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Classical theory of laser-assisted Thomson scattering
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Since experimentally feasible configurations of laser-assisted Thomson scattering are quasiclassi-
cal, and since semiclassical calculations tend to be lengthy and —in view of the numerous approxi-
mations required —lead to results that are difficult to assess, it is demonstrated that the correspond-
ing classical cross section can be derived not only much more simply but also essentially exactly.
This cross section, valid for arbitrary intensities of the "assisting" laser field and for arbitrary
electron-injection energies, is then graphically compared with semiclassical results from the litera-
ture. It shows a published nonrelativistic result to be essentially correct, but its relativistic generali-
zation to be incorrect. As for sum rules, which in the semiclassical literature have only been ob-
tained by recourse to drastic approximations, it is shown that the classical approach straightfor-
wardly yields exact cross sections for the overall laser-assisted Thomson scattering, which again are
valid for arbitrary laser intensities and arbitrary electron-injection energies.

I. INTRODUCTION

Laser-assisted Thomson and Compton scattering have
been topics of considerable theoretical interest' over
the years. In this process, a strong laser beam of low-
frequency coI with a small admixture of vuv or soft-x-ray
radiation of frequency ~„is scattered off a counterpro-
pagating electron beam. Owing to nonlinearities, the
scattered radiation contains harmonics m cot (m
=1,2, . . . ) of the strong-field frequency as well as com-
bination frequencies co„+neat (n =0,+1,+2, . . . ). It is
the cross sections corresponding to these sidebands that
one wants to predict.

Apart from one classical analysis by Prakash and Va-
chaspati, ' all authors have worked within the quantum
electrodynamical' or the semiclassical framework. '

The corresponding calculations are lengthy and involved,
and necessitate numerous approximations, which are
difficult to assess and hold potential sources for errors.
Moreover, with the exception of Ehlotzky's recent pa-
pers, ' only the cases of the electron being initially at rest
in the laboratory frame, and of sideband production in
the average electron rest frame have been considered.
Although the transformation to the laboratory frame
would be straightforward in principle, the drastic approx-
imations involved make it unclear whether first approxi-
mating the cross section in the average rest frame and
then Lorentz transforming it yields the same result as
first Lorentz transforming the cross section and then ap-
proximating it in the laboratory frame. This is why
Ehlotzky ' recently performed a semiclassical investiga-
tion working in the laboratory frame throughout, and
treating separately the cases of nonrelativistic and rela-
tivistic incident electrons. Yet, again, the results ob-
tained are complicated and expressible only in terms of
nontabulated generalized Bessel functions. And, as in all

preceding papers, there is no comparison with related
works of other authors.

On the other hand, in the experimentally most in-
teresting case of cu„being in the vuv or soft-x-ray range,
possibly taken from a synchrotron light source, and the
assisting field coming typically from an intense Nd-glass
laser, a purely classical analysis is adequate. ' This was
recently confirmed by Dobiasch et al. '' in the closely re-
lated context of the Compton laser, which differs from
the present configuration only in that two counterpro-
pagating light beams interact with an electron beam.

The classical approach offers a number of significant
advantages. Unlike the semiclassical approach, it is
straightforward and requires essentially only a single
idealization, namely, the assumption that the incident
light beams are plane waves. Hence, it is correct for arbi-
trary intensities of the strong laser field, and for arbitrary
injection energies of the electron beam, which means that
a single formula suffices for all cases so far considered in
separate semiclassical calculations.

Thus the classical approach constitutes a reliable basis
both for predicting experimental observations and for
checking published semiclassical results. Indeed, our
classical analysis will show some of them to be incorrect,
while being experimentally indistinguishable from others.
Therefore we briefly review in Sec. II the main steps lead-
ing to the exact classical cross section. In Sec. III we
present graphical comparisons between the classical re-
sults and those of Ehlotzky. ' For the nonrelativistic
case, " we find good agreement for all experimentally ac-
cessible intensities of the low-frequency radiation field.
In the relativistic case, however, Ehlotzky's cross sec-
tions deviate progressively from the classical ones for in-
creasing laser intensities.

