAM curves, " etc. , which are suppose to be the analogs
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of classical structures but occupy phase-space volumes of
order A . Our thesis in this paper is that meaningful
sharp structure in quantum phase-space representations
does exist, can be explicitly constructed from a
knowledge of the wave function, and can be profitably
used to interpret quantum dynamics. The existence of
such structure is not in conAict with the results of Berry
et al. on A smoothing since the sharp structures we con-
struct do not represent states. Instead, they are zero
measure structures in the quantum phase space, which do

not lie in the Hilbert space of states, but nevertheless con-
trol the behavior of volumes of phase space and hence
control the dynamics of states. (The use of such zero
measure objects in quantum mechanics is not unpre-
cedented. Recall, e.g. , the work of Gutzwiller on the
quantum significance of periodic orbits. )

We base our approach on a reformulation of the hydro-
dynamic interpretation of quantum mechanics. The
hydrodynamic model, originally proposed by
Madelung, provides a classical picture for quantum dy-
namics, namely, that of the flow of an indestructible
probability Auid. In this picture, one may consistently in-
terpret the time evolution of the density p(x, t) = ~%'(x, t)

~

as a Auid being continuously driven along Auid trajec-
tories by a current density j(x, t). In the limit iii~O, the
Auid trajectories become the configuration space orbits of
classical trajectories. The key relation that validates this
interpretation is the continuity equation

a&(x, r)
at

(1.2)

which is easily derived from the Schrodinger equation.
We review the details of the quantum hydrodynamic
analogy in Sec. II A.

For classical Hamiltonian mechanics, it is well known
that the hydrodynamic analogy should be invoked in
phase space. Specifically, the evolution of an ensemble
with probability density f (p, q, t) can be interpreted as
the Aow of an incompressible ideal Auid. The dynamics is
governed by the Liouville equation,

aH af af aH
Bq Bp; Bq; ~)p,

(1.3)

—4

which is equivalent to a continuity equation in phase
space,

ar = —V-J, (1.4)
at

with the identifications V=(V, V~) and J=(fp, fq)
=( fV H, fV H—). The fluid orbits lie along classical
trajectories in phase space. The density f is constant
along an evolving trajectory since phase-space volumes
are invariant.

We propose to calculate the fluid trajectories for the
quantum Auid and use these trajectories to map out the
structure of the quantum phase space. The philosophy of
the approach is quite simple and we illustrate it first for
the classical case. Imagine that f (p, q, t) and the flux
density J(p, q, t) are known to us, say provided numeric-
ally, but we are not given the explicit Hamiltonian func-
tion or its derivatives. We can still find the fluid trajec-
tories by first defining the velocity field v(p, q, r )

=(v~(p, q, t), vq(p, q, t)) as

FIG. 1. The upper panel shows the double-well potential.
The positions of the eigenstates used in the calculations of Sec.
IV are depicted. The lower panel shows the classical phase-
space structure for the system. A figure-eight separatrix divides
the phase space into three disjoint regions labeled 3, 8, and C.

v(p, q, t)= J(p, q, t)/f(p, q, t),
when f%0, and then solving the defining equations,

dp =v (p, q, t),dt

=v (p, q, t) .dq
dt

(1.5)
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For the classical phase-space fluid, these are just
Hamilton's equations. In the special case where the clas-
sical Hamiltonian takes the form H =p /2m + V(q), the
velocity field v is the configuration space velocity, while
the field v is equal to the force field. In quantum
mechanics, on the other hand, we will know the probabil-
ity and flux densities from the wave function, which is

'
given, but v will not reduce to a simple analytic function.

The quantum hydrodynamic model of Madelung is ex-
pressed in configuration space. The quantum trajectories
associated with this theory may be readily found but are
not useful in determining phase-space structure. To
make use of the simple scheme presented above, it is

necessary to cast the hydrodynamic model into a quan-
tum phase-space representation. This is not trivial and
most of the formal work in this paper is devoted to ac-
complishing this. We explicitly develop this theory for
the coherent-state representation, although we have also
implemented the approach for the Wigner representation
(to be presented elsewhere). Thus the fiuid density is the
non-negative quasi-probability-density p(p, q, t), Eq. (1.1).
The main effort is devoted to formulating the flux densi-
ty. We develop a nonlocal flux operator for phase space
and the coherent-state representation of this operator is
the desired flux density.

We note that dynamics in quantum phase-space repre-

FICs. 2. Exact quantum evolution of the coherent-state density p for an initial Gaussian wave packet in a quartic double-well po-
tential [the Hamiltonian is Eq. (4. 1) with y= —,

' ]. The different panels show the density in (p, q) space at the set of equally spaced
times t = n~„;b/10, n =0, 1, . . . , where ~„b is the harmonic period for the bottom of the single well.
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sentations has been studied often before, starting with
Wigner in 1932 ' ' ' ' ' ' Much of this work
has centered on the development and study of the "quan-
tum Liouville equation, " which is an infinite-order partial
differential equation for the time-dependent quasi-
probability-density. We adopt a different approach in
this work based on a flux analysis in quantum phase
space. The central relation we derive is a first-order
phase-space continuity equation connecting p and J,
which justifies the hydrodynamic analogy. With ap-
propriate substitutions and Taylor expansions and using
implicit assumptions about analyticity, J can be eliminat-
ed in favor of p and the continuity equation can be shown
to be equivalent to the quantum Liou ville equation.
However, our procedure of retaining both p and J is more
useful in the present case since the fluid trajectories are
obtained in a simple way from the velocity field, while
they cannot be easily computed from the quantum Liou-
ville equation. We also emphasize the difference in
motivation between our work and that of most of the pre-
vious work. Most previous work has stressed using the
quantum Liouville equation to actually solve for p or to
estimate quantum corrections to the Liouville equation.
Here, the wave function is given and thus p and J are al-
ready known, and we carry out the analysis in order to
reveal the structure of quantum phase space.

Now that we have briefly outlined our approach, we
direct attention back to the dynamics in Fig. 2. We im-
agine the fluid density p being driven along fluid trajec-
tories by an underlying current density. Intuitively, the
quantum trajectories will surely bear some important
similarities to the classical trajectories shown in Fig. 1.
Indeed, one may even semiquantitatively account for as-
pects of the short-time evolution of p using the classical
Liouville equation. Of course there must also be impor-
tant differences between classical and quantum descrip-
tion in order to account for nonclassical effects such as
tunneling and interference. The proposed approach al-
lows us to directly obtain the quantum phase-space struc-
ture without reference to the classical problem. The
quantum dynamics has been written in the form of a set
of coupled first-order ordinary differential equations
(ODE's), the trajectory equations (1.6), and thus much of
well-developed methodology for studying first-order flows
may be employed. ' For example, fixed-point analyses
may be carried out, and return maps constructed. Using
the fluid orbits in the same general way one uses classical
trajectories, ' one can construct sharp phase-space
structures such as fixed points, separatrices, and cantori.
These structures do not themselves represent states,
which must occupy certain minimal volumes in phase
space, but instead govern the dynamics of states in the
same way that such structures control the dynamics in
any first-order flow.

The remainder of this article is organized as follows.
Section II presents the formal treatment of the hydro-
dynamic analogy. It begins with a brief review of the
standard hydrodynamic analogy for pure states in
configuration space. Then the hydrodynamic analogy is
successively extended to mixed states, to the momentum-
space representation, and finally to dynamics in quantum

phase-space representations. In Sec, III, the general
characteristics of the quantum phase-space hydrodynam-
ic model are discussed. The behavior of the formalism
near the correspondence limit is then derived and the
concept of a "flux gauge" is discussed. The method is
then analytically applied to the free particle and the har-
monic oscillator. In Sec. IV the method is numerically
applied to the dynamics of wave packets in a quartic
double-well potential. The relevant nonlinear phase-
space structure is numerically constructed using the La-
grangian fluid trajectories. Making practical use of the
numerical phase-space structure, we calculate high accu-
racy tunneling rates by computing the one way flux
through localized "flux gates. " Section V contains our
conclusions. The Appendix presents an alternative for-
malism for the extension of hydrodynamic analogy to
mixed states and to quantum phase-space patterned on
Madelung's original approach.

II. FORMAL DEVELOPMENT
OF THE HYDRODYNAMIC MODEL

IN QUANTUM PHASE SPACE

A. Review of configuration-space hydrodynamic model

In order to motivate our treatment, we begin with a
brief review of the well-established hydrodynamic analo-
gy for configuration space. Consider first the pure
state quantum dynamics generated by the N-degree-of-
freedom nonrelativistic Schrodinger equation,

HV(x, t)=i' (2.1)
at

where x=(x&, . . . , x&). For simplicitly, it shall be as-
sumed that H may be put into the form

N
H= g P„+V(x)

2m

in a mass-scaled Cartesian coordinate system. The
analysis is facilitated by writing the wave function in the
form

+(x, t)= Ae' (2.3)
where A and S are well-behaved real-valued functions of
x and t. The imaginary and real parts of the Schrodinger
equation then give the independent relations

(2.2)

ap, (x, t) = —V .j (x, t), (2.4)

p (x, t)= ~'P(x, t)~ = A (x, t) (2.6)

j„(x,t)= [%*(x,t)V„+(x,t) —%(x, t)V„%'*(x,t)]
fi

2ml

V„S(x,t)
=p„(x, t) (2.7)

(To avoid future confusion, the subscript x has been add-

fi V A (x, t)
[V„S(x,t)] + V(x)—

Bt 2m " ' 2mA(x, t)

(2.5)
where the probability density p„(x, t) and the current
density j, (x, t) can be related to the wave function in the
usual way,
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ed to quantities in this configuration-space analysis. )

Equations (2.4) is the continuity equation, which is the
minimal requirement for the interpretation as an indes-
tructible fluid. The hydrodynamic analogy can be em-
phasized even more by rewriting Eq. (2.5) in diff'erential

form,
d v„(x, t) Bv„(x,t)

+[v (x, t).V ]v„(x,t)
dt

=
at

fi V [p (x, t)]'
V V(x)—

m 2m[p, (x, t)]'"
where v (x, t) is the velocity field

(2.5')

v, (x, t)=j (x, t)/p, (x, t) . (2.8)

Relation (2.5') is then Euler's equation for the flow of a
compressible ideal (inviscid) fluid. Equation (2.5 ) states
that each element of the fluid moves under the influence
of the external potential V(x) as well as an internal quan-
tum pressure potential —(iri /2m)V, Qp„/Qp . The
quantum dynamics may, in principle, be obtained in the
hydrodynamic picture by solving Eqs. (2.4) and (2.5') for
the fluid flow variables p„and j, which can be related
back to the wave function using (2.6) and (2.7). Of
course, our eventual strategy will be to solve the
Schrodinger equation in some other more e%cient way
and use a hydrodynamic model to interpret the quantum
dynamics.

