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We study the influence of noise on the delay experienced by a steady bifurcation point involving a
zero or constant solution when the control parameter is swept in time starting in the vicinity of the
stable constant solution. This study is realized by a direct analysis of the moment equations rather
than via a Fokker-Planck equation with an emphasis on analytical results. We treat separately mul-
tiplicative and additive noise sources and the noise can be white or colored, Furthermore, we ana-
lyze the case where the noise is added during the sweep but is absent during the preparation of the
system and compare it with the case where noise is already present during the preparation of the
system. In general, noise reduces the delay even to the extent that the bifurcation point can occur
before the static bifurcation point. However, when the initial condition is noisy the delay may in-
crease beyond the deterministic value in the limit of strongly colored noise.

I. INTRODUCTION

This paper deals with a specific aspect of the bifurca-
tion theory which is suggested by the consideration of the
experimental situation realized in lasers. In a semiclassi-
cal description, the laser first threshold is a steady bifur-
cation point, where the zero intensity solution loses its
stability and the finite intensity solution becomes stable.
In the good cavity limit many lasers are adequately de-
scribed by a single nonlinear equation for the field ampli-
tude E,

dEldt =EF(E', 3 ),
which has two steady-state solutions. The parameter 3
is the optical pump parameter and F(0, A )%0 except at
the steady bifurcation point for which 3 = 3, . In this
paper we shall concentrate our attention on the proper-
ties of the first laser threshold defined by the implicit
equation F(0, A, ) =0.

In many situations, it is common to sweep the control
parameter across the bifurcation point to avoid the criti-
cal dynamical eFects associated with the bifurcation
point. This sweeping modifies the position of the bifurca-
tion point ~

' ' Despite this modification, the bifurcation
remains, of course, an instability point of the zero solu-
tion, and therefore it can be analyzed by linearizing Eq.
(1.1) around the trivial solution

t*=2t= —2p(0)lv and p(t*)= —p(0), (1.4)

where t is the time at which the static bifurcation point is
reached: p(t)=0. Hence in a one-dimensional problem
like Eq. (1.2) there is always a delay due to a forward
sweep.

The purpose of this paper is to extend the study of the
delayed bifurcation to the case where there is noise. Two
cases can be considered, depending on whether the noise
is additive or multiplicative. In the case of additive noise
we consider the equation

dx ldt =p(t)x+g(t),
whereas, for multiplicative noise we consider the equa-
tion

dx ldt = [p(t)+ i)(t)]x . (1.6)

x(t ) =—x (0)expy(t ) =x(0)exp f p(t')dt' . (l.3)
0

When y(t) &0, the linearized pertubation x(t) converges
to zero and the trivial steady state is stable. When
y(t)) 0, the linearized solution x(t) diverges and the
trivial steady state is unstable. Thus the condition
y(t*)=0 defines the dynamical bifurcation point p(t*).
For a forward linear sweep defined by p(t)=p(0) +vt,

with p(0) & 0 and v )0 we have

E(t)=ex(t)+O(e ),
dx Idt =p, x(t ) + O(e ),

(1.2)

In both cases the stochastic function g{t) satisfies the
equation

rdrildt = il+g(t), —

with p, =F(0, 3 ). For the static case (dpldt =0), the
trivial solution is stable when p (0 with the bifurcation
point occurring at p, =0. On the contrary, when
p=p(t) is a monotonic function of its argument, the
solution of Eq. (1.2) is

(g(t)) =0, (g(t)g(t')) =2D6(t —t') . (1.8)

When ~) 0, Eqs. (1.7) and (1.8) define a colored-noise

where r is the correlation time of the noise, and g(t) is a
Csaussian white-noise source defined by
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t*=t+ t + —ln
U

process. Finally, we shall restrict our analysis to linear
forward sweeps of the form p(t)=p(0)+vt with (u(0) (0
and v)0.

