
GENERAL PHYSICS

THIRD SERIES, VOLUME 40, NUMBER 6 SEPTEMBER 15, 1989

Wavelength, oscillator strength, and fine structure for the P: S' transition of Mg

Donald R. Beck
Department of Physics, Michigan Technological Uniuersity, Houghton, Michigan 49931

(Received 8 May 1989)

We have calculated the electron affinities, including many-body and relativistic efT'ects, of Mg P
and Mg S' to be 321 and 536 meV, respectively. The electric dipole f value for the P~ S' tran-
sition is 0.3087 (length) and 0.3000 (velocity), occurring at a theoretically predicted wavelength of
2921 A. The J=1/2~3/2 fine-structure splitting for Mg P is predicted to be 11.8 cm ', and the
J=3/2~5/2 splitting 19.4 cm '. These results should help in the attempt being made by Ander-
sen (private communiation) to observe the 4P~ S' transition in the laboratory.

I. INTRODUCTION

In the past few years, we have been using ab initio
methods to predict excited bound states of negative ions
for species as large as Zn '. Very recently, some bound
excited states have begun to be observed by either time-
of-Aight methods used by Peterson and co-workers at
SRI ' and Pegg et al. at Oak Ridge to detect Be and
Ca P states, or by direct observation of an optical tran-
sition connecting two bound states, such as was original-
ly done for the Li 1s 2s 2p P ~ 1s 2p 'S transition,
and very recently by Andersen and co-workers at Aarhus
for the Be 1s 2s2p P~ 1s 2p S' transition.

For the case of excited states of negative ions, it is fair
to state, I believe, that theory has generally preceded ex-
periment, and has been quite valuable in suggesting
where to look, within a narrow wavelength range, how
intense the transition was going to be, and what fine-
structure effects were present. As far as the optical tran-
sitions are concerned, the work of Bunge for the Li
transition predated the measurement, as did the work of
Beck and Nicolaides for the Be transition. Specific ex-
amples which remain to be followed up include a transi-
tion in Zn (Ref. l) and one in Mn, both predicted by
the last author.

In this paper, we wish to consider another example of
an optical transition: that of Mg 3s 3p P ~ 3p S .
An incomplete analysis of only moderate accuracy of this
transition was presented in 1984 by Beck. '" Since the
transition is now under investigation at Aarhus, ' ' this is a
good time to "complete" the analysis and improve the ac-
curacy of the results. Simultaneously, we will provide re-
sults for the two Mg thresholds, Mg 3s3p 'P and Mg
3p P, which will serve as a check, in addition to being of
intrinsic interest in themselves.

II. NONRELATIVISTIC MANY-BODY
CALCULATIONS

The methods we used to construct a many-body non-
relativistic wave function have been discussed in detail in
previous articles. ' '' '" Briefly, we begin with the nonre-
lativistic restricted Hartree-Fock (RHF) solution generat-
ed by the numerical program of Froese-Fisher. ' We be-
gin to correlate the outermost shell (M shell, here) first.
These effects are differentially the largest, and often in-
volve near degeneracies, which are hard to account for if
inner shells are correlated first. " Our basic ¹ lectron
building block is the configuration. First-order perturba-
tion theory dictates that configurations involving single
and double excitations of the RHF subshells constitute
the first-order correction to the RHF result. For the M
shell, for the states of interest here, this means the excita-
tions 3s~s+d, 3p~p, 3s3p~sp+pd+df +fg+. . . ,

and 3p ~p +d +f +g +. . . form the first-order M-
shell wave function. Here, only the angular characteris-
tics are indicated and the dots indicate a nonterminating
series. In practice, our calculations terminate with the
written out terms; effects of higher-order terms can be
subsequently simply added. " Next, it is necessary to
represent the radial characteristics of the new orbitals
(called "virtuals") appearing in the first-order wave func-
tion. Much evidence' ' ' ' "' suggests that this may be
done efficiently through the use of a few well-chosen
Slater-type orbitals (STO's); r "exp( —j*r ) are chosen
through the use of the energy variational principle. Here
we have used three such STO's for the largest contribu-
tors, and two for less important configurations. The STO
power n is chosen to be the lowest value possible, which
has not already appeared.