In several investigations, a point of interest has been
the derivation of sum rules for the total intensity scat-
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tered into a number of harmonics. This topic is taken up
in Sec. IV. Whereas semiclassical derivations of sum
rules must take recourse to further drastic approxima-
tions, which make the interpretation of the resulting ex-
pressions difticult, we again find the classical approach to
be straightforward and transparent. In particular, no so-
called low-frequency approximation is necessary, on
which the semiclassical derivation of sum rules seems to
hinge.

II. CLASSICAL CROSS SECTION

In calculating the spectral and angular distribution of
the photons scattered in a head-on collision of free elec-
trons with an intense two-frequency radiation field, we as-
sume, for convenience, the radiation and electron beams
to be exactly counterpropagating, although there would
be no difhculty in including a small perpendicular veloci-
ty component. We describe the incident radiation fields

by plane waves that are linearly polarized along the same
direction e&. Hence, the corresponding normalized vec-
tor potential may be taken as

eE(
cos( cu, t —

k &z)e,
m, cQ)(

eE,+ cos(co„t—k„z+5)e,
rn, cm,

~x
p&cosri+p„cos re+6 e, =p(r))e, . (1)

In (1), p& and p„denote the dimensionless intensity pa-
rameters of the two waves, and 6 a possible phase
difference between them. For simplicity, we take co, to be
an integer multiple of cu&, co„=mao&, since in view of the
short pulse duration frequencies are not sharply defined
anyway.

Without radiation reaction and with the electron-
injection velocity being —Poe3, the electron velocity
within the laser field is'

2bp(—q)+e3[1 —b +p(ri) ](g)= (2)
1+b +p(t))

with b =(1+pa)/(1 —po)' . To calculate the scattering
signal, we use the standard formula' for the scattered en-
ergy per frequency interval and per unit solid angle,

d I
dcod 0

2
ez sX s —(t) X (t)!

J ' exp [i co[i —s.x( r ) /c] ] dt
16vr'c eo [ 1 —s p( t ) ]

(3)

~„=(co„+neo,)lte ~co, /w, (4)

where

where the integral is to be taken over those time intervals
during which both pulses interact simultaneously with
the electron bunch. Experimentally, one therefore has to
synchronize the pulses such that they simultaneously in-
teract with the electron bunch during a common pulse
duration w.

If ~ comprises a large number of cycles of the low-
frequency beam, it is well known that (3) predicts the
scattered radiation to be confined to a sequence of narrow
frequency bands, ' which are due to the interference of
the fields scattered during successive cycles of the elec-
tron motion. These intensity peaks appear at the fre-
quencies

1 —s pd

1 —e, P
describes the Doppler shift of the nth sideband. It is pro-
duced by the scattering of the incident field off an elec-
tron moving with drift velocity Pd, from the original
direction of propagation e3 into the direction of observa-
tion s=(cosy sinO, sing sinO, cosO), with O=O taken along
e~. Since pd is the time-averaged electron velocity (2),
which depends on p& and p„this Doppler shift is itself
intensity dependent. We assume the bandwidth of the
detector used to be much larger than the bandwidth of
these peaks, so that the detector transmission function
may be taken to be constant over the width of one peak.
Therefore we are justified to represent the scattered signal
as a sequence of 6 pulses centered on the frequencies (4)
with appropriate amplitudes. ' This yields

d I
dcod 0 6(co —~„)

327T c Gpss ], = ]

s X (s X Poe, )

1+s,po

CO

exp i 2m' (6)

where 2 stands for

2~ sX[sXp(g)]
o 1 —e P(q)

Xexp i [ri+(e, —s).x(ti)co, /c] dg,

and x(r)) is the instantaneous position of the electron re-
sulting from an integration of (2). The two terms within
the modulus derive from the usual partial integration of
the integral in (3)." The energy scattered per unit solid
angle in a particular sideband is then obtained by in-
tegrating with respect to frequency over the correspond-
ing 6 pulse, to which the integrated part in (6j does not
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contribute. In defining the scattering cross section of the
nth sideband, do „/d0, we divide this energy by the in-
cident x-ray intensity per unit area, and by ~. In units of
the Thomson cross section o.