Not every fluid configuration (p, j )0 that one could
write down at an instant to corresponds to a quantum
state. In particular, the requirement that the wave func-
tion be single valued implies that the line integral of the
velocity field around any closed contour be zero or some
integer multiple of 2ah/m, i.e.,

V„S(x,to ) 2~n A'

fc v~(x, to) ds= fc ds=
m m

n =0, +1,+2, . . . . (2.9)

B. Operator formalism

We most easily generalize the hydrodynamic analogy
to mixed states and to more general representations by
recasting the formalism into an operator language. Thus

When n =0, the velocity field is irrotational. When
n&0, there exists a quantized whirlpool in the fluid flow.
The existence of quantized whirlpools was first discussed
by Dirac in his classic paper on magnetic monopoles
and has been subsequently studied in more de-
tail. ' ' It has been found that quantized whirlpools
are intimately related to nodes in the wave function. This
is easily appreciated through a brief consideration of
(2.9). For an infinitesimal contour loop C, away from any
node, n must be zero in (2.9). If C is gradually expanded,
then n must remain zero by continuity unless v diverges.
In general, v =j /p diverges only at nodes since there
p=O and j, approaches zero more slowly than p (since

j —1m+*V+, 4*=0 but V+NO), and thus the line in-

tegral can jump by quantized amounts at nodes. Thus,
one generally has quantized whirlpools encircling nodal
lines.

we consider the dynamics of a density operator p which
satisfies the Von Neumann equation

ih =[H,p] .Bp
at

(2.10)

We shall consider here only the diagonal dynamics of Eq.
(2.10) using the expectation value

x p x = &x~[H, p] x) .
(

Bp 1

at
(2. 1 1)

The hydrodynamic analogy for the off-diagonal dynamics
may also be developed (see the Appendix) by working in a
2%-dimensional configuration space. Inserting the Ham-
iltonian (2.2) into Eq. (2.11), we obtain the continuity
equation

Bp, (x, t) = —V .j„(x,t) .
BI:

The probability and current densities are given by

(2.12)

p„(x, t) =p(x, x, t),
with

p(x, y, t) = &x~p~y),
and

(2.13)

In (2.15), j„must be the operator for current density ex-
plicitly associated with the density operator p. To define
j„, first recall the classical current-density variable asso-
ciated with a classical density f ',

dq'j:=f'(p q t) (2. 16)

The ensemble density f '(p, q, t) evolves in time, while the
velocity is associated with a static phase-space point, i.e.,
d q'/dt =0H /Bp. If the factor ordering problem is
resolved by symmetrization, then (2.16) may be quantized
as

1 dx' dxj (t)= —p(t) + p(t)
2 dt dt

(2. 17)

where dx/dt equals P /m for the Hamiltonian (2.2). Here
j„(t) and p(t) are the Schrodinger picture operators in
that the state of the system [i.e., p(t)] evolves in time but
dx/dt is the time-independent expression [H, x]/if&. The
expression (2.17) appears somewhat unorthodox since it
incorporates the density operator explicitly. The more
usual procedure would be to formulate an operator in-
dependent of the state of the system which is then traced
with the density operator. However, it may be easily
verified that the approaches yield the same flux density.
Specifically, if one employs the familiar point current
operator j(x), '

j (x, t)=— . [V„p(x,y, t) Vp(x, y, t)] —„. (2.14)2' L

In analogy to the expression (2.13), the current density
(2.14) may also be obtained by the position expectation of
a configuration spacegux density operator j

j (x, t)=&x~j„~x) . (2.15)
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dX dXj(x)=— x&&xl + lx&&x
2 dt dt

one can show

Tr[j(x)pl=&xlj„lx& .

(2.18)

(2.19)

less to some degree ambiguous. However, since
V„.j,'(x, t)=V„j„(x,t), the flux out of any closed
volume is well defined. Therefore if physical observables
are always carefully formulated in terms of cruxes out of
closed volumes or (relatedly) through infinite dividing
surfaces, unambiguous results may be obtained.

Clearly, if we use the pure-state density operator
p= l'p && 0'l, then the probability and current densities
from (2.13) and (2.15) agree with those obtained previous-
ly, Eqs. (2.6) and (2.7), respectively.

The Von Neumann equation leads naturally to the con-
tinuity equation. For the full hydrodynamic description
we also need the Euler equation. Since Von Neumann's
equation is equivalent to the Schrodinger-picture equa-
tion of motion for the operator p, it is natural that we
consider the analogous Schrodinger-operator equation for
j . Thus we have

c)3x 1 BP(t) dx dx Bp(t)
Bt 2 Bt dt dt Bt

C. Momentum-space analysis

p p = p H, p p

(&pl Vplp& —&plpVlp&) . (2.25)

The hydrodynamic picture follows if (2.25) can be recast
as the momentum-space continuity equation

It is also possible to define the hydrodynamic analogy
for transport in momentum space. Proceeding as above,
the diagonal expectation value of the Von Neumann
equation with momentum eigenstates yields

(2.20)
Bp (p, t) = —V .j~(p, t),Bt

(2.26)

p= Xckly, &&x~l=—&c~p", (2.21)

then Aux operator takes the simple form

j.=&ck p '(t) +
dt dt

Therefore the densities are given by the equally simple
expressions,

p, (x, t)= gc~p, (x, t)
k

(2.23)

and

The diagonal expectation value in configuration space of
the operator equation (2.20) can be verified to yield, upon
manipulation, an Euler equation (see Appendix). Thus
the hydrodynamic analogy directly carries over to mixed
states if we use Eqs. (2.13) and (2.14) to define the fluid
density variables (p, j ). Finally, note that if the density
operator is expressed in its diagonal basis,

with

p, (p, t)= &plplp& . (2.27)

X K(x, y)p(x, y, t), (2.28)

where the kernel K(x, y) must satisfy

V(y) —V(x)=(x —y).K(x, y) .

In one dimension one simply has

V(y) —V(x)K x,y =
x —y

(2.29)

For an X-dimensional space one finds, after considerable
eftort,

Since we are not able to find an explicit momentum Aux

density in the existing literature, we formulated the fol-
lowing nonlocal expression:

j~(p, t)= f d x f d y exp[ip (y —x)/fi]1

j„(x,t)= gcjj "(x,t) .
k

(2.24)
K(x, y) = —,' f [V V—(w+tz)+V V(w —tz)]dt,

where

(2.30)

As pointed out by Messiah, even for the case of a
pure state the current density is not uniquely defined
from the Schrodinger equation. The root problem is the
ambiguity of factor ordering in quantum mechanics. The
usual expression (2.7) is obtained by reexpressing the
Schrodinger equation as a continuity equation and identi-
fying the current. However, any j' (x, t) = j (x, t)+5j„
where V -6j„=O, satisfies the continuity equation equal-
ly well. Furthermore, if 6j scales to zero as A~O, then
j„'(x,t) and j (x, t) coincide in the classical limit. Even
though one might also impose other conditions on
j„'(x,t), e.g. , appropriate transformation properties under
Galilean transformations, the current density is neverthe-

j,(p )=&pG, lp& (2.31)

where j is defined by

j~= f d x f d ylx&[K(x, y)p(x, y, t)]&yl . (2.32)

x+y x —
y2'' 2

One may verify that this expression satisfies the
momentum-space continuity equation (2.26). The
momentum Aux density may be defined as the momentum
expectation of a nonlocal fIux operator,
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Thus, unlike the configuration space flux, one finds that
the operator formed by symmetrization of the classical
momentum flux expression,

with

1 tI icrp
v'2 cr A'

(2.37)

1 dP dP
j '" =—p(t) + p(t)

2 dt dt

is valid only for quadratic potentials. [Actually, Eq.
(2.17) will also break down if 8 contains P to order
higher than 2.] The current density j (p, t) is subject to
the same sort of ambiguity of definition as was j„(x,t),
viz. , the addition of any divergenceless quantity 6j
yields a current which satisfies the continuity equation
(2.26) equally well.

The second hydrodynamic equation, i.e., the Euler-
type equation, may in principle be obtained by taking the
diagonal expectation value in momentum space of the
Schrodinger-picture equation of motion for the operator
j . In practice, the resulting integro-differential equation
is too complicated to be very useful, although a formal
expression may be written. This presents no particular
problems for us here since we do not make use of the
Euler equation to solve for the dynamics. The densities
will be computed directly from the exact quantum dy-
namics. It is the continuity equation that is the most cru-
cial relation to establish since it justifies the hydrodynam-
ic picture, even when the fluid flows under the influence
of complicated nonlocal forces as it does here.