One way to study the Langevin equations, Eqs. (1.5)
and (1.6), is to consider the associated Fokker-Planck
equation for the probability distribution function
P(x, v, t) '' . ' The other way, which we shall follow in
this paper, is to study directly the Langevin equations. '

The linearity of these equations implies that the two-time
bilinear moments (x(t')il(t ) ), ( x(t') x(t ) ), and
(t)(t')i)(t ) ) form a closed set which can be solved exact-
ly. This is sufficient to obtain a solution for (x (t)),
which in the laser case represents the average intensity.
This is, in fact, the quantity of interest for most laser
users. By limiting our characterization of the laser first
threshold to the stability properties of its average intensi-
ty, we do not lose any significant information.

When solving the pair of equations, Eqs. (1.5) and (1.7),
or Eqs. (1.6) and (1.7), we must specify the nature of the
initial conditions. We consider that in the preparation of
the system, the control parameter is kept fixed and the
system evolves until it reaches its final state. This state
provides the initial condition at the time t =0 when the
sweep begins. Two types of experiments can be en-
visaged. In the first type of experiment, the system can
be considered to be fundamentally deterministic and the
noise is introduced from outside the system. Hence there
is no noise present during the preparation of the system,
and one may write (x(0) ) =x(0) and (x (0) ) =x (0).
The statistical average is then over an ensemble of trajec-
tories all starting from the same point. We shall refer to
this situation as the external noise problem, or the deter-
ministic initial condition. In the second type of experi-
ment, the system is intrinsically noisy so that noise is al-
ready present during the preparation stage. Thus the ini-
tial conditions x(0) and x (0) are stochastic variables.
The statistical average is then over an ensemble of trajec-
tories with an "initial" spread. We shall refer to this situ-
ation as the internal noise problem, or the noisy initial
condition.

Although there is no ambiguity in defining the deter-
ministic bifurcation point, the presence of noise requires
some caution. The deterministic criterion for the bifurca-
tion point can also be expressed by the condition that
x(t*)=x(0) for t*)0. Indeed, as the sweep begins in
the stable domain, the deviation x(t) first decreases until
the static bifurcation is reached at t = t. This is the most
stable point since it minimizes y(t) For times g. reater
than t, the deviation x(t) increases until the initial condi-
tion x(0) is recovered. This defines the bifurcation point.
In the presence of noise, such a criterion may be difficult,
or even impossible, to implement experimentally when
x(0) is a stochastic variable (internal noise problem). In
this case it may be better to use a different criterion to
define the bifurcation time t*. We choose t* as the time
at which the average intensity reaches a predefined
threshold level: (x (t*)) =x,h. In the deterministic
case, this condition yields

1/2

(1.9)
x -'(0)

instead of t'=2t. This result shows that the weight of
the arbitrary threshold intensity x,h is influenced by the
sweep rate. Because t=0(1/U), for sufficiently small
sweep rates the influence of the threshold intensity van-
ishes. It is restored as U ~ O(1). Finally, it seems natural
to limit our study to multiplicative noise to the case of
external noise as this can describe noise in the control
(i.e. , pump) parameter. For additive noise we study both
the cases of internal and externa1 noise.

This paper is divided in three sections. In Sec. II we
analyze the effect of additive noise. Section II is divided
in four subsections in which we consider the cases of
external noise (deterministic initial condition) and inter-
nal noise (noisy initial condition), and in each case we
separate the white-noise limit from the more general
colored-noise case. In Sec. III we analyze the effect of
multiplicative noise with no noise present during the
preparation of the system. Two subsections are devoted
to the white noise and the colored noise, respectively.