zh we thus obtain

do ~

Th dg 8 3 2 n x

(8)

where the unit vectors e t= (sin pr,
—coscp, 0) and

e, = ( coscp cosO, sing cosO, —sinO) measure the amount of
polarization of the scattered radiation perpendicular and
parallel to the scattering plane, and 2„is (7) evaluated at
co=co„. For all realistic sets of parameters, the integral
S„canbe evaluated conveniently and exactly by standard
numerical codes. For ~, /cot &&1 and p, «1, the cross
section (8) turns out to be essentially independent of both
the phase difference 6 between the strong and weak radia-
tion fields and the intensity parameter p, of the x-ray ad-
mixture.

tron beam -I—

@~i 1 63" 10(s)a~ =1.65 ~ 10 '
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(~)o~ = 1.65 10 '
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FIG. 1. Classical cross section (0) vs the relativistic semiclas-
sical cross section (1) and the nonrelativistic semiclassical cross
sections (2), (3), and (4) (labeled according to increasing degree
of approximation) for the central band n =0. The remaining
parameters were chosen to be co„/co~=100, @I=10 ', p, =10
and Eo=1.6 keV.

III. CLASSICAL VERSUS
SEMICLASSICAL RESULTS

Since the most useful comparison between the results
of different approaches is a graphical one, and since the
most general semiclassical results are due to Ehlotzky, '

we contrast in this section polar diagrams of the per-
tinent cross sections. The upper half plane of each figure
corresponds to cp=0, the lower one to y=~. Since the
cross sections for different sidebands differ by orders of
magnitude, different scales are used in different figures.
For comparison, the numerical value of the maximum
cross section —in whatever direction it occurs —is given
in each diagram (in units of the Thomson cross section
o ~„),and denoted by cr

In comparing Ehlotzky's semiclassical results ' with
the classical one, proper account must be taken of their
different definitions, which require the semiclassical
quantity to be multiplied by a factor of co„/co„.'

Ehlotzky gives both nonrelativistic and relativistic
versions of the semiclassical cross section in the form of a
truncated sum of p&-dependent generalized Bessel func-
tions, multiplied by powers of pI. For his nonrelativistic
cross section, he also gives a further approximation by
retaining only the leading term of this sum. This yields a
semiclassical cross section represented by a single gen-
eralized Bessel function, which for certain parameter
ranges approximately degenerates into an ordinary Bessel
function. Where appropriate, all these versions of a par-
ticular cross section are collected and contrasted in a sin-
gle diagram.

Figures 1 —3 refer to the sidebands n =0, 1, and 2, re-
spectively. In these figures the classical cross section is
labeled (0), Ehlotzky's relativistic semiclassical one is la-
beled (1), and his nonrelativistic versions are labeled (2),
(3), and (4), with higher numbers corresponding to a
higher degree of approximation. The parameters were
chosen as follows: frequency ratio ~„/co&= 100, Nd-glass
laser intensity 1.7 X 10' W/cm (p& = 10 ), p, = 10

and nonrelativistic electron-injection energy Eo = 1.6 keV
(Po-0.08). For n =0, Fig. 1 shows perfect agreement
between the classical and all the semiclassical results.
For the first and second sidebands, Figs. 2 and 3, respec-
tively, show nearly perfect agreement between the "ex-
act" classical cross section, (0), and the relativistic and
nonrelativistic semiclassical ones, (1) and (2), respectively.
In particular, it should be noted that for Po —0.08 and
low intensity pal =10, Ehlotzky's relativistic cross sec-
tion is consistent with his most accurate nonrelativistic
one. However, the cruder nonrelativistic approxima-
tions, (3) and (4), deviate to some extent. Since the
findings for the sidebands n = —1, —2 are very similar,
we omit their graphical representation.