The results obtained using first-order M-shell correla-
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TABLE I. Nonrelativistic contributions to the energies of Mg and its thresholds [in hartree (=1
a.u. -=27.209 76 eV].

Type

RHF
Singles, doubles

from M shell'
Triples from

M shellb

Singles, doubles
from L-M shell

Total CI
Estimated

error'

Mg 'P

—199.546 713
—0.006 412

—0.012 678

—199.565 802
0.000 728

Mg P

—199.550 806
—0.015 551

—0.000 26

—0.010989

—199.577 598
—0.000 940

Mg P
—199.384 181

—0.008 632

—0.009 979

—199.402 792
—0.000 321

Mg S
—199.390 374

—0.021 241

—0.001 15

—0.009 072

—199.421 944
—0.000 360

'Computed by removing only this contribution and rediagonalizing the CI matrix.
Computed by removing all other contributions and rediagonalizing the CI matrix.

'Includes estimate of effect (on M shell and L-M shell correlation) of truncating configuration and one
electron spaces (see Sec. III).

Mg P'

4s(1. 111)
5s ( 1.680)
3s(3.386)
5s(3.950)

4p(1. 580)
5p(1.403)
3p(2. 566)
5p (3.675)

3d (0.813 )

4d(1. 365)
3d ( 3. 150)
5d (3.859)

4f(1.140)
Sj"(1.806)
4f (2. 534)
5f ( 8. 829 )

5g(1.245)

Mg P

4s (0.649)
3s (0.789)
5s (1.669)
3s(3.556)

4p(1.407)
3p (0.992)
5p (1.381)
3p (3.00)
sp(4. 082)

3d (0.684)
4d (1 ~ 27)
5d (1.23)
3d (3.15)
5d (3.995)

4f (0.855)
5/" (1.365)
4f (2 605).
5f (3.030)
5g (1.011)

Mg 'P

3s(1.945)
4s(3. 556)

4p(1.608)
3p ( 1.149 )

5p (1.315)
3p (3 ~ 767)
4p(4. 403)

3d (0.813)
4d (1.437)
5d (1.421)
3d (2.843)
4d (3.473)

4/" ( 1.052)
Sf(1.758)
4f(2. 393)
Sf (8.909)
5g (1.315)

Mg S'

3s(1.613)
4s(3.602)

4p ( 1.400)
3p (0.990)
5p ( 1.222)
3p (3.413)
4p (3 ~ 754)

3d (0.697)
4d (1 ~ 197)
5d (1.089)
3d (2.948)
4d ( 3.350)

4/" (0.880)
5f (1.516)
4f (2.457)
5f (3.000)
Sg (1.245)

Average value of r (a.u. )

(r )3 =4.069
(.)„=3.1O8

(r &„=O.684
(r )„=0.691

(r ),p
=5.369

( r )„=3.379
(.&„=O.684
(r )„=0.691

(r ),r =4.474 ( r ), =5.171

(r )z~ =0.682 (r )z =0.682
(r )„=0.691 (r )z,. =0.691

tion are given in Table I. The next step is to explore
higher-order M-shell effects (triples). We did this by
forming all possible triply excited M-shell configurations
that could be built out of the M-shell one-electron basis
(see Table II). M-shell triples of course appear in the neg-
ative ion only. From Table I it can be seen that such
effects [calculated by comparing the final configuration
interaction (CI) energy obtained with and without triples]
are significant —they contribute 7.2 meV to the electron
affinity (EA) of the P and 31.4 meV to the EA of the S .

TABLE II. Slater-type orbitals nl(S ) used to represent virtu-
al space (exponents g in parenthesis).

Our next step is to include the contributions from
first-order L-M excitations, as these are expected to be
differentially the largest. If we assumed no change in the
radial functions in going from atom to ion (e.g. , Mg
3s3p P' versus Mg 3s3p P), then application of first-
order perturbation and angular momentum theory'
would predict that the contributions of 2s 3p and 2p 3p
pair excitations are 50% greater (this being the change in
angular factors) in the negative ion than in the threshold,
and that furthermore, all KK, KL, LL, as well as L, 3s
correlation effects would be the same in atom and ion. In
fact, as we shall see here and have seen in the past (e.g. ,
Refs. 1 and 10), L 3p correlation effects do not differ near-
ly as much as predicted, and L 3s effects are substantially
larger in the atom than in the negative ion. Both of these
trends arise from the same cause: the more contracted
nature of the M shell in the atom than in the negative ion
(i.e., a radial change). It should be noted that L 3s effects,
which will be seen to contribute significantly to the
P~ S' wavelength and moderately to the EA for the P,