II. ADDITIVE NQISE

In the case of additive noise we analyze the following
set of equations:

dx /dt =p(t)x+i)(t),

rdil/dr = —i)+g(t),

(2.1)

(2.2)

with

(g(r)) =0, (g(t)g(&')) =2D5(r —t') . (2.3)

The formal solution of Eq. (2.1) leads to the average in-
tensity

+2e2G(o, t) f '
(x(0)&(s) )e

—G(o, s)ds
0

+2 f e "'f'e "(' (((il)s(i)u)) dsud,
0 0

(i)(s)il(u )) =(D/r)e

the last integral in (2.4) can be evaluated independently of
the properties of the initial condition. The result is

(2.4)

where we have defined G(s, t ) = J'(M(u)du. The first

term in Eq. (2.4) describes the deterministic evolution of
the initial intensity. The second term contains a correla-
tion between the initial condition and the noise at later
times. This term will give a finite contribution if the
noise correlation time ~ does not vanish. For Gaussian
white noise, for instance, this second term identically
cancels. Finally, the third term gives the usual influence
of the noise via its integrated autocorrelation. Since the
autocorrelation function of the colored noise is given by
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2

) /2 D 1 ut+p(0)
2 e "'' e '"" (t)(s)t)(u))ds du =(2n. /u)'/ —exp +

U7 V'u

r

a'y e
—[uy+ p(0)+ ) /r] /(2v) uy +p(0)erf,

0 &(2u)
—erf p(0) —1/r

&(2v)

(2.5)

Further analysis of the mean intensity requires a
knowledge of the initial condition.

A. External noise

In the case of external noise, we assume that the noise
is added after the preparation of the system. Hence x(0)
is a deterministic variable and the following properties
hold:

(x (0)) =x (0), (x(0)t)(t)) =0 for t )0 .

At this point, we consider two possibilities directly relat-
ed to the integration of Eq. (2.5): the case of additive
white noise, which corresponds to the limit ~~0, and the
additive colored noise.

2
e ' —b erf(z) =e ' ber—f(a),
a =p(0)/&u

b = (rr/u )'/-',
x (0)

z =y(t*)= p(0)+ut* A(t*) —1

u'u v'u

(2.8)

We have solved this equation numerically, and Fig. l is a
plot of the variable z as a function of the parameter a for
three values of b. One can compare directly the value of
z with the corresponding deterministic critical control
parameter, and note that the delay introduced by the
sweeping is reduced by the noise. From this figure, we
can explain the role of the parameters a and b.

1. Additiue white noise

=(rr/u ) D exp

'2
ut+p(0)

v'u

ln the limit r~0 we have g(t) g(t), and using Eqs.
(1.8), we obtain for (2.5) the result

0 0

(i) The quantity a measures how long the noise can act:
when l(2l increases, the effect of the noise increases but
saturates to a plateau value z,, A critical value a];
characterizes a domain of blurred transitions for which z
is negative. This means a dynamical bifurcation point
below the static bifurcation point.

vt +(tt(0)X erf —erf p(0)
v

Og
The integrals in Eq. (2.4) can now be performed com-
pletely, leading to

(x (t) ) =x (0)e'y ' )+D(vr/v )' [erf(y) —erf(a)],

(2.6a)

b= O.Q)

where we have defined

p(0)+ ut
a =p(0)/&u, y =

v'v
A(t) —1

u'u
(2.6b) b=

—a2ae ' —b erf(z)=e ' —b erf(a), (2.7)

where a=x,h/x (0) ~ 1 and b =[D/x (0)](vr/u)' . We
can easily verify that increasing a has no other significant
role than to increase z, which is quite reasonable; the time
for reaching higher values of x,h is larger.

Without loss of generality, we can consider the case for
which a= 1, which finally gives the implicit equation'
for the dynamical bifurcation parameter t*

As explained in the introduction, the dynamical instabili-
ty condition is chosen as (x (t*) ) =x,h which is an im-

plicit equation for the critical parameter y(t*):—z. Then
Eq. (2.6a) gives

I

-2

FIG. 1. Critical bifurcation parameter z =p( t *
) //&U vs

a =p(0)/&v for different values of b = [D/x'(0)](vr/v )' '.
The diagonal corresponds to 6 =0 and represents the deter-
ministic case. The initial condition is deterministic and white
noise is added during the sweep.
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When b « 1, one easily verifies from (2.8) that
z,„—[ln(1/2b )]' and ai; ——2b/'t/n. . However, for
b very near to unity, though strictly less than 1,
z,„—2(1 b)/—&rr and a„-lnl/(1 —b). The parame-
ter z,„depends on x,h but is independent of the initial
condition x(0), as we will see in Sec. II B.