D. Hydrodynamic analogy in coherent-state space

The behavior of the probability density and flux is now
considered in a quantum phase-space representation. In
what follows, we carry out the analysis explicitly for the
coherent-state representation, although one expects simi-
lar results in other quantum phase-space representations.
In the coherent-state representation, states and operators
are projected onto a basis set of coherent states ~p, q&.
The characteristics of coherent states have been very
heavily studied, especially in the optics literature, and so
here only a few of the main properties are stated.
The coherent states are normalized Gaussian wave pack-
ets centered at the parameter (p, q) in "phase space, "
which are defined through the relation

& x~p, q &
= (7rcr') ~'exp[ —(x—q)'/2O'+ i p (x —q/2)iri]

(2.34)

' „f f& "S &"e lp q & &p ql . (2.35)

The overlap between coherent states is given by

for all real (p, q). The Gaussian-width parameter o may
be set at our own discretion and will ultimately determine
the relative resolution in p space versus q space. (The
formalism presented here may easily be generalized to al-
low a different a for each degree of freedom. ) The collec-
tion of coherent states taken over all of 2N-dimensional
parameter space (p, q) forms an overcomplete basis set
and satisfies the resolution of identity relation

The magnitude of the overlap

/&p', q'fp, q&/ =exp( —fz —z'f ) (2.38)

is seen to fall rapidly for packets centered in different re-
gions of phase space.

In analogy to Eqs. (2.13) and (2.27), we consider the
non-negative phase-space density p(p, q, t) obtained from
the diagonal matrix element of p in coherent-state space,

p(p q r) &p q~p~p q& . (2.39)

fp(p, q, r)~ q&&plplp& .

Of course, p(p, q, t) defined by (2.39) is an exact
quantum-mechanical expression and we propose no ap-
proximation in its computation. However, one would im-
plicity make a semiclassical interpretation of the dynam-
ics if p(p, q, t) were used as a true probability density in
the phase space.

The dynamical evolution of p(p, q, t) is determined
from the diagonal expectation of the Von Neumann equa-
tion in coherent-state space,

P q Z, P, q =,Z
&P, ql[H, P]lP, q&,

which is

Bp(p, q, t)
Bt

p 2 p 2

pq 2 p pq pq|'2 pq
L

+ . (&P, ql ~pip, q&
—&p, qlp~lp, q&) .

1

(2.40)
Employing the diagonal basis for p, and using the results

&P q~P~X &= —,. ~, ++ &P qlX & (2.41)

and

&p, qlP'Irk &= —.~ ++ &p, qlPlxk &, (2.42)

one may verify that the first bracketed term on the right-
hand side of Eq. (2.40) becomes

v, .(&p, qlPplp, q&+ &p, qlpPlp, q&)

We regard p(p, q, t) as a quasiprobability distribution in
quantum phase space. %'e use the qualifier "quasi" since
it does not exhibit all the properties one normally expects
of a true probability distribution. For example,

fp(p, q r)~ p»&qlp~q&,

& p', q'~p, q & =exp[ —
—,
'

~z —z'~ +i Im(z. z')], (2.36) —= —
Vq jq(p, q, t), (2.43)
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where j (p, q, t) is the coherent-state expectation of the configuration-space fiux operator j„Eq.(2.17), i.e. ,

j~(p, q, t)=(p, qlj„lp, q) = . f d x f d y(expI —[(x—q) +(y —q)2]/2o'I

Xexp[ip. (y —x)/R][V„p(x, y, t) —V~p(x, y, t)]) . (2.44)

In a similar way, one may show after some manipulation that the second bracketed term on the right-hand side of Eq.
(2.40) is

(&p, qlI"'pip, q& —&p, qlpI'lp, q&)= —v, j,(p, q t),
I

where

j (P q t)—= &p qli, lp q&

One may obtain an integral representation of j (p, q, t) using the representation (2.32) for j, i.e.,

j (p, q, t)= f d x f d y(p, qlx)[K(x, y)p(x, y, t)](ylp, q&,

or, more explicitly,

j (p, q, t)= f d x f d y(expI —[(x—q) +(y —q) ]/2o. Iexp[ip. (y —x)/h']K(x, y)p(x, y, t)) .
1

(2.45)

(2.46)

(2.47)

(2.48)

where

—= —V.J(p, q, t), (2.49)

V=(V, V ), J(p, q, t)=[j~(p, q, t), j, (p, q, t)] .

The continuity equation ensures that it is proper to re-
gard p(p, q, t) as an indestructible quasiprobability fiuid
in quantum phase space whose time dependence is driven
by the current density J(p, q, t).

III. CHARACTERISTICS OF THE PHASE-SPACE
HYDRODYNAMIC MODEL

In Sec. II, we introduced the basic formal elements for
the hydrodynamic analogy in coherent-state space. The
essential step in that analysis was the formulation of the
phase-space flux density J, which together with p,
satisfies the phase-space continuity equation. In this sec-
tion, we discuss the analogy in more detail with special
emphasis on issues related to the numerical generation of
the quantum phase-space structure. In Sec. III A, we an-
alyze the general characteristic of the hydrodynamic pic-
ture. In this section we make a clear statement as to how
we propose to use the hydrodynamic model in studying
quantum phase-space structure. In Sec. IIIB, we bring
out the limiting behavior of the theory as A~O. In Sec.
III C, we come back to the point, raised in Sec. II, that
the flux density is ambiguous due to factor ordering of
the flux operators. It is shown that this ambiguity may
be exploited, in analogy to gauge invariance in field
theory, to simplify the quantum phase-space structure
without in any way changing the transport of the density

Thus the Von Neumann equation becomes a phase-
space continuity equation

Bp(p, q, t) = —V, j, (p q t) —V, .j,(p q t)
t

p. Finally, in Sec. IIID we analytically implement the
phase-space hydrodynamic picture for the harmonic os-
cillator and the free particle.

A. Hydrodynamic method for transport in quantum
phase space

Associated with any quantum density operator p is
the coherent-state quasi-probability-density p(p, q, t)= (p, qlplp, q). The essence of the hydrodynamic model
is that p(p, q, t) is to be interpreted as the density for an
indestructible continuous fluid flowing in a quantum
phase space. The existence of the phase-space continuity
equation justifies such a picture in broad terms. The ad-
vantage of this identification is that now many of the
classical concepts of fluid dynamics may be used to study
quantum dynamics. Here, we shall show that a few of
the more elementary aspects of the analogy may be ex-
ploited for the study of quantum mechanics.

The flow of a classical fluid may be regarded from ei-
ther the Lagrangian or Eulerian points of view. From the
Lagrangian viewpoint, a moving fluid consists of a con-
tinuum of discrete particles, each of which propagates
along its own "fluid trajectory" under the influence exter-
nal and internal forces. The fluid trajectories can be used
to define a set of time-dependent Lagrangian coordinates
which distinguish one evolving particle from another.
Specifically, for a phase-space fluid one writes a classical
trajectory as a function of initial conditions as

P =P( Po~ qo, t),
q=q(PO qo»

(3.1)

where pp=p(po, qo, 0) and qo=q(pp qo, 0). If (p, q) are
taken as the usual static phase-space variables, then
(pp, qo) comprise a set of time-dependent Lagrangian
coordinates. In the Euler approach, hydrodynamic laws
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J(p, q, t)=v(p, q, t)p(p, q, t) . (3.2)

Using the velocity field, we may obtain the Lagrangian
trajectories which govern the evolution of the density as
solutions to

=v (p, q, t),dp
dt

=v (p, q, t) .dq
dt

(3.3)

The time variation of the density along the trajectory is
measured by the convective derivative Dp/Dt,

DP = P+v Vp.
Dt dt

(3.4)

Making use of the continuity equation, we find

Dp
Dt

=pV v. (3.5)

are formulated as fluid field equations in a static coordi-
nate system such as (p, q). One may transform between
the Euler and Lagrange pictures using Eqs. (3.1).

The Lagrangian approach provides a very natural per-
spective on the flow of the classical phase-space density

f (p, q, t). The fiuid fiow consists of a ensemble of nonin-
teracting particles which move along classical trajectories
in phase space. Along each trajectory, the density
satisfies Liouville's equation df Idt =0, which is
equivalent to the phase-space continuity equation. The
Lagrangian viewpoint is also very illuminating for the

quantum phase-space fluid. Here the view is that the
evolution of the density p(p, q, t) is due to the propaga-
tion of quantum trajectories in the quantum phase space.
The quantum trajectories may be used to define a set of
Lagrangian coordinates as above. However, we note two
important differences between the classical and quantum
phase-space fluids. First, the quantum fluid trajectories
show deviations from classical trajectories of order O(irt)
and higher, see Sec. III B for details. Second, the density
does not satisfy Liouville's theorem dp/dt&0, but in-
stead varies in time along quantum trajectories. The
differences are very important in that they provide hydro-
dynamic interpretations of nonclassical effects.