For a frequency ratio co, /col = 100, p&
= 10

p, = 10, and a relativistic electron-injection energy

g~ =930 ~ 10(o)a~ =9.25 10(i)v~ =940 10(~)a~ =8.97 10(~)
tscs 8 95 10(i)

n beam

FIG. 2. Classical cross section (0) vs the relativistic semiclas-
sical cross section (1) and the nonrelativistic semiclassical cross
sections (2), (3), and (4) (labeled according to increasing degree
of approximation) for the sideband n =1. The remaining pa-
rameters were chosen to be co„/col=100, @&=10 ', p, =10 ',
and E~ =1.6 keV.
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FIG. 5. Classical cross section (0) vs the relativistic semiclas-
sical cross section (1) for the sideband n =1. The remaining pa-
rameters were chosen to be ~, /~J =100, p. t

=10 —, p. ,=10
and E„=0.5 MeV.
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FIG. 3. Classical cross section (0) vs the relativistic semiclas-
sical cross section (1) and the nonrelativistic semiclassical cross
sections (2), (3), and (4) (labeled according to increasing degree
of approximation) for the sideband n =2. The remaining pa-
rameters were chosen to be c~„/co&=100, p& =10, p, =10
and Eo = 1.6 keV.

electron be~n

FIG. 6. Classical cross section (0) vs the relativistic serniclas-
sical cross section (1) for the sideband n =2. The remaining pa-
rameters were chosen to be cu, /co& =100, p, =10 —, p, =10
and E„=0.5 MeV.

Eo =0.5 MeV (/3o =0.86), Figs. 4 —6 exhibit good agree-
ment between the classical cross section, (0), and
Ehlotzky's relativistic one, (1), for the sidebands corre-
sponding to n =—0, 1, and 2, respectively.

However, for increasing values of pI, and for increas-
ing sideband index n, there is a progressive deviation of
Ehlotzky s relativistic cross section, (1), from the classical
one, (0), both for relativistic and for nonrelativistic elec-
trons (for which it should be equally valid). On the other
hand, for nonrelativistic electrons and increasing values
of p&, his most accurate nonrelativistic cross section, (2),
continues to agree. This implies that Ehlotzky's semi-
classical cross sections ' are inconsistent in a range of
parameters where they ought to coincide. This can be
seen from Figs. 7—9 for the sidebands n =0, 1, and 2, re-
spectively, for a frequency ratio of ~, /co& =100, a Nd-
glass laser intensity of 1.7X 10' W/cm (p& =10 '), for
p, = 10, and for electrons injected with Eo = 1.6 keV
(Po =0.08 ).

(2)

(0), (1)—

=1.53 ~ 10 '
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= 1.53 10 '
(~)

IRcz 1 56 10
—1
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laser hearn electron beam

FIG. 7. Classical cross section (0) vs the relativistic semiclas-
sical cross section (1) and the most accurate nonrelativistic
semiclassical one (2) for the central band n =0. The remaining
parameters were chosen to be c~, /c~& =100, p, =10 ', p, =10
and E„=1.6 keV.
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FIG. 4. Classical cross section (0) vs the relativistic semiclas-
sical cross section (1) for the central band n =0. The remaining
parameters were chosen to be ~„/co&=100,p, =10 -', p, =10
and E„=0.5 MeV.

FIG. 8. Classical cross section 4.0) vs the relativistic semiclas-
sical cross section (1) and the most accurate nonrelativistic
semiclassical one (2) for the sideband n =1. The remaining pa-
rameters were chosen to be co, /n, =100, p, , =10 ', p. , =10
and E„=1.6 keV.
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where P(rI ) is given in (2), and dP(i) )/dil is found to be

dP(i) )
—2b

[1+b +P (i))]
FIG. 9. Classical cross section (0) vs the relativistic semiclas-

sical cross section (1) and the most accurate nonrelativistic
semiclassical one (2) for the sideband n =2. The remaining pa-
rameters were chosen to be co„/co&=100,p&=10 ', p, =10
and E„=1.6 keV.

