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de Gennes slowing of density fluctuations in ordinary and supercooled liquids
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We discuss the slowing mechanisms of the intermediate scattering function for wave vectors near
the position of the main peak of the structure factor. Simulation data in ordinary and supercooled
liquid rubidium show that the decay rate at long times is much slower than that predicted by the
usual viscoelastic theories, particularly in the quenched system. This feature is accounted for by a

simple mode-coupling calculation.

In a dense fluid the intermediate scattering function
F(k, t) is known to exhibit a marked slowing as the wave
vector k approaches the value k where the structure
factor S (k) has its main peak. ' In fact, this sharp max-
imum means that the corresponding wave vectors occur
with high probability in the structure of the system, thus
making the temporal decay of density fluctuations with
k =k much slower than the one implied by the average
microscopic collision rate. These arguments can be given
a quantitative basis by considering the Laplace transform
F(k, z) of F(k, t) which satisfies the memory equation

P(k, z)/S(k) = [z+ [f1 (k)/iQ(k, z =0)]j

namely, an exponential decay of F(k, t) with a rate

y(k)=kg Tk /[mS(k)M(k, t =0)r„]

(2)

which decreases considerably as S(k) approaches its
main peak. This simple explanation of the "de Gennes
slowing" applies to systems with continuous interatomic
potentials, but equivalent results have been obtained for
dense hard-sphere systems. '

The validity of the result F(k, t)=S(k)e r'"" for
k=k can be tested against molecular-dynamics (MD)
simulation data. Recently, in an investigation about
atomic diffusion, we performed a series of MD simula-
tions in ordinary and supercooled liquid rubidium. In
particular, data for F(k, t) were obtained at several state
points all at the constant density n cr =0 905 (here. ,

0
cr =4.405 A denotes the first zero of the effective pair po-
tential developed by Price et al. ). Starting from the or-

0 kF(k, z)/S(k) = z+
z+M(k, z)

Here, fl (k) =k k~ T/mS(k); the second-order memory
function M (k, t) has an initial value
M(k, t =0)=fez(k) —0 (k), where Qz(k) is simply re-
lated to the fourth frequency moment of the dynamic
structure factor S ( k, co ). The simplest ansatz for
M(k, t), referred as "viscoelastic model, " assumes an ex-
ponential decay, M ( k, t ) =M ( k, t =0)exp( —t /wk ) with
(w&) '=(2!&n)[M(k, t =0)]'~. For k=k, 0 (k) is
much smaller than QL (k) and the times rk and
[I/QL (k)] are "microscopic, " typically =10 ' s. Out-
side this time scale it appears reasonable to write Eq. (1)
as

dinary liquid ( T =318 K), the system was quenched down
to a temperature T=270 K and remained "stable" (i.e.,
unaffected by nucleation) for the whole duration of the
MD runs, i.e., 400 ps. For all states the main peak of
S(k) occurs for k o. =6.8.

The aforementioned exponential law with the decay
rate (3) is found to agree rather well with the MD data
for the ordinary liquid at 318 K; the actual comparison
was made at kcr =6.75, where S(k)=3.12. Only at rath-
er long times (t )4 ps) the theoretical slope y(k) =0.39
ps ' overestimates the actual decay rate of F(k, t), but
the effect is not very significant because the substantial
decrease already occurred at shorter times. Instead, at
T=270 K, more evident discrepancies of the viscoelastic
model appear at intermediate and long times (see Fig. 1

of Ref. 6). Although this state corresponds to a relatively
modest supercooling, the slowing down of F(k ~ =6.75, t)
is pronounced and by no means can be described by the
simple model. In particular, at 270 K, where the MD
data yield S ( k o. =6. 75 ) =3.79, Eq. (3) predicts a decay
rate y(k)=0. 28 ps ', to be contrasted with a MD value
of 0.132 ps ', deduced by an exponential regression in
the interval 4—8 ps.

The origin of this breakdown lies in the assumption of
a single, microscopic decay time for the memory function
M(k, t). More precisely, M(k, t) can also be affected by
other, long-lasting decay mechanisms which involve non-
linear couplings to slowly varying dynamical variables.
Mode-coupling (MC) theory provides the natural frame-
work to investigate such phenomenon. At high densities
and/or low temperatures, the dominant (i.e. , the slowest)
coupling occurs to density fluctuations, so that ultimately
Eq. (1) becomes a rather complicated self-consistent equa-
tion for F(k, t). This dynamical feedback is thought to be
the origin of the structural freezing which occurs in an
idealized "glass transition". ' ' In our case, the memory
function M(k, t) is split into a fast, "binary" contribution
Mz(k, t) (essentially the one considered in the viscoelastic
model) and a slow "collective" part which incorporates
the self-consistency effect. The MC result for the latter
contribution reads'

MMC(k, t)

=(nksT/16m. m )f dq [ V(q, k —q)] A(q, ~k —q~;t) .

