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Learning noisy patterns in a Hopfield network
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We study the ability of a Hopfield network with a Hebbian learning rule to extract meaningful in-
formation from a noisy environment. We find that the network is able to learn an infinite number of
ancestor patterns, having been exposed only to a finite number of noisy versions of each. We have
also found that there is a regime where the network recognizes the ancestor patterns very well,
while performing very poorly on the noisy patterns to which it had been exposed during the learn-

ing stage.

Much of the recent work on spin-glass models for asso-
ciative memory' has focused on the retrieval process and
on the process of learning itself. In most of these
studies however, it had been assumed that during the
learning stage, the system is exposed to the very same
patterns which it is later expected to recall correctly. An
interesting question which arises is whether it is possible
for a network, exposed to a noisy environment, to extract
the meaningful information from that environment, using
simple local learning rules. ' In this paper we address
this question, in the context of the Hopfield model, and
obtain exact (replica symmetric) expressions for various
quantities characterizing the performance of the network.

The model we study is the following. Consider a fully
connected system of X spins, in which we wish to embed
p ancestor patterns I P},p= 1, . . . , p, i =1, . . . , N. As-
sume that the system is exposed to noisy versions of these
p patterns. We denote the noisy versions of the p ances-
tor patterns by I g }, with v= 1, . . . , s, i.e. , s noisy ver-
sions of each ancestor pattern are presented to the net-
work. The connection J, - between spins i and j is given
by the Hebbian rule

We choose the probability distribution of the I P'} to be

P(P )=—,'(1+Pb)5(P 1)+—'(1 Pb)—5(P +—1) (2)

with b E [0, 1] and @=+1 with equal probability.
This probability distribution was used in a different

context by Gutfreund in his study of the storage of
hierarchically correlated patterns. Our aim is to calcu-
late the response of the system to the ancestor patterns
IP}, given that the learning took place with the noisy
patterns I p }, and the Hebbian rule (1). The Hopfield
model is obtained in the case b =1, i.e., the learned pat-
terns are just the patterns to be stored. One also expects
that for s »1, i.e., learning many noisy versions of the
same pattern, the noise should average out and we get
good recall of the ancestor patterns. In this paper we
study the case where p =czX and s is finite in the thermo-
dynamic limit. We will see that even if the number of

noisy versions is small, the network performs very well
and retrieves the correct ancestor patterns I P }.

Before discussing the full solution of the model within
the replica framework it is helpful to describe an approxi-
mation, first proposed for the Hopfield model by Kinzel,
and proven to be exact for the case of the strongly diluted
model discussed by Derrida et al. ' This approximation
will be referred to below as the diluted approximation.

We assume that the network is in state S=
I S, },which

has a nonzero correlation with the patterns g,
" and g,',

but has negligible correlation [O(1/&N )] with all pat-
terns with p & 1. The field acting on S, is

(J' S~+ g gp' —g +~S,
j (&i) p (&1) v j (wi)

(3)

and the state of the spin at the next time step S,
' is deter-

mined probabilistically according to the field h, acting on
it,

+ 1 with probability [1+exp( —2Ph, ) ]S=' —1 with probability [1+exp(+2Ph; )]
(4)

where P '= T is a parameter measuring the noise level of
the system (temperature). There are two quantities of in-
terest. The first is the overlap of the state S with the pat-
tern gI and the second is the overlap with the noisy pat-
terns g,". Thus we define

M, =—gg,'S, , M, =—gg'S, .
1 1

We also define the single-site averaged quantities

,„=«g,' &S;)»,
where & ) denotes a thermal average and « )) stands for
an average over the distribution given in Eq. (2). Multi-
plying Eq. (3) by g,", and performing the thermal aver-
age, we obtain
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rn', = tanh P g,
' gg,' M~~+g, ' g gP —g P) S

p () 1) A. j (jwi)

m&& =(t anhIP[(1 +bz, )m&&+&arz]I ), (8)

~here we have replaced M» by m». The average in Eq.
(8) is over the Gaussian random variable z, with zero
mean and unit variance, and over the random variable z„
with the probability distribution

Without loss of generality, we set v=1 in the above equa-
tion. We also note that since we expect M&z to be O(1)
we may replace M,-& for k & 1 by b M», since the fluctua-
tions in this step are 0 ( I /&N). In what follows we will
be interested in the 6xed point solutions, thus we take
m', =m, „. In the diluted approximation, we take the
second argument of the hyperbolic tangent to be a Gauss-
ian random variable, neglecting its site dependence and
the correlations between (S; ) and I P').

With these remarks in mind, we write the equation for
m» in the form

m» =0, i.e., the network cannot retrieve the noisy ver-

sions of the ancestor patterns. For

a )a,' = (2/n )sb /[1+ (s —1 )b ] (15)

m I =0, i.e., the network cannot retrieve the ancestor pat-
terns.

At this stage we can already see that the network ex-
hibits some interesting behavior. From Eqs. (14) and (15}
we see that there is a region in the (b, s) space where

a,') a,". In this region, we have m» =0 and m&%0.
Thus, although the system is unable to recognize the pat-
terns to which it has been exposed, it can still very well
recognize the ancestor patterns. Similar behavior has
been found by Virasorto» in a different context.

Having discussed the diluted approximation, we now
turn to the fully connected model. To do that we intro-
duce an energy function

P(z, =k}= s —1

s —1 —k

E = —
—,
' Q g J;JS;SJ

i j (wi)
(16)

(s —1+k)/2
1 —b

X
2

(9)

with J,~
given by Eq. (1).