were not present in the original work' on Mg
The necessity of including LM correlation effects, cou-

pled with our desire of keeping the CI energy matrix
small ( & 350 ¹lectron basis functions), led us to use our
BCB method" to rapidly compute ¹ lectron L,S
eigenstates (here, each configuration is broken into two
parts; L,S eigenstates are constructed for each part us-
ing standard diagonalization methods' ' and each part
is then reassembled according to the prescription of
Bartlett' ' ' ' ). For configurations with 100—200 deter-
minants this method is about 100 times faster than direct
diagonalization. A given configuration may have several
L,S eigenfunctions, which, it might appear, must be
kept in the energy matrix. But as Bunge has discussed,
within the context of first-order perturbation theory, one
need only keep as many eigenvectors as there are in-
dependent radial integrals connecting the configuration
to the RHF solution. We have automated this' in a pro-
cedure we call REDUCE, so that the original set of
eigenvectors is orthonormally mapped to the minimal set.
The savings (in energy matrix size) can be quite substan-
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tial, with little loss' ' in energy: To illustrate, for Mg
3s 3p P a contribution to the 2p 3p energy is the
configuration (referenced to the RHF solution)
2p3p~dd' (the prime distinguishes the fact that the two
d functions are distinct in the Pauli sense). This
configuration has 18 P eigenvectors. Yet the interaction
with the RHF solution can be written in terms of four
two-electron radial integrals, viz. , R (2p 3p; dd') and
R (2p3p;d'd) where K=1,3. Therefore, the original 18
vectors may be "REDUCED" to 4. This of course happens
for all virtuals having this configuration type, and similar
reductions occur for other types. For the calculations de-
scribed here, reductions in the size of the CI matrix of

2 —4 are routine; for the transition metals (e.g. , Ref. 1)
reductions by a factor of 10 are more normal.

Because the M shell was fairly localized, a common set
of virtual STO's could be used to span the space. The L
shell is also localized, but in a diff'erent region of space,
which calls for the introduction of new virtual STO's (see
Table II) to describe LM correlation effects. Generally
these new functions, prior to orthogonalization, have an
average radius near the geometric mean of the L- and M-
shell radii.

The contributions of the LM correlation to the EA's is
shown in Table I (obtained from the full CI matrix by re-
taining, then deleting, these effects). In Table III, we

TABLE III. Contributions to correlation and error estimates in phai'. ree. [Error in deleting specific configurations formed from
the basis of Table I or (arbitrary 1) estimated error due to angular truncation (see text). When a second number appears in an error
column, it corresponds to the energy gained by adding additional virtuals (see text for more details). ]

Correlation
type'

Mg 'P'
Error

Mg P
Error

Mg P
Error

M S'g
Error

3$ ~s
3$ ~cf
3p p
3p ~p
3p
3p'-f'
3p —+g
3p2 12

(I & 5)
3$ 3p ~sp
3$ 3p ~pG
3s3p ~df
3s3p ~fg
3s3p ~II + 1

(I & 3)
2p3$ ~sp
2p 3$ ~pd
2p 3$ ~df
2p3$~1 I+1

(1&2)
2p 3p ~$
2p3p p
2p3p ~0
2p3p ~f
2p3p I

(I &3)
2p 3p ~$8
2p3p-pf
2p3p ~1 I+2

(I & 1)
2$3p ~sp
2$3p ~pd
2s3p~df
2s3p ~l I+ 1

{I& 2)
2s3s ~$2
2$ 3$ ~p
2$3$ —+j
2s 3s ~1'

(1&2)

