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Determination of quasiprobability distributions in terms of probability
distributions for the rotated quadrature phase
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It is shown that the probability distribution for the rotated quadrature phase [atexp(i8)
+aexp( —i8)]/2 can be expressed in terms of quasiprobability distributions such as P, Q, and
Wigner functions and that also the reverse is true, i.e., if the probability distribution for the rotat-
ed quadrature phase is known for every 0 in the interval 0~ 0( n, then the quasiprobability dis-
tributions can be obtained.

In quantum optics quasiprobability distributions such
as the Glauber-Sudarshan P function, the Q function, and
the Wigner function play an important role. With the
help of these functions, expectation values of any products
of creation operators a t and annihilation operators a can
be calculated. It is, however, impossible to measure these
quasiprobability distributions directly. In this Rapid
Communication we propose a method for obtaining these
quasiprobability distributions by measuring appropriate
probability distributions of certain quadrature phases.

Instead of the three different quasiprobability distribu-
tions mentioned above we use the s-par ametrized
quasiprobability distributions introduced by Cahill and
Glauber. ' These distributions may be defined as Fourier
transforms of the characteristic functions (our definitions
deviate from those of Ref. 1 by a factor of I/tr)
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i.e.,

]W(a, s) 2 W(g, s)exp(a(* —a g)d g, (2) (b)

where p is the density operator. As explained in detail in
Ref. 1, W(a, l) is the Glauber-Sudarshan P function,
W(a, 0) is the Wigner function, and W(a, —1)

(a~pea)/tr is the Q function. As also shown in this
reference, any single-time expectation value of the s-
ordered products ([(at)"a ],) can be obtained by proper
integration with weight W(a, s) in the complex a plane.

According to Refs. 2-5 a homodyne detector measures
the following linear combination of the creation and an-
nihilation operators;

x(8) x(8)t (ate' +ae ' )/2 a, cos8 —a;sin8, (3)
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where the a„and a; are the two quadrature phases

a, (a+at)/2 x(0), a; l(at —a)l2 x(tr/2) (4)

introduced in connection with squeezing. Because of
(3), we call the operator x the rotated quadrature phase.
The complete information for calculating any single-time
expectation value of the rotated quadrature phase x(8) is
given by its probability distribution w(x, 8). This distri-
bution may be defined as the Fourier transform of the

R e(CI)

FIG. 1. Contour lines of the quasiprobability distribution
(15) in the complex a plane for the superposition (14) of the
two coherent states for a 1 and b 2. In (a) the contour lines
are shown for s —

1 (Q function) and have the heights
0.01,0.02, . . . (solid lines), 0.002,0.004,0.006,0.008 (dashed
lines); in (b) they are shown for s 0 (Wigner function) and
have the heights 0 (dotted lines), 0.1,0.2, . . . (solid lines),
—0.1, —0.2, . . . (dashed lines).
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characteristic function

w(ri, 8)-Trjexp[irix(8)]p},
&.e.,

w(x, 8) w(rt, 8)e '""drl .1

2x 4

(s)

(6)

B = fi/2

B = 5 fl/'l2

Because x (8) is a Hermitian operator, this probability
distribution is well behaved and positive everywhere.

It is now an easy matter to establish a one-to-one
correspondence between the quasiprobability distribution
W(a, s) and the probability distribution w(x, 8). This is
most easily seen by looking at the characteristic functions
(1) and (S). Using the definition (3), we immediately ob-
tain

w(q, 8) -W(irie"/2, s) exp( —ski'/8) .
I
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B= U/6

B= ft/12

In real notation

(,+i(;; W(g, s) W(g„,g;,s),
we have

w(t1, 8) -W( —
& rlsin8, —,

' ricos8, s) exp( —sri /8) . (9)

If w(r1, 8) is known for all q values in the range
—~ & ri & ~ and for all 8 values in the range 0~ 8 & rr,

the characteristic function W(g„,(;,s) is known in the
whole complex g plane, i.e., for g, and g; E ( —~,ee).
Thus, there is a one-to-one correspondence between the

I

FIG. 2. The distribution (16) for the indicated 0 values and
fora 1, b 2.

characteristic functions (1) and (S), and therefore we also
have a one-to-one correspondence between the quasipro-
bability distributions (2) and the probability distribution
(6). Using the Fourier transform of (9), inserting the in-
verse Fourier transform of (2), and changing integration
variables, we obtain

ri fo

w(x, 8)- W(u cos8 —v sin8, u sin8+ v cos8, s) exp[ —sri /8+i(u —x)rl]du dv dri.

For s 0 we can perform the integration over g and thus arrive at the simpler expression
' 1/2

(io)

w(x, 8)- 2
4 4 W(u cos8 —v sin8, u sin8+ v cos8, s) exp[ —2(u —x) /s]du dv .

For s 0, i.e., for the Wigner function, (10) reduces to

w(x, 8) - „W(xcos8 —v sin8, x sin8+ v cos8, 0)dv .

By similar steps we obtain from (9) the inverse of (10)
~ + oo ~ + oo

W(a„a;,s)
z „„w(x,8) exp[st /8+iri(x —a„cos8—a;sin8)]

~ q ~
dxdtld8. (i3)

Thus, the quasiprobability distributions W(a, s) are uniquely determined by the probability distribution w(x, 8) and vice
versa.

As an example we consider a superposition of the two coherent states
~
a ib), i.e.,

( a+ib)+ ) a —ib& (i4)
[2[1+cos(2ab) exp( —2b )]}'

For this example the quasiprobability distributions take the form

W(a„,a;,s) exp[ —2(a, —a) '/(1 —s)]
exp

x(1 —s) [1+cos(2ab) exp( —2b )]
2 2(a; b)' +exp — — (a;+b)'2

1 —s 1 —s

+2exp (sb —a; ) cos a„—2 ab
2 2 2 4b 1+s

1 —s 1 —s 1 —s
(is)

whereas the distribution (6) reads
1/2

w(x, 8)- 2

(16)

exp[ —2(x —acos8) —2b sin 8] [cosh[4b sin(8)x —2ab sin28]+ cos[4b cos(8)x —2ab cos28]} .1+ cos 2ab exp —2b
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Figure 1 shows W(a, —1) (Q function) and W'(a, 0)
(Wigner function) for the superposition (14). As already
demonstrated in Ref. 8, the Wigner function oscillates in
between the two maxima. The plots of w(x, 8) are shown
in Fig. 2. For 8 0 the distribution w(x, 8) oscillates rap-
idly, similar to the Wigner function along the real axis,
though no negative values occur here. For 8 x/2, two

maxima are clearly visible similar to those of the Q func-
tion. It follows from the symmetry of the example that we
have w(x, 8) w( —x,x —8). Thus, w(x, 8) is only plot-
ted for 8 values in the range 0 ~ 8 ~ x/2.

We would like to thank Dr. W. Schleich for stimulating
discussions.
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