(4)
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Here the vertex V(q, k —q)=q'c(q) —(k —q)'c(~k —q~),
where c(q)=[S(q)—1]/nS(q) is the direct correlation
function. Moreover

b(q, p;t) =F(q, t)F(p, r)[1 p(—q, &)p(p, &)], (5)
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FIG. 1. Long-time behavior of the intermediate scattering
function in supercooled liquid rubidium at 270 K and at a wave
vector k0. =6.75. The dots are the MD results, the dashed line
is the result of the viscoelastic model, and the solid line includes
the mode-coupling contributions. The amplitude of both
theoretical curves has been adjusted to the MD value at t = 3 ps.

where p(q, t)=F0(q, t)/F, (q, t), F, (q, t) being the self-

intermediate scattering function and Fo(q, t)
=exp[ —(k~ T/2m)q t ] the free-particle limit of both F
and F, . At short times A(q, p;t) vanishes as t; in this re-

gime the memory function is essentially Mz(k, t) and the
viscoelastic model appears to be justified.

The situation at intermediate and long times can, how-

ever, be quite different. Beyond a microscopic time scale
the free-particle term in Eq. (5) becomes negligible and
the surviving long lasting portion of 6 yields in Eq. (4) a
positive, slowly decaying MMC(k, t) which accounts for
the full memory function in this regime. Thus the MC
contribution leads to an increase of the area under
M(k, t) and after Eq. (2) we may qualitatively expect a
slower decrease of F(k =k, t) at long times.

An approximate evaluation of the effect can be made

by noting that in Eq. (4) the slowest contributions
effective in the time scale of MD simulations are those
with q = ~k —

q~ =k, as already pointed out. '" This
permits a considerable simplification of Eq. (4) which for

q =k becomes

MMC(k, t)

=(k&T/8m mn)A k [f(k, t)] [1—
{() (k, t)],

(6)
where f (k, t) =F(k—, t)/S(k) and 3 is the area under the
main peak of S(q) —1. ' As already mentioned, the term
with (Fo/F, ) has a fast temporal decay and, exactly as
for the viscoelastic part Mz, its contribution to Eq. (1)
may be evaluated by taking z =0. By performing the
Vineyard approximation f=F„we obtain

I dt(fF0/F, ) = J dt[FO(k, t)]

=(nm/k&T)' /2k =p . (7)

The leading MC contribution of Eq. (6) has instead a
slow character and the z dependence of its Laplace trans-

form has to be retained. For the moderately supercooled
state at 270 K one may attempt to solve Eq. (6) in a per-
turbative way by inserting the bare viscoelastic propaga-
tor f(k, t ) =exp[ —y(k )t ]. Then the memory equa-
tion (1) can be written as

]y(k )f(k, z)= z+
1 —~+c) (k. )/[z+2y(k„)]

(8)

where the dimensionless quantities c = 3 k S(k )/8' n

and a=cy(k )p fix the respective magnitudes of the
slow and fast contributions to MMC(k, t). Translating Eq.
(8) in the time domain and solving the corresponding
differential equation we readily obtain

f(k, t) =exp( —I ot ) t cosh(I, t )

+[(Ip 1 )/I ~]sinh(I ~r)I . (9)

Here I o=y+ —,'(c+1)y' and I,= —,
'

I [2y+(c —1)y']
+4cy'~I'~, with y=y(k ) and y'=y/(I —a). At long

times Eq. (9) yields a nearly exponential time decay with

a damping rate

I =@+—,'(c+1)y' —I, . (10)

The results of (9) and (10) can be checked against our
MD findings at intermediate and long times. The de-
crease of the decay rate is already appreciable in the ordi-
nary liquid at T =318 K, where from structural data one
deduces Ao. =1.74, c =0.89, and a=0. 115. The renor-
malized slope I =0.253 ps ' is now in very good agree-
ment with the value 0.255 ps ' obtained by a best ex-
ponential fit of the MD data in the range 4—8 ps. How-
ever, at 318 K the overall effect in this time regime is not
so dramatic, since f {k,t) is already decreased substantial-
ly from its initial value 1 (e.g. , the value at 7 ps is =0. 1).

In the supercooled state at T=270 K the effect of the
MC terms is instead much more spectacular. Here, the
renormalized slope (deduced from Ao =2.5, c=2.24,
and a=0.225) turns out to be I =0.126 ps ', which
corrects substantially the "bare" value y =0.28 ps ' and
compares favorably with the best fitted MD value 0.132
ps '. The improvement for long times is apparent from
Fig. 1, where the "tails" of the viscoelastic and MC
theories are compared with the MD data by arbitrarily
adjusting the theoretical amplitudes at 3 ps. In the time

range of interest f (k, t) is now considerably larger than

at 318 K. The simplifying approximations somewhat
aff'ect the actual amplitudes predicted by Eq. {9), which

are about 15% higher than the MD values. In any case,
even on an absolute scale the improvement is noticeable:
taking again t =7 ps as a typical point, Eq. (9) predicts a

value 0.35, to be compared with the MD result 0.30 and

with the value 0.15 of the viscoelastic model. In con-
clusion, the MC contribution to de Gennes slowing of
density fluctuations is important, and the leading effects

appear to be correctly accounted for by a relatively sim-

ple analytical approach.

Computing time was made available under convention
between the Consiglio Nazionale delle Ricerche (CNR)
and the Centro di Calcolo Elettronico Interuniversitario
dell'Italia Nord Orientale (CINECA).
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