In classical mechanics, the trajectories are obtained
directly from Hamilton's equations. In quantum theory,
the trajectories are not generated by Harniltonian dynam-
ics. However, as suggested in Sec. I, we may use a
straightforward numerical scheme to obtain the orbits.
We assume that the density p(p, q, t) and the flux density
J(p, q, t) are known to us. In practice, these are numeri-
cally computed using the expressions (2.39), (2.44), and
(2.48) employing an accurate p( x, x', t ) obtained, e.g. ,

from a basis set calculation. Given this, we define a
phase-space velocity field as

where Ip(t), q(t) I is a fiuid trajectory.
In classical mechanics the phase-space velocity field is

divergenceless reflecting the Hamiltonian structure, or
equivalently, the conservation of phase-space volume.
Hence from (3.6) the classical density is conserved. In
quantum phase space, V v is usually nonzero, so there is
an associated expansion or contraction of phase space
along the fiow, Note that even for a stationary distribution,
such as that from an energy eigenstate, V J=O but gen
eI"ally V v&0.

The structure of quantum phase space corresponding
to p may be determined using the first-order ODE's (3.3)
as one uses classical trajectories in classical dynamics. As
just mentioned, one important difference between the
classical and quantum theories is that the quantum first-
order fiow is non-Hamiltonian, i.e. , V v&0. Another
significant difference is that the quantum phase-space
structure depends on the choice of initial p at order O(iri)
and higher. This is unlike the classical problem where
the classical Hamiltonian determines the phase-space
structure and any chosen ensemble f (p, q, t) evolves ac-
cording to that fixed structure. The quantum density
behaves more like a typical liquid in this regard with the
evolution of the Lagrangian fluid trajectories reflecting
not only the influence of the external force —V V, but also
the density-dependent internal stresses. We emphasize
that the p dependence of the phase-space structure is not
an artifact of the method but is physica11y significant and
provides insight into the dynamical differences exhibited
by different states. For example, certain quantum syrn-

metry constraints should be reflected in different phase-
space structures for states of different symmetry.

In contrast to most previous treatments, we have not
emphasized the role of the Euler equation in the hydro-
dynamic analogy. This is because in our approach the
exact p is provided as input and the Euler equation is
thus not required to solve for the densities. We pointed
out that in principle, the Euler equation may be written
as the diagonal expectation of the Schrodinger evolution
equation for the flux operator. In practice, it seems that
the resulting integro-differential equation will usually be
very difficult to solve and there is no motivation to do so
here.

B. Correspondence limit

One expects in the limit %~0 that the quantum
phase-space continuity equation should reduce to the
classical Liouville equation and that the Lagrangian fluid
trajectories should approach classical trajectories. In this
section it is shown that this is the case and characteristics
of the quantum corrections are discussed.

First, consider the relationship between the flux densi-

ty J and the quasi-probability-density p. Using the result

Equation (3.5) allows us to write a formal expression for
the density p as a function of time,

&p, qlplyk)= p — + & &p, qlxi, &

210 0
(3.7)

p(p(t), q(t), t)= exp f 'V v(p(t'), q(t'), t')dt'
0

in the diagonal representation of p, it is easy to show that

Xp(p(0), q(0), 0) (3.6) j (p, q, t)= p+ v p. (3.8)
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The first term on the right-hand side of Eq. (3.8) is the
classical result, while the second term is a quantum
correction. The relationship between j and p can also be
found. Begin by expanding the integral kernel K(x, y) of
j in a Taylor expansion in both x and y about the point

q, the center of the Gaussian, to obtain

o 2 BVz V(q)
j (p, q, t)= —pV V(q)—

~q; ~)q;

8 V~V(q)
6 Bq;c)q 4 Bq, Bq

+—'5 harp +fJ

$2 Q2

4 Bp;Bpj.

(3.10)
BV V(q)

K(x, y)= —V V(q) ——' (b,x;+b.y;)
Bq,

1 a'V, v(q)
(b,x, b,x, +b,x;hy, +b,y;&y, )

6 Bq; Bq&

+ e ~ ~

7
(3.9)

where

Ax,- =x, —q;, Ay; =y; —q;,

and repeated index summations is assumed. Inserting
this expansion into Eq. (2.48) one obtains for j (p, q, t),

The first term is the classical momentum flux pp and the
remaining terms are quantum-mechanical corrections.

The quantum scaling properties of the correction terms
to J depend on the A dependence of the width parameter
o. . Clearly, from the Gaussian form of the coherent state,
o. is roughly the resolution in configuration space hq.
The resolution in momentum space is Ap -A/o. Thus, if
one varies fi in such a way as to maintain a constant ratio
Ap/hq, then o should scale to zero as A' in the classi-
cal limit. In what follows, we imagine that the classical
limit is approached in such a fashion.

The quantum phase-space continuity equation can be
rewritten as

~P — P ~2 BVq V(q) BV p 6,,o 8 V V(q)

8 Vq V(q)+
6 Bq;Bq-

3o ~ ~pp
4 Bq;Bq.

+ . = [H",p}pB+O(R)+O(A )+
4 Bp] Bp~.

(3.11)

Thus one obtains the classical Liouville equation plus
quantum correction terms which scale to zero as iI~0.
In fact, by eliminating J in favor of p in this way we begin
to develop the infinite-order quantum Liouville equation
discussed previously by, e.g. , Prugovecki and
Takahashi.

In a similar way, using Eqs. (3.8) and (3.10), the trajec-
tory equations can be expressed as

dp = —V V(q)+O(fi)+O(A' )+. . .d=
d q =~+o(a),
dt m

(3.12)

C. Flux gauge

In Sec. II, we pointed out that the flux densities were
not uniquely defined in quantum mechanics due to factor
ordering ambiguities in the definition of the flux opera-

which are Hamilton's equations plus quantum correc-
tions of leading order 0 (A').

Finally, we note that caution is required in making A

expansions of the quantum phase-space dynamics. As
emphasized by Tatarskii, and others, ' there may be
implicit A dependence in p due to quantum initial condi-
tions in addition to the explicit A dependence in the equa-
tions of motion such as that considered above. Equations
(3.11) and (3.12) are appropriate if this fi dependence of p
is ignored.

tors. Eftectively, one may add a divergenceless single-
valued vector function to the flux density,

J'=J+5J, (3.13)

where 5J~O as A~O, and still maintain an expression
which satisfies the continuity equation and the correspon-
dence principle. Thus the transport of the density p is
equally well explained by any J' defined by (3.13), since
the net flux out of any closed volume of phase space is the
same.

In the configuration-space analysis, there has been little
reason to question the usual expression for flux density,
Eq. (2.7), except for a straightforward generalization to
vector potentials. On the other hand, in the present
phase-space context, an appropriate choice of 5J may
greatly simplify the task of resolving the quantum phase-
space structure. For example, 5J may be chosen to elimi-
nate small (on the scale of Planck's constant) eddies and
whirlpools in J which complicate the phase-space struc-
ture but ultimately do not influence transport. Thus the
term 5J has a similar character to a gauge factor in field
theory and we henceforth refer to the specification of J as
the choice of flux gauge.

One can imagine any number of flux gauges that could
prove useful in simplifying various problems. Here, we
explicitly consider only two possible choices. First, the
simplest flux gauge is where 5J=O so that one uses
directly the diagonal coherent state expectation of the
flux operators Eqs. (2.24) and (2.48). We shall call this
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choice the "primitive gauge. " A second gauge is

5J= (V p, —V p),
2m 0

(3.14)

D. Analytic examples

In order to illustrate the phase-space hydrodynamic
model and see the effects of the flux gauge, we consider
two simple analytically solvable problems: the free parti-
cle and the harmonic oscillator.

1. The free particle

Consider first a plane-wave state for a free particle of
mass m in three space ~p'). The density is easily found to
be

p(p q r)=l&p qlp'&I'

0
exp[ —(p —p') cr /fi ] . (3.15)

which is chosen to eliminate the quantum correction
term to j in Eq. (3.8). Thus we shall refer to (3.14) as the
"classical gauge. " Using the classical gauge, the q-space
velocity becomes v =p/m, which means that any stag-
nation points of the fluid, v =0, must lie at p =0, which is
intuitively preferred.

Finally, an intriguing, if somewhat speculative, possi-
bility is that the flux gauge may be set to make the quan-
tum dynamics resemble a classical Hamiltonian system.
That is, we can imagine choosing 6J to make the velocity
field divergenceless. Specifically, if we define 6J=p6v
and v'=v+6v, then we select 6v to enforce V.6J=O and
V v'=0. For a static distribution Bp/Bt =0, this implies
that the trajectories will lie along equidensity contours of
p. For nonstationary distribution, the fluid orbits should
correspond to the Hamiltonian trajectories of some time-
dependent Hamiltonian K (p, q, t). Although we shall not
use this "Hamiltonian" gauge in this work, it clearly war-
rants further investigation.

p(p, q, t)=(1+y) '~ exp
—

/3p 1

2m 1+y
(3.18)

where y is the energy dispersion of a coherent-state pack-
et of width o. measured in units of k T, i.e.,
y =Pfi /2mcr . Note that in the high-temperature limit

y ~0, p approaches the classical Boltzmann distribution.
At low temperatures, p approaches a limiting Gaussian
corresponding to the energy spread determined by the
width cr,

p(p, q, t)~(1+y) exp p 0
(3.19)

In the primitive gauge 6J=O, the flux and velocity fields
are given by

J= 0,'m 1— y
2(1+y)

(3.20)

of a classical free particle ( —VzH, VzH) =(O, p/m) in-
dependent of p'. Obviously, the two descriptions are the
same at p=p', where density is peaked. In physical
terms, of course, one is mainly interested in regions of
phase space where the density and flux are highest.
Hence, while the two cases v = (0, p'/m ) and v = (0,p /m )

may differ by arbitrarily large amounts when ~p
—p'~ is

increased, meaningful differences are bounded by the
range of p (and hence J) bp-fi/o. When the effects of
range are taken into account, the differences between the
dynamical descriptions afforded by the two gauges scale
to zero as A~O, even though the velocity fields do not
show an apparent fi dependence.