~0
4031
~0

866
813
260

36

2165
5576
694

0
971

1740
146

386
61

188
115
78

164
248
353

2/12
7/63
6/67

121

21
1/5

10/50
20

32/16
63
33

43
34
25

0
12
11
69

~0
2466
~0

2245
4457

323
47

2553
2330

642
66

1754
4546

564

0
1187
2216

153

494
118

243
156
59

121
201
307

0.0
1

~0
0
0

—2

16

10
2
0
0

11

18/47
29/91
38/80

122

28
18/12

—13/85
12

26/30
46
23

23
51
40

14
21
11

0
1274
6567

382
63

196
1996
3784
314

2568
203

527
344
202

0
0
0
0
0

24

0
—13/4

—11/74
9/22

30/48
38/23

7
25
41

0
5911

14727
1014

140

202
1966
3635

264

2541
124

567
315
171

0
0
0
0
0

0
2/15

—6/128
6

0/83
25/20

9
16
18

'E.g. , 2p3p~d means one 2p and one 3p electron are removed from the RHF function and replaced with two virtual functions
which may be identical or different.
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display the contributions to LM correlation by symmetry
class. Comparing the 2p 3p correlation between negative
ion and threshold, we see that they are quite similar, ex-
cept for P / P where the Up and Ud contributions are
larger (more negative) in the negative ion; on the other
hand, for S'/ P the Ud contribution differs significantly
(larger in the threshold). Obviously these eff'ects involve
competition between angular and radial effects. Very
substantial differences, favoring the threshold, occur for
2p 3s contributions; these differences are entirely radial in
nature. For 2s3p correlation the threshold is favored but
the difference is considerably smaller (there are fewer 2s
than 2p electrons, and the 2s is more remote from the 3p
than is the 2p). For 2s3s, the threshold is again favored,
but the effects are also modest.

In carrying out the calculation for LM correlation,
three further restrictions were imposed, to limit the size
of the energy matrix: (1) no eigenvector was kept whose
CI coefficient was below 0.001 in magnitude, (2) no eigen-
vector contributing less than 5 phartree v as kept, and (3)
no higher-order eff'ects (triples, quadruples) involving the
L shell were introduced.

III. ERROR ANALYSIS FOR TOTAL ENERGIES

Table III also contains an error analysis for M-shell
and LM correlation effects. Three sources of error are
identified. (i) Deletion of configurations which can be
formed from the existing basis (Table II) (contributions
for all deleted configurations are included); (ii) estimates
of the effect of truncating the radial space [this was made
by adding an optimized virtual STO for excitations which
contributed the most to the energy diff'erence (threshold
versus negative ion) and was done for LM excitations
only, as the M shell is considered sufficiently well
saturated —the absence of a contribution of this type in
Table III means no error analysis was done]; and (iii) an
estimate of the effects of higher values of l for the pairs
contributing most to the EA. Except for the 3p pairs,
this was done directly (inclusion of new configurations
having higher angular momentum; viz. , for 2p3s we in-
cluded fg +gh +hi +dg, for 3s 3p we included gh, and for
2s3s we included ff') Again, contributi. ons which are
absent were not "tried. " In the case of 3p pairs, the
higher contributions were assumed to behave as 1/l", the
coefficient and the power being found by fitting to the
highest two values of l contributions calculated, and the
series explicitly summed.

The total estimated error for each state is then found
by summing up the above contributions. For Mg P we
find the energy lowered by 728 phartree, for Mg P by
940 phartree, for Mg P by 321 phartree, and for Mg
S' by 360 phartree. This increases the P EA by 6.0

meV and the S EA by only 1.1 meV. We note that
these contributions should be highly additive, because
each one (where applicable) was determined by subtract-
ing the energies obtained by diagonalizing the full CI ma-
trix (with and without the contribution). The computed
contributions (columns 2, 4, 6, and 8 of Table III), on the
other hand, are correct to first order only (this is why a
few of them have the "wrong" sign). They are displayed

for the purposes of analysis only, ' they were not used to
obtain any of the results displayed in Table I.

There are, of course, other sources of error in the
correlation contribution to the EA's which have not been
estimated. Principally, these include configurations
formed by double excitation from the L shell, those
formed from one or two excitations from the K shell, and
triple and quadrupole excitations involving at least one
electron from the L or K shells. From this work, we can
at most obtain some indirect measure of the size of these
effects by comparing the wavelength obtained for the
P — P transition with the experimental value. In Sec.

IV we see that the error is about 4 A.