2. Additive colored noise

In this case, the integration of the right-hand side of
Eq. (2.5) cannot be performed exactly, but using the same
notation as for the white-noise case we derive the follow-
ing implicit equation for the critical bifurcation parame-
ter z:

—z —a 2
cte ' —e ' —v 2bce'

X dse ' '" erf
a u'2

a —c—erf v'2
=0.

(2.9)
We shall again take +=1, and we have introduced a new
parameter which contains the time correlation of the
noise, namely, c= i/(rv'v ). Two limits will be con-
sidered.

(i) c ~ ~ or r & & v
' ': This limiting case describes

either a situation of slightly colored noise (r~0 for fixed
u) or a small value of the sweeping rate (v ~0 for fixed r).
Equation (2.9) can then be expanded in powers of c ' as

(ii) The value ai; is a function of the parameter b,
which measures the competition between the intensity of
the noise and the initial position x (0); when this ratio in-
creases, ~al; ~

increases. When b ) 1 and a= 1, we obtain
z & 0. For x,h )x (0), the condition z )0 implies b & a.

and the small parameter is r1=2cb/'t/vr .The solution z
to first order in g is

z = ~a ~

—2e' g +O(rl ) (2.11')

Thus, in this case, the delay z is always decreased with
respect to the deterministic delay ~a ~.

Between these two limiting cases, the derivative of z
with respect to the parameter c is always negative.
Hence z has a monotonic behavior between its lower limit
of the white-noise case and its upper limit corresponding
to the deterministic limit. This derivative also gives the
rate of change of z between these two limits: when c ~0,
dz/dc-O(c '), and therefore z depends strongly on c
for small values of c (high r) On .the other hand, when
c~ ~, dz/dc -O(c ), and the variation of z with
respect to c is very small. We can conclude that the effect
of the coloration starts out weakly for small ~ and be-
comes very strong for higher values of ~.

More detailed results for the critical bifurcation pa-
rameter z versus ln(c) are represented on Fig. 2. These
results were obtained by a numerical integration of Eq.
(2.9) for a selected set of values for the parameters a and
b. To give an idea of the orders of magnitude, we note
that the white-noise limit occurs for c —3 when b =0.01,
and c -6 when b =0.5, whereas the deterministic limit is
reached for c —10 when a= —3, and c —10 ' when
a= —5.

We also note that b has no inhuence in the determinis-
tic limit but determine the values of z in the white-noise
limit. On the other hand, the value of a affects only the

—z' 1+ b

c i/Yr
—b erf(z) =e ' 1— b

c 1/7r
0 =-5

—b erf(a)+O(c ) .

(2.10)

This last equation is a first-order perturbation of Eq. (2.8)
in powers of a small parameter =etc/~/m. . At this or-
der, the solution can be expanded as

1+exp(z„„—a )
zwn+& +O(e ) .

2(z„„+b/v m)
(2.10')

This result indicates that the delay is increased with
respect to the white-noise situation, causing the plateau
to occur at a later time than in the white-noise case. The
critical value ~a„~ is also higher; the colored noise can
therefore transform a blurred transition into a delayed bi-
furcation.

(ii) c ~0: This limit describes either a strongly colored
noise (u fixed and r~~) or a fast sweep (r fixed and
u ~ ~). Equation (2.9) can then be written as

2

-)0

og~o(c)

0

+O(rI'),

(2. 1 1)

FIG. 2. Critical bifurcation parameter z =p( t *)/&U vs
1n[1/(rVu )) for different values of b and a. The initial condi-
tion is deterministic and colored noise (with correlation time ~)
is added during the sweep.
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deterministic results. By increasing the coloration of the
noise, one can thus determine the role of a. This effect
was predicted in Ref. 13. The influence of the threshold
value is progressively lost as the coloration of the noise
increases.