IV. SUM RULES

In the semiclassical literature, two approaches to deriv-
ing sum rules can be distinguished. ' ' In the first, '

which is only applicable to the case of small intensities,
the cross sections for the individual sidebands are crudely
approximated by assuming pI «1, and then added "by
hand. " In the second, pursued by Ehlotzky, one at-
tempts an analytical summation of all sideband cross sec-
tions. In order to succeed, however, one has to resort to
the so-called low-frequency approximation, which con-
sists in setting col =0 in some places but not everywhere.
Since the effect of such a hybrid procedure is hard to as-
sess, the result of this summation is difficult to interpret.
After all, since contributions from all n have been
summed, this sum rule includes scattering into harmonics
of the laser frequency col. But we will show presently
that scattering into harmonics of col greatly dominates
that into sidebands of co„,so that Ehlotzky's sum rule
(for which no graphical representation is given) might
yield very little information, if any, about the total laser-
assisted part of Thomson scattering.

In contrast, the classical approach to sum rules is again
straightforward and transparent, for neither a low-
frequency approximation nor a low-intensity approxima-
tion is required. %e only need to recall that by Fourier's
theorem, the energy scattered into all harmonics is just

~x
sinX p&sing+ p„

X I [ —1 b+P—
( i))]e, +2bP( i))e 3j . (11)

g+6
Cc) I

duL~(P(, P„) du„,(PI,P„)
dA dQ

do„,(Pi, 0)
dO

(12)

normalizing, of course, the two cross sections on the
right-hand side in the same way, namely, as chosen in Eq.
(10). This leads to a meaningful result, because one finds
by inspection that to a high accuracy the scattering into
harmonics of col is insensitive to the presence of a small
high-frequency admixture.

Figures 10—12 are again polar representations with the

Since the numerical evaluation of the integral (10) is
straightforward, we make no attempt to expand it in
powers of PI. [Note that because (10) is independent of
the phase difference 6, only even powers of pI would
enter such an expansion. The point is that the particular
value 5=~ corresponds to a sign reversal of pI, and in-
dependence of this sign reversal implies a dependence on
the modulus of PI only. ]

Equation (10) is, of course, not yet a sum rule for
laser-assisted Thomson scattering, since it includes strong
contributions from scattering into harmonics of coI. In
order to isolate the total cross section stemming from
laser-assisted Thomson scattering alone, we subtract
from Eq. (10) the analogous expression corresponding to
the case of only the strong laser being present,

dI P d I
d

dQ "o dcodQ

e ~ sX s — t X t

16m.2ceo 0 [1—s p(t)]'

(o), 0), p)

o~ = 1.64 10 '
(~)

olllos 1 64 10 1

(~)o~ =1.64 10 1
(~)o~ = 1.71 1K(~)

which can also be derived by integrating (3) over all fre-
quencies. Introducing the phase g and dividing by the in-
cident x-ray intensity per unit area, by the pulse duration
~, and by o.Th, we get the total cross section per unit solid
angle,

FIG. 10. Overlapping graphs of overall laser-assisted Thom-
son cross sections, (0) and (1), and linear Thomson cross section,
(2). For a small assisting intensity of p, =10 -, these graphs are
the sum of the cross sections for scattering into the central band
n =0, (3), and into either of the sidebands n = + 1, (4). The
remaining parameters were chosen to be cu, /c~& =100, p, „=10
and E„=1.6 keV.
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= 2.86. &O-'

laser bema electron bemn

FIG. 11. Overall laser-assisted Thomson cross section, Eq.
(12), for a very high assisting intensity of p&

= 1. The remaining
parameters were chosen to be io, /~~ = 100, p„=10 ", andE„=1.6 keV.

upper half plane corresponding to can=0, and the lower
one to y=~. Throughout these figures, we assume a fre-
quency ratio of co, /co& = 100, and a nonrelativistic
electron-injection energy of 1.6 keV (f30-0.08). Infor-
mation about the scale used in each figure is given as be-
fore by o ", denoting the maximum value of whatever
cross section is depicted.

laser beaza electron beam

FIG. 12. Overlapping graphs of the "sum rule, " Eq. (10),
with (0) and without (1) a small high-frequency admixture of
p, = 10 4. The remaining parameters were chosen to be
i~, fc~& =100, p& =1, and E() =1.6 keV.