IV. RELATIVISTIC EFFECTS, EA's
AND WAVELENGTHS

Relativistic effects were computed by doing Dirac-
Fock calculations (for the single dominant nonrelativistic
configuration) using the program of Desclaux and com-
paring the EA's to those obtained from the nonrelativis-
tic RHF calculations to get the relativistic corrections
(shown in Table IV). For the EA's and wavelengths of
Table IV, the relativistic corrections are associated with
the lowest levels (J=—,

' for the P, and J =0 for the 'P'
and P).

For the "P EA our new prediction, including the error
estimate, is 321 meV, which we believe to be the best
available value. While this is in excellent agreement with
the value of Weiss, his result (as well as that of Bunge
et al. ) involves contributions from the M shell only.
For comparison, our nonrelativistic M-shell result is 360
meV (no error estimate). Contrasting to our previous
work, we see that the current EA is 39 meV smaller than
the older' value. This is due to the more accurate treat-
ment of LM correlation (2p3s, 2s3p, and 2s3s excitations
were added, and the description of 2p3p correlation im-
proved), and to the inclusion of relativistic eff'ects (they
lower the EA by about 5 meV).

Our best current value for the S EA, 536 meV, shows
a modest change from the earlier' value of 514 meV.
This is not very surprising, as relativistic effects are al-
ready included, ' and there is no correlation of the type L
3s to be included.

Two wavelengths are also shown in Table IV. For the
threshold transition (an f value is given in Sec. V), the
best theoretical result we obtain (including the error esti-
mate) is 36016 cm ', while the experimental value is
35 962 cm ', an error of about 4 A. It is not surprising
that we have an error this large, if one bears in mind that
the focus of all calculations was to minimize the errors in
the individual electron affinities; i.e. , the correlation
effects accounted for most accurately were those that
differed the most between the negative ion and its thresh-
old.

With this in mind, the most accurate predictions for
the P(J=1/2)- S'(J=3/2) wavelength should be ob-
tained by using the experimental wavelength for the Po-
Po transition, and the theoretical result for the difference

of the two electron affinities. This result, given in Table
0

IV, is 2921 A. If the error estimate is not included, the
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Calculated, nonrelativistic
Relativistic correction
Total, this work
Total, including error
estimate
Our prior work'
Weiss
Bunge et al. '

TABLE IV. Energetic properties.

Electron affinities E, (in MeV)

Pp P 1 /2

321
—5
316
321

360
320
390

Pp- S3/2

539
—3
536
536

514

Calculated, nonrelativistic
Relativistic
Total, this work
Total, including error
estimate
Experiment

Wavelengths
Mg 'Pp- Pp

0.163 011 a.u.
6.248 X 10 a.u.
0.163 636 a.u.
36016 cm

35962 cm

('P'-'P ),„,+(AE, ),„„,
( P Pp ) pt + ( lasEE )th
4 4 o

1/2 3/2 )theor

'Reference 10.
Reference 24.

'Reference 25.
Reference 23.

'Includes error correction.
'No error correction.

Wavelengths
Mg P1/2 S3/2

2921 A'
2925 A
2917 A'

0
result becomes 2925 A. We might use this as a minimal
indicator of the uncertainty in our wavelength prediction,

0
viz. , 2921+4 A. For comparison, if completely theoreti-
cal results are used (including the error estimate), the
transition wavelength is 2917 A.

V. FINE STRUCTURE

Since Mg is an atom of rather low Z, use of the low-Z
Pauli approximation and first-order perturbation theory
should be adequate to evaluate the fine structure. The
algebra associated with evaluation of the various matrix
elements has been developed earlier ' ' and is incor-

porated in our present nonrelativistic many-body code,
program BCB. Within the context of low-Z Pauli theory,
fine-structure splittings occur due to three operators: the
one-body spin-orbit, the two-body spin-orbit and spin-
other-orbit, and the two-body spin-spin. For the
configurations of interest here, these are listed in the or-
der of their importance. Furthermore, as has been dis-
cussed, ' ' frequently the dominant portion of the
two-body spin-orbit and spin-other-orbit operators
effectively behaves as a one-body spin-orbit operator,
serving to shield a significant part of the nuclear charge.

This last is an important point, because it enables us to
predict that the principal correlation corrections of the

TABLE V. Fine structure {in cm ').