2.5-

B. Internal noise

In the case of internal noise, x(0) is a stochastic vari-
able and depends on the intensity of the noise. Then, Eq.
(2.4) contains an extra term related to the eff'ect of the ini-
tial state on the time evolution of the system.

) 5-

0.5-

1. White-noise case

To determine the average of the "initial" condition
(x (0) ), we have to solve the pair of equations, Eqs. (2.1)
and (2.2), with v =0, since during the preparation of the
system the noise is acting but the control parameter is
kept fixed: p, =p.(0). The use of the results of Sec. II A
easily leads to the long-time-limit value ( x ( t ) )
~D/~p(0) ~. This expression becomes the initial condi-
tion for the problem with swept parameter: (x (0))

D/~p( 0)~ and ( x(0$'(t)) =0. Using the notation y
and a introduced in (2.6b), Eq. (2.4) leads in the present
case to

P =0.9

- 0.5-

-2 - ).5 - 0.5

FIG. 3. Same as Fig. 1 but for a noisy initial condition. The
two upper curves give the fully deterministic solution, whereas
the two lower curves give the inhuence of additive white noise
present during the preparation of the system and during the
sweep.

D
-Ip(0)l =e~ ' +i/isola ~e [erf(y) —erf(a)] .

With the dynamical instability condition defined by
(x (t*)) =x,h corresponding to a delay z =y(t*), the ra-
tio a=x,h /(x (0)) can be written as ~a ~i/m/P, where P
is now defined by (D/x, h )(tr/v)' The par.ameter a is
restricted to values larger than unity. The implicit equa-
tion giving the critical control parameter z at the thresh-
old x &h rs

2

e Z

——erf(z) =
7

e
—a

——erf(a) .
a i/~ (2.12)

z&= a +ln

The noisy curves are always below the deterministic
curves; the noise reduces the delay introduced by the
sweeping. The two curves are separated whatever the
value of a for which z exists. The difference between the
two situations increases when P increases, and grows with
the parameter a because of the plateau which occurs al-
ready for ~a ~

) l. 5 in the noisy case and because of the

Some information can be deduced from the derivative of
z with respect to the parameters a and P. The parameter
P plays nearly the same role as for the deterministic ini-
tial condition, but the influence of the parameter a is
modified, being more important when the value of ~a~ is
less than unity. These analytical results are verified on
Fig. 3, where Eq. (2.12) has been numerically integrated
and z is represented versus the parameter a for two values
of g ( —0.9 and 0.35). On the same graph we plot the
critical control parameter for the deterministic case de-
rived from (1.9), which we rewrite as

absence of a plateau in the deterministic case. Compar-
ing Figs. 1 and 3 indicates that the plateau occurs for
smaller values of ~a

~
when the initial condition is noisy,

and the inffuence of a is maximum when
~
a & 1. The

asymptotic values of z,„ for P & 1 and for P« 1 are
still given by (2/i/tt)(1 —)33) and [ln(1/213)]', respec-
tively: z „. , is clearly independent of the initial condition.
We see that the noisy initial condition gives qualitatively
the same results as the deterministic one. The only
difference is a strengthening of the noise effects which
corresponds to a modification of the influence of a and
thus of p(0).

2. Colored-noise case

In this situation, the three terms in Eq. (2.4) give a
nonvanishing contribution. Equation (2.5) gives the last
term. For the other two terms we proceed as follows.
For t (0, the system is described by

dx (t)
dt

=p( )0(xt) +(i'),

and the noise is given by Eq. (1.7). The correlation be-
tween the variable x (t), and the noise i)(t), and the mean
value of x (t) obey the equations

d (x(t)il(t)) = p(0) —— (x(t)il(t))+ —,1 D
dt 'T 'T

d (x (t)) =2@(0)(x (t) ) +2(x(t)il(t) ) .
dt

For the preparation of the system, the following long-
time limit or stationary value has to be taken:
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and

( x(t) i}(t)),, =D /1 —p(0)r In the long-time limit t & t' and t'~+ ~ we obtain

&x(r')i)(t) ) = e
D

1 —p(0)r
(x )„=Dip(0)[p(0) —1] .