It is also interesting to consider the same three-
dimensional free particle, but now described by the
Boltzmann density operator p =exp( PH )

—where
f3:—1/kT. Straightforward integration yields the corre-
sponding coherent-state density,

Using the gauge 6J=O, we find the current and velocity
fields

J= 0,
I

p, v= 0, —

m 'm (3.16)

I0~ p, v= 0,'m 'm (3.17)

Thus the velocity field becomes exactly the same as that
I

Thus the entire quantum phase space (p, q) has a con-
stant velocity (0,p'/m ) determined by the momentum of
the plane wave. On the other hand, the same problem
may be solved in the classical gauge, (3.14). The density

p, of course, does not change, but flux and velocity fields
become

Thus at high temperatures the phase-space structure is
equivalent to the classical free particle but, at low tem-
peratures, temperature-dependent quantum corrections
appear. Using the classical gauge, Eq. (3.14), the vector
fields are given by

J= 0 + p, v= 0,'m (3.21)

which gives the classical phase-space structure at all tem-
peratures. Note that both choices of gauge yield stagna-
tion of the quantum fluid only along the hyperplane
p =0.

Finally, as an example of a time-dependent free parti-
cle, we consider a one-degree-of-freedom particle which
evolves as a pure-state normalized Gaussian packet

%(x,i)=
' —1/4

exp[ —a(x —
q, ) +ip, (x —

q, )/%+i y/fi],
R

(3.22)
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where (p„x, ) is any classical trajectory for the free parti-
cle,

p, =const, q, =—t +qo, (3.23)

and the other parameters are

CX0

1+2iA' aat /m

$2 p
) = f '—a, dt'+

m 0 2m

(3.24)

with a —=a~ +i at and a0=a(t =0). The coherent-state
density is found to be

This reflects the frequency modulation in the wave packet
due to the imaginary part of the width parameter e.
When +1=0 the q dependence in v disappears. At the
center of the distribution, (p, q) = (p„q, ), the velocity field
assumes the classical value v(p„q, )=(O,p, /m). Away
from the center, there are quantum corrections which de-
pend on the width parameter e. In the limit of very nar-
row wave packets, a~ ~~, the velocity field approaches
v=(O, p/m), the classical result, over the entire phase
space. On the other hand, for very wide wave packets,
the velocity field approaches (O,p, /m), so the whole
quantum phase space has the constant velocity of the
center of the packet, as happened for the plane-wave
state. If the problem is expressed in the classical gauge,
(3.14), the expressions become

p(p, q, t) =N exp[ —3 (q —
q, ) B(p ——p, )~

—C(q —x, )(p —p, )],
where

A =Re z, B= &Re
2(x 0 1

1+20 ~ $ 1+20

(3.25)

and

J(p, q, t) = 2a(q —
q, )

Re
m0. 1+20 ct

(p —p»+—Im
1+20-'e p (3.29)'m

1 2C= —Im 1+20-'e '
(3.26)

and N is the normalization factor. Thus the coherent-
state distribution is a Gaussian in phase space centered
on the evolving classical trajectory (p„q, ). The width of
the distribution varies with time and is a composition of
the natural width a and the coherent-state width 0.. For
very long times the wave packet will always spread in
configuration space, since, as t~ ~, az ~0, at order
O(t ), and at~0, order O(t '). The coherent-state
density also spreads in the q direction, since A~0,
0(t ). The phase-space skewing term C(q —x, )(p—p, ) also falls away since C~O, O(t '). However, the
distribution along the p direction approaches a limiting
form since B~o. /A as t~ ~, and in fact approaches
the expression for a plane wave of momentum p„as one
should expect. On the other hand, if the wave packet is
made exceedingly narrow at some initial time, so that o,z
is very large, then A ~1/0. while B—+0 and C~O.
Hence the coherent-state density is as narrow as it can be
made in the q direction given the coherent-state width it-
self, viz. , A = 1/0. , but is completely delocalized in the p
direction.

v(p, q, t) = 2a(q —
q, )

Re
mo. 1+20. n

1 (P P)+ Im
1+20 ~(g

(3.30)

, (p(pa, q= ) p(pa q =——
2m0

The q component of the velocity field is the classical ve-
locity p/m everywhere in phase space. The price paid
for this is that, for the first time, the velocity vector field
has acquired a nonzero p component. However, at the
center of the distribution, (p, q)=(p„q, ), the p com-
ponent is zero and the velocity field is the classical result
(O,p, /m). Furthermore, even though J %0, there is no
net transport in momentum space. That is, if we calcu-
late the total flux through the infinite surface p =pa, we
find

=0, (3.31)

p( +20 (xpJ= O, Re
m (1+2cr a)

fi(q —
q, )—Im p

mcr (1+2o' a)
(3.27)

Now, in the gauge 6J=O, the flux and velocity fields
are which holds at every instant. The flux gauge merely in-

troduces a circulation in phase space but with no net
momentum transport as would occur with a nonzero po-
tential.

p, +2cr ap A(q —
q, )v= O, Re —Im

m(1+2o a) mo (1+2cr a)
(3.28)

Unlike previous examples, the velocity field depends on q.

2. The harmonic oscillator

Next, we consider the dynamics of a harmonic oscilla-
tor of frequency co. We first analyze the motion of a
coherent-state wave packet. The time-dependent wave
function is
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V(x, t)=(crier )
' exp[ —(x —

q, ) /2o

+ip, (x —q, /2)/k i—cot /2],
(3.32)

with

2

e= ~z~'= p + —men'q'
2m 2

(3.40)

where o =A'/m co and (p„q, ) is a classical trajectory

(p„q, ) = [(2mE)' cos(cot +80),

(2E/mes )' sin(mt+0O)] . (3.33)

Employing the same width parameter cr, the coherent-
state density corresponding to p = ~%' ) ('I' is

p(p, q, t)=exp[ —(q —
q, ) /2o. —(p —p, )zo~/2A'~] .

This is a static distribution which is peaked on the circle
e=n, which is located near the corresponding EBK orbit
at e=n +1/2. When the gauge is set with 5J=O, the
static flux and velocity fields are found to be

J(p, q, t) =( —me@ q, p /m)[1+ —,'(n /e —1)]p(p, q, t)

(3.41)

and

(3.34) v(p, q, t) =( —men q, p/m)[1+ ,'(n/e ——1)] . (3.42)

—men (q+q, ) p+p,
J(p, q, t) =

2m
p(p, q, t), (3.35)

This is a rigid Gaussian distribution whose center evolves
along the classical orbit. In the 6J=O gauge, the flux
density is easily found to be

The bracketed term is unity on the circle e=n and there-
fore the fields assume their classical value on that curve.
If the gauge is instead chosen as (3.14) then the fields
reduce to the classical expressions everywhere in phase
space

and the associated velocity field is
J(p, q, t) =( —mes q, p/m)p(p, q, t),
v(p, q, t ) = (

—m co q, p /m ) .
(3.43)

v(p, q, t) =
—mes (q+q, ) p+p,

2 2Pl
(3.36)

The velocity field is thus the average of the static classical
velocity field v, =( —men q, p/m) and the uniform, but
time-dependent, velocity of the center of the packet
v, =( —me@ q„p, /m), i.e., v=(v, +v, )/2. The phase
point at the center of the wave packet, (p, q) =(p„q, ), ex-
hibits the classical velocity with v=v, =v, . We em-
phasize again that while v appears to show deviations
from the classical result of order 0 (A ), if we restrict our
attention to the region of phase space bounded by the
range of p, the quantum effects do scale to zero in the
classical limit. If we use, instead, the classical gauge Eq.
(3.14), we find that fiux and velocity fields become identi-
cal to the classical results

Finally, we consider the coherent-state analysis for the
canonical ensemble p =exp( f3H ). P—erforming a
Boltzmann average of Eq. (3.39), we easily find for the
coherent-state density

p(p, q, t ) =exp[ —e( I —e )
—X/2], (3.44)

where X =pirtco and e is classical Hainiltonian divided by
%co, Eq. (3.40). In the high-temperature limit A ~0,
p(p, q, t) is seen to go to the classical Boltzmann distribu-
tion exp( —eA. ). At low temperatures A, ~ ~, p(p, q, t) be-
comes the coherent-state density for the ground state
exp( —e) times the ground-state Boltzmann factor. In
the gauge 6J=O, the temperature-dependent flux and ve-

locity fields are found to be

J(p, q, t) =( —me@ q,p/m)[1+ —,'(e —1)]p(p, q, t)
J(p, q, t) =( —men q,p/m)p(p, q, t),
v(p, q, t)=( —men q, p/m) .

(3.37)

and

(3.45)

Thus in this gauge, the wave packet propagates as each
element of the density p evolves along its own classical
trajectory. Specifically, since V.v=0, Eq. (3.6) implies
that p(p„q„t) =p(po, qo, 0), which is classical Liouville
propagation of the density.

Next, consider the same harmonic-oscillator system
but in an eigenstate ~n ) of the Hamiltonian. Using the
well-known result

oo ft

~p, q ) =exp( —
~z~ /2) g, ~n ),t)1/2

(3.38)

p(p, q, t)=exp( —e)
n~

(3.39)

where z =(q/o+iop/A')/&2, we obtain for the
coherent-state density

v(p, q, t)=-( —me@ q,p/m)[1+ —,'(e —1)] . (3.46)

With the gauge (3.14), J and v again become the
temperature-independent classical harmonic-oscillator
fields, Eqs. (3.43).