State

Mg 3s3p P'

Mg 3p 'P

Mg 3s3p P

Splitting

J=O~J=1
J=1~J=2
J=O~J =1
J=1~J=2

J = 1/2 ~J= 3/2
J=3/2 ~J = 5/2

RHF

15.3
31.1
15.4
30.4
8.9
14.6

Correlated

20.6
41.9
22. 1

41.6
11.8
19.4

Experiment'

20. 1

40.7
20.6
40.6

'Reference 22.
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TABLE VI. Electric dipole oscillator strengths.

Transition

Mg P~P
Source

RHF, this work
Correlated,

this work
Correlated,

prior work'
Weiss'
Ref. 33
Ref. 34

Length

0.8060

0.6223

0.639

0.61

Velocity

0.5034

0.6397

0.604

0.61

Experiment

0.50+0.05
0.53+0.05

Mg P~ 5

'Reference 31.
Reference 32.

"Reference 10.

RHF, this work
Correlated,

this work
Correlated,

prior work'

0.4617
0.3087

0.299

0.2107
0.3000

0.291

fine structure are likely to be single excitations of the type
2p, 3p ~p (only jumps of 0 or +1 in I are permitted; the
latter are excluded because parity must be preserved).
Although excitations like 2p ~p can give rise to a lot (12
for the P) of parents, a form of REDUcE can be applied to
them, such that only one parent has a surviving off-
diagonal matrix element with the RHF function (the
operator involved is the one-body spin-orbit operator).
This survivor can be expressed in the parental coupling
scheme: for the P, it is [(2p vp: P)(3s3p: P)] P. It is
useful to note for the future, that if one wished to treat
hyperfine structure simultaneously, then other parents
would have to be kept as well.

The next question that arises is: which configurations
determine the "radial" characteristics of these single ex-
citations? This is a question not fully answered in the
literature, that we shall examine in some detail here. The
final question concerns completeness of the virtual p one-
electron radial space. We cannot necessarily assume that
a set which appears to be satisfactory for energy is au-
tomatically adequate for fine structure. Recognizing that
any additional p functions are to describe fine structure
rather than electrostatic energy, we optimized the ex-
ponents of these additional STO's by examining the abso-
lute value of the product: c ( vp )*( 2p /r **—3/vP ),
which corresponds to the radial portion of the off-
diagonal matrix element connecting the RHF and single
excitation (one-body spin-orbit operator). Here, c(vp) is
the CI coefficient determined by diagonalizing the elec-
trostatic energy matrix (our process avoids having to
evaluate the full fine structure for each exponent
explored —a costly process). A new virtual is then add-
ed, and the process continued, until the last contribution
is smaller than some present tolerance (e.g. , fine-structure
change less than 1 cm ').

Our first-structure calculations were made by augment-
ing the basis used to produce the electron afFinities with
the 2p, 3p ~p excitations. An analysis of the energy ma-
trix was made using perturbation theory (first and second

order) to determine which configurations most infiuence
the radial characteristics of the single excitations. We
found a rather simple answer, at this level: these charac-
teristics were determined by the RHF configuration, by
the configuration resulting from the excitation 3p ~Up

(a large energy contributor), and by other 2@~p single
excitations. Our results appear in Table V. For the
thresholds, experimental values exist, and our many-
body results are in good agreement with them, giving us
some confidence in the predictions we made for the Mg
P, which were not previously available. Finally, we

made some attempt to explore the effects of contributions
indirectly arising from double excitations out of the L,

shell. Our limited search uncovered no substantial
changes in our results.

VI. OSCILLATOR STRENGTHS

In Table VI we give our results for the Mg P'~ P
and Mg P ~ S oscillator strengths. For the first tran-
sition, we used the experimental energy difference, and
for the latter our best theoretical wavelength (2921 A).
The f values were evaluated using the same wave func-
tions that produced the electron affinities, and all
nonorthonormality effects were correctly evaluated using
the methods of Ref. 30. It can be seen that for both tran-
sitions the length and velocity results are in excellent
agreement; absence of such agreement is an indication of
fiaws in the wave functions (the converse is not true). For
the Mg transition, "experimental" values have been ob-
tained by the author from older lifetime measurements.
The present results suggest that measurements for this
transition might well be improved to be in conformity
with presumed present theoretical accuracy.
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