This long-time limit for the mean intensity (x )„,deter-
mined with a constant p(0), becomes the initial value
(x (0)) for the swept-parameter problem. In the same
way, for t' & t,d, 1(x(t')g(r) ) = ——(x(&')il(&) ),

dt

so that

(x(t')i}(r))=e " ' '~'(x(r')il(r')) .

Since this long-time-limit correlation function depends
only on the difference t —t ' where t ' is related to the
preparation time, we can use in the swept experiment the
result

(x(0)il(&) ) = e
D

1 —p(0)r
expressing the fact that the end of the preparation period
corresponds to the beginning of the sweep. Using the no-
tations defined previously for a, P, c, and z, the equation
governing the critical parameter z of the system can be
written as

, 2 c/v ~,z—e ' — ea' —ac
2c, ~g+) /2 z+c

e ' e ' ' erf
c —a v'2

a+c—erf

—V 2ce' ds e '+' erf
Q

a —c—erf
2

=0. (2.13)

1+ —+ e ' +P 1+ erf(z)P zP, ~ 1

c&~ c'v'ir 2c

=e ' —P 1+ erf(a)+O(c ) .
1

2c
(2.14)

The influence of the noise coloration appears not only in
the initial condition (x (0) ) and in the autocorrelation
function of the noise (rj(t)rI(t')), but also in an extra
term which corresponds to the influence of the noise
present for t (0. The integral can be performed only by
a perturbative expansion, and two limiting cases are con-
sidered.

(i) c~+ ~: Eq. (2.13) can be expanded to first order
inc

e
—a /22

e ' =cv'ir
av'7r v'2

zerf a—erf
2

where we can verify that the correction to z „ is always
positive and is now smaller than for the deterministic ini-
tial condition given by Eq. (2.10').

(ii) c ~0: Eq. (2.13) leads to dominant order
z2

P 'e ' =0. Then z has to take large values, and the
critical control parameter is large. We can explain this
result easily by noticing that this limit makes the initial
condition (x (0)) = Dpl( 0)[p(0) r—1] very close to the
zero steady state. The closer the initial condition is to
the zero solution, the longer the delay will be. A more
precise calculation gives to first order in c

+O(c ) . (2.15)

Pc '
1

Z =Zwn +
77 f3

2 z„„+
7T

. +O(c ),

When comparing Eqs. (2.10) and (2.14), we notice that
the main difference uq to order c ' is a modification of
the coe%cient of e ' . In the case of the deterministic

—a2initial condition, the e ' terms originated only from the
initial intensity contribution, i.e., the first term on the
right-hand side of Eq. (2.4). In the present case of a noisy
initial condition, additional contributions arising from
( (0)x}(t)i) cancel exactly the c ' as well as the c
corrections to the dominant coefficient of e ' . The re-
sult is that the influence of the color will start out later
than for the deterministic initial condition. A perturba-
tive calculation of z gives the correction to the white-
noise delay z„„:

z= ln
2—a /2

v'Pre 13 v' 1 —erf1 a
v'2 v'2

2

This expression diverges when c~0. When the parame-
ter a corresponds to the plateau ( ~a

~

& 3), z can be written
as

1/2

z — a +ln +ln2 ~a a

where the first two terms under the square root are those
of the deterministic case (no noise at all). We can con-

Since z has to be large, we can approximate the function
erf(z) by 1 in the last equation, so that the behavior of z is
well described by the relation

1/2
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(3.2)

4- The noise is Gaussian and g(t) is the white noise charac-
terized by its mean value and autocorrelation function
given in (2.3). The mean value of x is given by

( 2(t) ) 2(0) ut +2i[PIO)+2D] —4D-, (1 —e ' '
j (3.3)

where we have made the assumption of external noise;
there is no noise during the preparation of the system
(t (0), and x(0) is independent of the noise present dur-
ing the sweep. The dynamical instability condition can
be expressed as (x (t*)) =x,h, and the critical control
parameter is given by the equation

(vt*)'+2t*[p(0)+2D] 4Dr(—1 —e ' ')

0-, =ln, ——= In+ .
x-(0)

(3.4)

-)8 -)3 -8 -3
'gio" ~

We shall consider separately the white-noise case (r~0)
and the colored-noise case.