IV. NONLINEAR PHASE-SPACE STRUCTURE
OF STATES IN A DOUBLE WELL

In Sec. III, the phase-space hydrodynamic model was
implemented analytically for the simple cases of the har-
monic oscillator and the free particle. In this section, we
consider a more complicated problem which is not ana-
lytic and which shows nonlinear quantum phase-space
structure, viz. , the quartic double-well problem. We use
this application to illustrate several general techniques to
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numerically resolve nonlinear structures using the fluid
trajectories. Specifically, the role of fixed points and
separatrix structure are found to be especially important.
We shall emphasize the description of the tunneling phe-
nomena in this system in order to illustrate how nonclas-
sical effects can be interpreted using the quantum phase-
space structure.

We consider the time-dependent quantum dynamics
for the quartic double-well problem governed by the
Hamiltonian

P2 ~2
H= — +yq

2 2
(4.1)

v'2 (4.2)

For energies less than zero, the barrier energy, the trans-
port is due to a tunneling process. The period for a tun-
neling cycle is given by

The value of the parameter y determines the number of
states trapped below the barrier. Since in this paper we
are interested particularly in nonclassical manifestations
in quantum phase space, we set y =—„'„which yields only
four states with energy below the barrier, see Fig. 1. We
specifically consider time-dependent pure states which
are linear combinations of neighboring pairs of sym-
metric (+) and antisymmetric ( —) eigenstates

The dynamics of the time-dependent wave packet is
represented by a first-order flow in a three-dimensional
quantum phase space,

=v (p, q, ~),dp
dt

(4.4a)

=v (p, q, ~),
dt

d7=
dt

(4.4b)

(4.4c)

Such first-order systems have been much studied and will,
in general, exhibit a rich variety of generic nonlinear dy-
namics. One way to depict the resulting phase-space
structure is using a discrete map where, e.g. , (p, q) is plot-
ted for the regularly spaced times ~=n~, „„.Alternative-
ly, when the explicit time variation of v is very slow com-
pared to the typical orbit period, one may interpret the
dynamics using the continuous two-dimensional orbits of
the instantaneous flow. The instantaneous flow is the re-
sult of holding ~ fixed on the right-hand side of Eqs.
(4.4a) and (4.4b) so that the resulting orbits are the
streamlines for the instantaneous velocity field. While
the discrete map may be the more generally applicable
representation, we adopt the second approach for our
specific problem here since it will yield more insight into
the dynamics. For the pairs of states considered, the tun-

h
+tun

i+& Ei
(4.3)

5.0

The goal in this study is to resolve the quantum phase-
space structures responsible for the tunneling and to
demonstrate that the tunneling rates may be computed
directly based on the phase-space structure.

The energy eigenstates for this system were found by
numerically diagonalizing the Hamiltonian in a large
basis set. The density p and the flux density J were then
obtained by numerical integration using the defining ex-
pressions, Eqs. (2.39), (2.44), and (2.48). The fiux gauge
was chosen as Eq. (3.14), which simplifies the q com-
ponent of the flux to J =ppfm. One feature of this
gauge which is particularly useful is that the instantane-
ous fixed points, where v=o, must now be constrained to
lie on the p =0 axis. This simplifies the overall phase-
space structure by eliminating certain small quantum ed-
dies off the p =0 axis which do not contribute to the net
transport. Furthermore, locating the fixed points in this
gauge simplifies to a one-dimensional search.

In Fig. 3, the influence of the choice of flux gauge is
brought out for the superposition of the lowest pair of
eigenstates via Eq. (4.2). At the time t =~,„„l5, a
representative set of streamline trajectories is plotted for
the gauge 5J=O, in the upper panel, and the gauge (3.14)
in the lower panel. It is gratifying to see that the overall
structure of the quantum phase space is not greatly
affected by the gauge. However, the small eddy lying
above the x point is eliminated by the gauge (3.14). The
significance of the various other phase-space structures
revealed in Fig. 3 will be discussed below.

p 0.0

-5.0
--6.0 6.0

5.0

—5.0
—g 0 0.0

FIG. 3. Streamline trajectories for the superposition of the
lowest pair of eigenstates of the double well at time t =~t„„/5.
The upper panel shows the structure for the flux gauge 6J=0,
while the lower panel shows the result for gauge (3.14).
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neling time is sufficiently long to justify the separation of
time scale assumption.

In Fig. 4, the quantum phase-space representation is
depicted for six times during the half tunneling cycle
[O, r,„„/21 obtained for the superposition of the lowest-
energy pair of states. The left-hand panels in the figure
show the development of the coherent-state density
p(p, q t) Clearly, the density is localized in the left well
at t =0 and smoothly evolves to the right well by

7 t „/2. The middle panels show the development of
the instantaneous fiux density J(p, q, t) at the same set of

times. The right-hand panels contain representative sets
of streamline trajectories propagated assuming that time
is held fixed in the velocity field v(p, q, t).

At t =0, the fiux shows a circulation about a single (in-
stantaneous) fixed point located near, but not precisely at,
the minimum of the left-hand well. All the streamline or-
bits circulate about this one fixed point, even when pass-
ing over the region of the right-hand well, i.e., at positive
q. At the later times, circulation sets in about a second
fixed point located near the right potential minimum. A
hyperbolic fixed point appears in the barrier region and
denotes the boundary between the basins of circulation
along the p =0 axis. The hyperbolic point and the right-
hand elliptic point occur simultaneously via tangent bi-
furcation at a time near t =0. From the figure one also
observes a region of circulation around the outside of all
three fixed points. Thus one has three types of streamline
trajectories, 3, B, and C as in Fig. 1, which circulate
about the left, right, and all three fixed points, respective-
ly. Near the time t =~,„„/2, when the entire wave packet
has tunneled to the right well, the left elliptic point and
the hyperbolic point disappear through an inverse
tangent bifurcation and all circulation occurs about a sin-

gle center near the right potential minimum.
For all times except during very brief intervals near the

points t = n ~,„„/2 with n =0, 1, . . . , there exist three
fixed points in the instantaneous flow. With the choice of
fiux gauge given by Eq. (3.14), these instantaneous fixed
points all lie on line p =0. An accurate numerical deter-
mination of their location (po, qo ), is made using a
Newton search to solve v(po, qo, r) =0.

The behavior of the flow in the vicinity of one of these
instantaneous fixed points may be discussed in terms of
the linearized system,

rtff
J , ~

'

», (po, qo, r)»„(po, qo, r)
Aq+ Ap,

dt Bqo Bpo

aU, (p, , q„r) a
Aq+ Ap,

dt Bqo Bpp

with ~ fixed and where

(4.5a)

(4.5b)

~S'=S' S'o ~q =q qo .

Equations (4.5) may be abbreviated using the z notation,
where z = (p, q), etc. In this notation, (4.5) becomes

dhx
dt

(4.6)

il &t: ...
~ ~ 'k ~ ~

~ L V Ag (4.7)

where A is the ~-dependent derivative matrix. The ei-
genvalue equation

FIG. 4. Quantum phase-space structure for a superposition
of the lowest pair of eigenstates of the double-well problem.
The left-hand panels depict the density p at the set of six times
t = n ~t„„/10, n =0, 1,2, 3,4, 5. The middle panels show the (vec-
tor) Aux density at these same times. In the right-hand panels,
the streamline trajectories are plotted.

defines the pure exponential motion along the instantane-
ous eigenvectors g . The eigenvalue spectrum [X ) may
be used to classify the fixed point. Unlike with Hamil-
tonian dynamics, A does not have symplectic structure
for the quantum problem except in the limit A~O.

In the practical calculations, the 2X2 matrix A is ob-
tained by numerical differentiation of the velocity field
and the eigenvalue analysis is carried out. For the half
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tunneling cycle shown in Fig. 6, the eigenvalues reveal
that the left fixed point is an elliptic source and the right
fixed point is an elliptic sink. That is, A. + are the complex
eigenvalues from Eq. (4.7) with

(a)

X+ Xg +l Arl (4.8)

the fixed point is a source when A.~ )0 and is a sink when

kz &0. Therefore the streamline orbits spiral outward
from the source and spiral into the sink. The rniddle
fixed point is a saddle point, i.e., a hyperbolic fixed point.
It has two distinct eigenvalues k, and 12 with A,

&
)0 and

k2 &0. Unlike for Hamiltonian dynamics, one finds that
here, generally,

X, + A,~WO,

and thus areas are not preserved by the flow. During the
second half cycle ~,„„/2) t ) ~,„„,during which probabil-
ity flows back from right to left, the character of the el-
liptic points reverses and the right fixed point becomes
the source and the left the sink.