Figure 10 refers to a Nd-glass laser intensity of
1.7X10' W/cm2 (pal=10 2), and to a high-frequency
admixture of p„=10 . The solid curve shown actually
consists of three overlapping curves. Firstly, it represents
the sum rule for laser-assisted Thomson scattering [la-
beled (0)] as derived by subtraction from Eq. (12).
Secondly, it represents the result of a summation of the
sidebands n = —3 to n =3 "by hand" [labeled (1)]. This
establishes our above claim that Eq. (12) indeed yields the
correct sum rule for laser-assisted Thomson scattering.
Thirdly, it represents the cross section for Thomson
scattering with respect to co, in the absence of the strong
radiation field [labeled (2)]. On the other hand, the two
dashed lines correspond to laser-assisted Thomson
scattering into the central band n =0 [labeled (3)], and
into either of the sidebands n =+1 [labeled (4)], respec-
tively. Hence, for relatively small values of p&, sideband
production in laser-assisted Thomson scattering takes
place at the "expense" of the central band n =0, a fact
that has already been briefly mentioned in Refs. 5 and 6.
From the experimental point of view, the overall laser-
assisted Thomson scattering is an unsuitable measure of
the nonlinearity of the process, since for practical values
of p& it is indistinguishable from linear Thomson scatter-
ing in the absence of a strong laser field. In the case of an
imperfect overlap of the strong and weak radiation fields,
we would therefore observe pretty much the same signal,
independent of the strong laser being on or off. Scatter-
ing into the sidebands themselves, however, only occurs
when both fields are on.

It is of interest to investigate whether this near equality
of linear Thomson scattering and overall laser-assisted
Thomson scattering persists for increasing intensities of
the strong laser field. We therefore consider next a deli-
berately unrealistic intensity parameter of p& =1. For
such intensities, the method of Eq. (12) is far more con-
venient for obtaining the overall laser-assisted Thomson
cross section than summing "by hand" over the side-
bands, since now a large number of these contribute
significantly. Assuming p, =10 ", the result is shown in
Fig. 11. It should be noted that the left-hand side of Eq.
(12) is roughly a factor of 5 X 10' smaller than the indivi-
dual terms on the right-hand side, which are of the order
of 10 . This underlines the fact that the "sum rule" Eq.
(10) is vastly dominated by scattering into harmonics of
the laser frequency co&. These individual terms are shown
in Fig. 12 as an overlapping double curve, where the re-
sults of the evaluation of Eq. (10) with and without a
small high-frequency admixture are labeled (0) and (1), re-
spectively. Again we verified that the production of har-
monics in the neighborhood of ~& is almost independent
of the value of p„(forp, =10 and p„=0,the maximum
absolute difference in the production of the first harmonic
was found to be roughly 4X 10 "), so that the difference
of the two terms on the right-hand side of Eq. (12) is en-
tirely due to the laser-assisted sideband production in the
neighborhood of cu„.

By contrasting the angular patterns and the scale
lengths o. '" in Figs. 10 and 11, we see that the overall
laser-assisted Thomson scattering is strongly dependent
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on the intensity parameter pI of the "assisting" low-
frequency laser field.

V. CONCLUSIONS

The graphical comparisons in Sec. III confirm our ini-
tial claim that in situations that are currently experimen-
tally feasible, the classical analysis of laser-assisted

Thomson scattering is perfectly adequate. However, if
we compare the ease of the derivation of the classical re-
sults with the labor required for the semiclassical ones,
the classical approach is greatly superior. This is particu-
larly true for sum rules, where on the semiclassical level
one has to go through very lengthy calculations, arriving
at last at rather unclear results for small values of p&,
while no semiclassical sum rule at all has so far been
given for p& —1.
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