F1G. 4. Same as Fig. 2 but for a noisy initial condition.
Curve (a), f3=0.35, a = —10; curve (b), f3=0.9, a = —10; curve
(c), /3=0. 9, a = —3.

elude that when the parameter c goes to zero, the variable
z increases without limit and can reach a higher value
than in the fully deterministic case, which we define as
the situation where no noise is ever present in the system.

The main differences between the two kinds of initial
conditions can be summarized as follows: (i) the effect of
the noise correlation time starts out for higher values of

(ii) in the case of a deterministic initial condition z
reaches the fully deterministic limit for strong coloration.
On the contrary, for the noisy initial condition, z in-
creases without bound in the limit of strong coloration.

Equation (2.13) has been integrated numerically, and
Fig. 4 represents z versus ln, o(c) for three cases: (a)
a = —10 and P=0. 35; (b) a = —10, f3=0.9; (c) a = —3,
/3=0. 9. Comparison of curves (a) and (b) demonstrates
the influence of the parameter /3. The influence is largest
for small values of the time correlation of the noise
(white-noise limit). It then becomes uniform in the case
of very. -colored noise. However, this influence is always
present and does not disappear completely with high
coloration, as was the case for the deterministic initial
condition.

The parameter a has no influence in the white-noise
limit (because of the plateau) but also in the very-
colored-noise limit, which is not the case with the deter-
ministic initial condition. In fact, the influence of a is lo-
calized in a domain of c values corresponding to ln(c) be-
tween —2. 5 to 2.5, and is of the order of 0.1 for the criti-
cal control parameter. In fact, for smaller values of the
parameter f3, this influence of a diminishes and disap-
pears.

A. Multiplicative white noise

Equation (3.4) can be solved exactly in the limit r=0
and gives

t'=—p(0)+2D
2

P(0)+2D 11+ —lna
v v

]/2

(3.5)

In terms of the parameter a and the variable z, this last
equation can be written as

z=~a~ —4Dl&v . (3.6)

An important difference with the additive noise case
[ruled by Eq. (2.8)] is that now the delay z does not de-
pend on x (0).

B. Colored multiplicative noise

Equation (3.4) cannot be solved analytically but a
graphical solution can be obtained by rewriting this equa-
tion as

The influence of the ratio a is related to the sweeping rate
in the same way as in the fully deterministic situation.
The effect of the multiplicative white noise can be viewed
as a modification of the characteristic time t = —p. (0)lv
which is replaced by t = —[p(0)+2D]lu which is smaller
than t since p, (0) (0. The delay introduced by the sweep-
ing is then reduced, by an amount which is function of
the ratio D/v. The influence of the noise is more impor-
tant when

~
p(0)

~
is greater than but near to 2D since the

intensity of the noise is directly compared to p(0). When
+= 1, the critical time is given by

t*=2j—4D/v .

III. MULTIPLICATIVE NOISE
In this case, we consider the set of equations

dx
dt

= [p(t)+ rt(t)]x(t),

y =ut* +2t*[p(0)+2D]—Inrz,

y =4Dr(1 —e ' '), (3.7j

(3.1)
and finding the points where the two curves coincide.
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This graphical approach leads to the condition
~ p(0)

~

) 2D to have a positive value for r '. As for the ad-
ditive colored noise, we could use the parameters a, z, c
and, in this case, the ratio D/&v. However, it is in-
teresting to solve the problem directly in terms of t* and
~, avoiding the rescaling due to the sweeping rate. We
again consider the situation where a=1. If we define y
as p(0) /U and 6 as D /U, we can expand Eq. (3.4) in two
limits.