The most important phase-space structure is that asso-
ciated with the streamline manifolds from the hyperbolic
fixed point. These manifolds are obtained, as in classical
theory, by propagating orbits from near the fixed point
along the eigenvectors of A. The two unstable branches
are obtained by forward in time propagation while the
two stable branches are obtained from backward in time
propagation. Portions of the actual manifolds obtained
in this way are pictured in the right panels of Fig. 4. To
make the structure more visible, however, idealized ver-
sions of the manifolds at a time in the middle of each
quarter tunneling cycle are shown in Fig. 5. Notice that
relative positions of the stable and unstable manifolds in-
terchange in going from first to the second quarter cycle.
Exactly at t =0.25~,„„the manifolds actually join. Dur-
ing the first quarter cycle, trajectories spiral out of region
A and into regions B and C. During the second quarter
cycle, trajectories spiral into B from both 3 and C. Dur-
ing the second half tunneling cycle, the density flows
back to 3 in a symmetrical fashion. Structures such as in
Fig. 5 have been referred to elsewhere as "virtual separa-
trices. "

We can make use of the virtual separatrix in two ways.
First, its manifolds divide quantum phase space into re-
gions with distinct dynamical properties. In Fig. 6,
closed regions 3, B, and C, which are inhabited by the
different type of streamline trajectories mentioned above,
are defined in this way. Regions A and B, which lie in-
side the lobes of the virtual separatrix, correspond to
probability density trapped in the left and right potential
wells, respectively. Density in region C is the component
of the state which is circulating above the barrier and is
trapped in neither well. Note that the virtual separatrix
does not close on itself, i.e., there are no simple homoclin-
ic points. To define closed regions in phase space one
must artificially close the regions. In the present problem
this is accomplished by connecting the separatrix mani-
folds to the hyperbolic point with vertical straight lines

q =qo. This is physically reasonable here since the densi-
ty is very low along this line.

(b)

(c)

(d)

FIG. 5. An idealization of the manifolds from the hyperbolic
point during each quarter cycle of the tunneling process. Re-
gions A, B, and C are depicted.

A second use for the virtual separatrix is that it pro-
vides a means to quantitatively study transport in quan-
tum phase space. Consider a scheme where one defines
the distinct "species" A, B, and C using the virtual
separatrix as above. A similar definition for dynamical
species has been previously advanced in classical Hamil-
tonian mechanics. Their concentrations at time t are
given by

FIG. 6. Closed regions of quantum phase space for the first
quarter cycle are defined using the virtual separatrix and a verti-
cal line segment. The Aux gates 6„,6~, and 6C are depicted.
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[A]=f pdpdq,

[B]=f pdpdq,
B

[C]=f pdp dq,

(4.9a)

(4.9b)

(4.9c)

where the integrations are over the regions in the phase
plane appropriate for each species. Thus we investigate
the transport process by which these dynamically defined
species interconvert between one another subject to the
normalization condition

[ 3]+[B]+[C]=2~%' . (4.10)

The time rate of change of a species, e.g. , [ A], is given by

d A Bp= f Pdpdq+ f, pu nds, (4.1 1)

f pdpdq= —f vJdp dq
dp

w Bt

= —I|I, J.nds, (4.12)

using the continuity equation and then the divergence
theorem. Using J=pv, we have

where C „ is the boundary curve to region 3 which is
parametrized by s as [p„(s),qz(s) I, u is the time deriva-
tive of the curve 0„,and n is the unit normal (pointing
outward) to C „.The first term may be rewritten as

IF, «)l = IF, (»I+ IF,«) I
. (4. 17a)

of the separatrix manifold. This segment, denoted as Gz
in Fig. 6, is what we term a "flux gate" since all the flux
entering or exiting 3 must pass through this gate. Flux
gates permit passage of flux in only one direction, either
into or out of a closed region of quantum phase space.
The flux gate construction is reminiscent of that of the
turnstile in Hamiltonian systems in that both provide a
localized portal through which orbits transport between
different regions of phase space.

The dominant component of the u part of the integral
expression (4.13) for the exact flux F~(t) occurs at the
flux gate. Therefore improved accuracy in the flux calcu-
lations may be achieved with very little added effort by
including the uniform velocity of the flux gate u~, which
is the same as the velocity of the fixed point, i.e. ,

(po, qo)=(0, qo)=u~. The flux gate approximation to
the flux integral is therefore given by

F„(t)=f p(v —u„) nds . (4.16)
G~

This is the expression used for the numerical calculations.
We note that there are different flux gates for the

different regions G~, GB, and Gc and their topology
changes as the virtual separatrix slowly evolves with
time. During the first quarter cycle of the tunneling pro-
cess ~,„„/4)t )0, flux exits 3 and enters both B and C
as shown in Fig. 7(a). Hence quantitatively

d
p(u —v) nds —= F„(t), —

dt
(4.13) During the second quarter cycle ~,„„/2) t ) ~,„„/4, flux

exits both 3 and C and enters B as in Fig. 7(b) and so

)) llu (4.14)

for all points on C „except a set of small measure near
the instantaneous fixed point. Reca11 that v must vanish
at a pseudofixed point, while u may be nonzero. Thus for
such deep tunneling cases, an accurate approximation to
F„(t) is

F„(t)= f ~ pv. nds, (4.15)

which is the instantaneous flux across the static curve

We now make a very important observation concern-
ing the flux integral (4.15). Most of the curve C „con-
sists of an instantaneous streamline orbit along which
vL.n and therefore v n=0. Thus the only nonzero contri-
bution to the line integral (4.15) comes from the small
segment connecting the hyperbolic point to the loose end

which gives the rate of change of [ 2], Fz (t) as a —closed
line integral around the boundary curve C„. In other
words, F„(t) is the net flux out of A at time t (Similar.
formulas hold for the concentrations [B]and [C].) The v

term in the integral is the instantaneous flux across the
static curve C z. The u term gives the rate of loss of den-

sity from region 3 due to the motion of the boundary
curve C z across the instantaneously static density distri-
bution. When the tunneling time ~,„„ is much longer
than the typical vibrational period in the potential well

w„b, then the virtual separatrix evolves slowly in time and
one has

IF, (r)
I

= IF~ (t) I+ IFC(r) (4.17b)

At the halfway point, the source and sink interchange
roles due to a rapid sequence of two tangent bifurcations
and, so, during the third quarter cycle, Fig. 7(c), flux
enters regions A and C and exits region B and we have

IF, (r)l = IF, (r) +F,(r)
I

. (4.17c)

Finally, during the last quarter cycle, Fig. 7(d), flux enters
3 and leaves B and C and

IF, (&)
I

= IF~(&)I+ IFc(&) I
. (4.17d)

The flux density along the flux gate (and beyond) is
shown in Fig. 8. Plotted as solid lines are
J(p, qo, t).n=J (p, qo, t) versus p at a set of ll evenly
spaced times in the quarter cycle ~,„„/4) t )0. The dis-
tribution is seen to be bimodal at most times. The end
points of the flux gates G~ and GB at the various times
are denoted with the dashed lines. It is perhaps an in-
teresting coincidence that the flux gates seem to occur
very near to the maximum of the flux density. One point
is made very clear with this plot. Namely, only a fraction
of the one-way flux across the line q =qo can be identified
as flux out of region 3, specifically that occurring be-
tween p =0 and the end point of the flux gate G~. The
remaining component of the flux at larger p values corre-
spond to flux circulating in region C.

The concentrations as functions of time are obtained
for the lowest pair of states by numerically solving the
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differential equations

d [ ) ~ (,)
dt""'=-,( ),
dt

""~= —F,(r),
dI;

(4.18)
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FIG. 10. A typical tunneling trajectory during the first half-

cycle which spirals out of region 3 and into region B.

This eliminates the "recrossing" of flux due to internal
circulation in 3 and B. This modification is akin to the
use of so called variational transition-state theory (VTST)
where the dividing surface is moved to minimize recross-
ing. It is clear from Fig. 8, however, that most of the flux
across even the relocated surface is misidentified flux
from circulation in C. Indeed, as shown in Fig. 11 there
remain serious errors in the rate and concentrations ob-
tained from VTST.

Finally, we note that many aspects of the preceding
treatment are not restricted only to states that are sums
of pairs of symmetric and antisymmetric eigenstates such
as Eq. (4.2). For example, in Fig. 12 we show the quan-
tum phase-space representation for the state

neling, the bulk of the flux goes directly from the source'
to the sink without passing into region C. Therefore the
typical tunneling streamline trajectory spirals outward
from the source and then inward toward the sink as
shown in Fig. 10. Unlike in WKB theory, the tunneling
takes place via real valued trajectories. The nonclassical
tunneling phenomena come about due to non-
Hamiltonian corrections to the equations of motion of or-
der O(fi) or higher.

It is interesting to compare the present analysis to a
standard approach for the study of transport in classical
phase space, namely, that afforded by transition-state
theory (TST). This theory was introduced independently
by Eyring and Wigner in the 1930s to provide a simple
means to compute the rates of chemical reactions. In
TST, interconversion between distinct species is calculat-
ed by a one-way flux of a suitable statistical ensemble
through a "critical configuration" (or transition state),
which is a dividing surface that extends to infinity and to-
pologically divides the different species. In the present
problem, e.g. , the conventional dividing surface would lie
at the barrier q =0 with p H(0, oo ). Thus for such a TST
analysis, only species 3 and B would exist.

One can imagine modifying TST to the study of trans-
port in quantum phase space by calculating the flux
through the transition state using the exact flux density.
In the double-well problem, this TST rate for the loss of
species 3 is

~O&= —,'( E &e
'

+~E, &e

+ lE2 &e
' + lE3 &e

'
) (4.20)

5.0

1000 F, 2.5-
/

/

/

0.0
0.0 0.50

at a typical time. The quantum phase-space structure is

Ft (t)= f p(p, q =0) dp .
0 m

(4.19)
A -05—

The rate obtained from (4.19) is plotted in Fig. 11(a)
along with the exact rate and the flux-gate approxima-
tion. It is seen that the rate is greatly overestimated by
this expression. The concentration [A] obtained by a
time integration of (4.19) is shown in Fig. 11(b) again
with the exact and flux gate results. TST gives an overly
rapid depletion of [A] resulting eventually in spurious
negative concentrations. There are two obvious problems
with the TST expression. First, ffux which is trapped in
the wells and is circulating around in either region
(t ) ~,„„I4)or region B (r,„„l2)t) is misidentified as fiux
out of A. Second, the circulating flux in the outer region
C is also misidentified as flux exiting A. The first source
of error may be eliminated by relocating the TST dividing
surface to the hyperbolic point q =qo with p ~(0, ~ ).