Our goal is to characterize the states that minimize the
quenched free-energy density

Pf = lim lim—( g Z"))—1)/nN,
The variable ar is given by

where

N~ oc @~0

ar= —
",

"- S Z =Tr[s ~exP( —PE) . (18)

m
&

= (tanh[p(bx, rn &+&arz)]) . (12)

Here ar is given by Eq. (11), and the probability distribu-
tion ofx, is

P(x, =k)= s
s —k

(s —k) /2 (s + k)/2
1+b ? —6

Taking the limit p~ ~ in Eqs. (8) and (12), and ex-

panding in powers of m, and m» we find two critical
values of a. For

a) a,"=(2/n.s)[1+(s—1)b ] (14}

Performing this average yields

ar=as[1+(s —1)b ] .

To obtain the equation for m
&

we proceed along simi-

lar lines. The only point to note is that, using arguments
similar to those discussed above, we replace M, „appear-
ing in Eq. (7) above by bm, . We note that this procedure
cannot be done with respect to the variables M„and
M„(p) 1), since these variables themselves are O(1/
&N ). Thus we obtain

Using standard techniques and assuming replica symme-

try we obtain the following equations for the order pa-
rarneter m».

m&&=(t anhI [P(l +bz, )m»+Qar»z]] ),
(19)

q&t =(tanh t [P(1 +bz, )m&&+Qar&&z]I ),
(20)

Il —C„(1—b )[1+b (s —1)]I +b (s —1)

I[1—(1—b2)C„] sb C„[1—(—1 —b )C„]]
(21)

where C» =p(1 —q» ) and z, is distributed according to
Eq. (9). In writing Eqs. (19)—(21) we have picked the solu-

tion with m, „=b m», v%1, as in the diluted approxima-
tion. We have also assumed that m„ is nonzero only for
@=1. We note that the expression for m» is identical to
the one we obtained in the diluted approximation, Eq. (8).
However, the expression for r, the noise term, is much
more complicated, since now we have taken into account
the full correlations between I S; I and I P ) for p ) 1.

In order to complete the calculation, we must compute
the equation for the variable m &. This equation cannot
be obtained within the replica framework where the natu-
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Eq. (22) for small m, , is given by

2 [(s+1)b —1] (1 b—)

~s [b4(s —1 }—1+2b ] + b s (s —1)

Since a,'(b =0) ~ 1/s for s))1, the region where the
spurious solution exists diminishes with increasing s, as
opposed to the retrieval solution.

The equations for m» possess the same three types of
solutions, as those for m

&
discussed above. However, the

dependence of these solutions on b is different. In Fig. 2
we plot a„", the critical value for the retrieval phase (we
again normalize a with respect to ao), versus b. It is easy
to see that in the limit b =0, one has the result
a„"/ao= 1/s, while for b =1 a„"/ac= l. The analytic ex-
pression for a," is given by

2 b [1+(s—1)b ] (s —1) (1 b)—
[2b2(s —1)—s+2] +(s —1)[1+(s—1)b ]

(25}

To better understand the interplay between the re-
trieval and spurious solutions, we plot in Fig. 3 m»
versus b for several values of a near zero. For a =0 these
two solutions coincide. As a increases, however, there is
an intermediate range in b where the retrieval solution
does not exist, and m» jumps discontinuously from the
retrieval solution to the spurious one. As can be seen in
the figure, the size of the jump increases with a. For
a~0. 1, only the spin-glass solution m» =0 exists for
small b. This solution undergoes a continuous transition
to the spurious solution which in turn undergoes a
discontinuous transition to the retrieval solution (b —1).
The same kind of behavior occurs in the solutions of the
equations for m, : the retrieval and spurious solutions
coincide at a=0 but split into two district solutions for
any nonzero a. For any practical purposes the spurious
solutions are not useful for the retrieval of either the
ancestor patterns or the noisy patterns, since their re-
trieval quality cannot be distinguished from the remanent

overlaps due to the nonequilibrium states. ' We can easi-
ly see that for s =1 one should expect a solution with the
same properties as the spurious states. In this limit we
recover the Hopfield model with stored patterns I P ]
and therefore there exist equilibrium states with a high
overlap with these patterns. Since the ancestor patterns
IPJ have an overlap b with the learned patterns, we ex-
pect a solution with m

&

~ b. In fact, for b && 1 we find for
the spurious solution m, = b erf(2/ma). A similar argu-
ment in the limit of large s shows that m» must also
posses a similar kind of solution. Note that for s~ ~,
a,'~0 and therefore the spurious solutions for m, disap-
pear in this limit. From Eqs. (24) and (25) one can see
that a"=aI=(2/m. )(1 b)—, in agreement with the in-
tuitive idea that storing an infinite number of noisy ver-
sions of the ancestor states is equivalent to storing the
ancestors themselves.

In summary, we have demonstrated analytically that a
network using local Hebbian learning rules is able to
learn an infinite number of patterns, having been exposed
only to a Pnite number of noisy versions of each. We
have also found that there is a regime where the network
recognizes the ancestor patterns very well, while per-
forming very poorly on the noisy patterns to which it had
been exposed during the learning stage. However, if the
number of noisy versions is small, and the correlation be-
tween them and their ancestor pattern is small, the net-
work is unable to recognize the ancestor pattern although
it may recognize the noisy patterns very well. We should
emphasize that our results refer to the equilibrium states
of the system, and do not tell us anything about the ac-
cessibility of these states by the dynamics.
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