(i) When r is sufficiently small, Eq. (3.4) can be written
to first order as

deterministic value. The maximum decrease of the criti-
cal time 5=4D/v, which is introduced by the white
noise, is progressively reduced by the color. This is simi-
lar to the additive case. On the other hand,
dt*/d~~ —25/y+26) 1 when ~~0, and dt'/d~~0
when ~~ ~. The rate of the reestablishment of the delay
is then higher for small ~ than for large values of ~, which
is just the opposite of what happens for the additive case.
This is made apparent in Fig. 5.

(r*) (1+26~ ')+2yr*+O(r )=0,

and the solution is

t*= —2y+r '45y+O(r ') .

Since y is negative, the correction to the deterministic
critical time is now negative.

Thus we see that when the color increases, the critical
time of the system goes from its white-noise value to the

99

97

&00 200 300

FICx. 5. Critical bifurcation time vs the correlation time of
the multiplicative noise for two values of 5=D/U.

t* +2(y+25)t* —46r+0(r')=0,
and the solution reads

t*=2r 4y ——r +O(r ) .
26 2

y+26
The correction to the white-noise critical time is strictly
positive and the delay is increased.

(ii) When r is sufficiently large, then Eq. (3.4) can be ex-
panded as

IV. CONCLUSIONS

The calculations we have performed in terms of the
second moment of the stochastic variable x(t) have im-
proved our understanding of the effects of the noise and
its dependence on the different parameters of the prob-
lem. First, we have stressed the role played by the sweep-
ing rate. In the fully deterministic situation, increasing
the sweep rate decreases the critical time, whereas in the
noisy situation we observe the opposite effect; the noise
has less time to act. Furthermore, for the noisy additive
case, the sweep rate scales all relevant variables, meaning
that it imprints a new time scale on the system.

We have seen that the relation between the different
parameters is not simple. For the same dynamical insta-
bility condition, the effect of multiplicative noise is in-
dependent of the initial condition, whereas the effects of
additive noise depend on the initial condition. As far as
the dependence of the delay on D (the noise intensity) is
concerned, we notice that in the case of a multiplicative
noise, the delay is a function of the difference

~ p(0) ~
D, —

whereas, in the additive case, the delay is a function of
the ratio D/x, h. At constant D, the effect of additive
noise first increases with ~p(0)~/&v, and then saturates.
On the contrary, the delay is a constant for a fixed D
when the noise is multiplicative.

The color of the noise has a quite clear effect in that it
reintroduces the delay destroyed by the white noise. In
the multiplicative case, dz/d~ is large for small ~ and
goes to zero for larger values of the correlation time. The
delay is therefore increased significantly for reasonable
values of ~. For the case of additive noise, however, the
sensitivity to the correlation time occurs at larger values
of ~. This justifies the use of a logarithmic scale in Fig. 2
since very large ~ are required to observe the influence of
the coloration. It also explains why the authors of Ref.
15 did not find any dependence on the color since the
value of ~ used in their analog simulations was too small.
The best range of parameters to measure a difference due
to the color of the noise seems to be v —10 and
p(0) ——l with higher values of r ( —50).

The noise coloration induces a modification of the
influence of the parameters a and b. For the determinis-
tic initial condition, the dependence on b disappears
when w increases. In the case of the noisy initial condi-
tion, the infiuence of f3 decreases but with a finite lower
bound. On the contrary, the parameter a has, qualita-
tively, the opposite dependence on the noise coloration.
However, in the noisy initial condition case, z depends
weakly on a as the correlation time increases. This last
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eA'ect has been predicted in Ref. 13 for the parameter
p(0) on qualitative grounds and is verified in the present
approach. Another conclusion is that the inAuence of the
noisy initial condition is weaker in the case of white noise
than in the case of colored noise.
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