-2.5
0.0

I

0.25 0.50

FIG. 11. {a) Rate and (b) concentration of species 2 as a
function of time for comparison to TST. The X's are the exact
results from direct integration of densities, while the solid line is
the flux-gate approximation. The TST and VTST results are de-
picted with the line styles ———and ———,respectively.
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FIG. 12. Quantum phase-space structure for a superposition
of the four lowest eigenstates for the double-well problem. The
quantities depicted are the same as those in Fig. 4.

once again dominated by the manifolds from the saddle
point. However, the flux-gate method for the computa-
tion of tunneling rates is less accurate (-10% errors in
rates) since the separation of time scales assumption does
not hold as well for this state.

V. DISCUSSION AND CONCLUSIONS

The issue of classical quantum correspondence has
been investigated by physicists with two broad purposes
in mind. First, it is hoped that practical methods might
be found to use classical mechanics to compute values for
quantum-mechanical observables. Work in, e.g. , WKB

theory and EBK quantization has shown that significant
computational advantage can be achieved in this way for
certain problems. Second, and this what we have focused
on here, it is of great interest to know to what extent the
classical picture of dynamics carries over to the quantum
world. We suggest that the hydrodynamic model pro-
vides an appropriate vehicle to study this question.

The key point about the hydrodynamic model is that it
gives an exact, consistent, and classical-like picture for
how the quantum phase-space density p(p, q, t) evolves
with time. Specifically, each "particle" of the indestructi-
ble density is transported along a Lagrangian fluid trajec-
tory. The behavior of all the fluid trajectories can be or-
ganized by resolving the underlying structure of the
quantum phase space using standard techniques available
for first-order flows. In the limit A~O, the structure be-
comes identical to the classical analog problem. For
nonzero A, quantum corrections appear of a generally
non-Hamiltonian character. These correction terms de-
pend on the state of the system just as do the "internal
stresses" in a real fluid. By comparing the quantum to
the classical phase-space structure the classical quantum
correspondence may be accessed quantitatively for
specific dynamical phenomena. Furthermore, our
method permits a hydrodynamic interpretation of classi-
cal quantum differences such as the flux-gate picture of
tunneling offered in Sec. IV.

There is, of course, inherent ambiguity in any quantum
phase-space description due to the uncertainty principle.
In the present treatment, the ambiguity is of two
varieties. First, there is the unavoidable ambiguity impli-
cit in all quantum phase-space theories due to the choice
of representation for p(p, q, t), e.g. , Wigner, coherent
state, etc. Second, and more specific to the present
method, is the need to specify the flux gauge. This ambi-
guity is ultimately a factor ordering problem in the
definition of the flux operators. We have advocated
choosing the gauge to simplify the phase-space structure
using the rationale that altering the flux densities in this
way does not change the transport of p (since V 5J=O).
Of course, while the net transport might not be affected,
the choices of gauge may alter some of the details of the
classical picture of the quantum dynamics. Therefore
one goal for future work is to find a "unique" prescrip-
tion for the flux gauge. One idea, discussed briefly in Sec.
III C is to choose 6J to make the quantum phase-space
volume preserving under the flow when possible. Even
this requirement, however, does not completely deter-
mine 6J. An obvious approach one might take is to con-
struct J from the classical expression using the particular
correspondence rule appropriate for averaging with the
specific choice of quantum phase-space representation.
For example, the Weyl correspondence rules goes with
the Wigner representation. Unfortunately, however, it
is not clear whether the continuity equation will always
be satisfied with the resulting flux density. Despite the
preceding discussion, though, we should emphasize that
given a choice of representation and flux gauge, the re-
sulting phase-space structure is unique and exact
quantum-mechanical results may be reproduced in that
formulation.
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Finally, we consider generalizations and directions for
future work. Although we have focused on one-
dimensional problems here, there is in principle no prob-
lem in applying the hydrodynamic model in any number
of degrees of freedom. Indeed, we have expended consid-
erable effort to formulate the multidimensional flux ex-
pression, Eqs. (2.28) —(2.30). We intend, for one thing, to
apply the model to multidimensional tunneling. We are
also engaged in an application to the quantum standard
map. Furthermore, we are interested in using the model
to describe quantum reactive scattering.
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+[V(x)—V(y)]p(x, y, t) . (A5)

Substituting the expression (A2) for the density matrix,
the imaginary and real parts of the Von Neumann equa-
tion give

V R +VyB VyR z&V & + &&Vy&at

(A6)

g2
(V B VB)—— [(V R) —(V R) ]2mB ' 2m

—[ V(x) —V(y)] . (A7)

To make the hydrodynamic analogy, we need to relate
the fluid density ri(x, y, t), and the flux density 8(x, y, t) to
the functions 8 and R. If we make the identifications

dimensional space must be an integral multiple of 2~%.
The density matrix solves the Von Neumann equation,

iA ' ' = — [V p(x, y, t) —V p(x, y, t)]Bp(x, y, t)

APPENDIX

In the configuration-space hydrodynamic model of
pure states, the Madelung expression for the wave func-
tion

n
—B2

8=~(V„R,—V R),
m

then Eq. (A6) is the continuity equation

(A8)

(A9)

4(x, t) = Ae' (A 1) an ——V.
at

(A 10)

p(x, y, t) =B (x, y, t)e'~I" & "", (A2)

where B and R are real-valued functions. The density
matrix is guaranteed to be Hermitian, p(x, y, t)
=p*(y, x, t), by the conditions

proved a convenient form for the derivation of the funda-
mental relations (2.4) and (2.5). The "fluid" density is
given by p= 3, while S is a velocity-generating function
where v=VS/m. When we extended the hydrodynamic
model to mixed states and to quantum phase-space repre-
sentations, we did not make use of this form. Instead, we
directly derived the hydrodynamic relations for the densi-
ty and Aux density operators. In this appendix, we ex-
plore the possibility of using the Madelung form for these
extensions of the hydrodynamic model.

We first consider the case of a mixed state in
configuration space described by the density matrix
p(x, y, t) —= ( x p ~ y ) . In this off-diagonal representation,
we believe the hydrodynamic model should be invoked in
a 2N-dimensional space where vectors have both x and y
components. Thus the flux density is P=(8, d" ) and
the velocity field is V=(V, , V ). We assume that the
density may be written as

where V—= (V„,V ). If we act on both sides of Eq. (A7)
with the differential operator (V, —V ), we obtain the
2N-dimensional Euler-like equation,

+(V.V)V —(V .V)V
at

VV e', t V'&~
m 2m'

(Al 1)

where

V = (P /g, V' = ( Vy, V. ), V' = ( V„V, ),
VV=[V V(x), V V(y)] .

(A12)

Notice that (Al 1) diff'ers from the pure-state Euler equa-
tion due to the presence of the terms with daggers.

It is interesting to compare the mixed-state hydro-
dynamic picture to the more familiar pure-state version.
We show that the mixed-state formalism reduces to the
usual formalism if we have a pure-state system. For
pure-state quantum mechanics, p(x, y, t)=+*(y, t)4(x, t),
or, in terms of the Madelung from (Al) we have

p(x, y, t) = A (x, t) A (y, t)exp[i [S(x,t) —S(y, t)]!fiI .

and

B (x, y, t) =B (y, x, t) (A3)

Thus we have the identifications

(A13)

R (x, y, t)= —R(y, x, t) . (A4) B(x,y, t)= A (x, t)A(y, t), (A14)
Also, since p(x, y, t) must be single valued, the contour in-
tegral of R (x, y, t) around any closed path in 2N R(x, y, t) =S(x, t) —S(y, t), (A15)
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which imply it may be shown that (A19) becomes

ri(x, y, t ) =p(x, t).p(y, t),
8(x,y, t) =[j(x,t)j(y, t)],

(A16)

(A17) H —'. V +&,
i ~ 2' ——.V ++ &p, qlq &=itrt —&p, qlq & .

a
i ~ 2

' Bt

where p(x, t) and j(x, t) are the pure-state hydrodynamic
quantities given by Eqs. (2.6) and (2.7). Notice that, if the
expressions (A16) and (A17) are used in the hydrodynam-
ic equations (A10) and (All), then upon separation of
variables we immediately recover the pure-state formula
(2.4) and (2.5'). Thus the mixed-state expressions reduce
directly to the pure state as desired.

The Madelung form may also be adopted in the
coherent-state representation. We consider only the
pure-state case where we employ the form

&p, q %&=C(p, q, t) e'~'~q" (A18)

(A22)

Inserting the Madelung form (A18) into Eq. (A22) and as-
suming a Hamiltonian of the general form of Eq. (2.2),
the imaginary and real parts of the resulting expression
yield

m = ——CVQ — VQ++ .VCBC 1

Bt 2

+—Im e '~ "V ——V ++ Ce'~"
i ~ 2

and C and Q are again real functions. The equations of
evolution for C and Q may be determined from the
coherent-state representation of the time-dependent
Schrodinger equation and

(A23)

&p, qlHI+& =i& &p, qlq'& .

Using the expressions

(A19)
lV'C ——V Q+& V Q2mC ' 2 ' 2

&p, qlplq'& = —.v +—&p, qlq'& (A20) ——Re e '2 V ——V ++ Ce'&"
C i ~ 2 8m

and

(A21)

(A24)

Thus we do not obtain simple hydrodynamic equations in
this way unless Vis a low-order polynomial in x.
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